International Journal for Scientific Research & Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Solar Vehicle Case Study
UNIVERSITY OF MINNESOTA SOLAR VEHICLE PROJECT Weather Data Vital for Solar-Powered Vehicle Race When the University of Minnesota Solar Vehicle Project (UMNSVP) team was looking for a weather station to compete in the 2017 Bridgestone World Solar Challenge, they contacted Columbia Weather Systems. “One of the most important resources for our race strategy is real-time weather data,” said Electrical Technical Advisor Spencer Berglund. Founded in 1990, UMNSVP is a student-administered, designed, and built project that teaches members about engineering and management in a complete product development environment. The diverse design and construction challenges help further the school’s mission to “create the best engineers possible.” Over the years they have built 13 solar cars, competing in over 30 racing events across three con- tinents. A new car is designed and built every two years. “One of the most important resources for our race strategy is real-time weather data.” The Challenge - Spencer Berglund, The biennial Bridgestone World Solar Challenge event challenges univer- Electrical Technical sity teams from around the world to engineer, build, and race a vehicle Advisor that is powered by the sun. In preparing for the 2017 race, Berglund said, “Our lack of accurate weather data is a large limiting factor in maxi- mizing our race performance.” The Solution A Magellan MX500™ Weather Station was mounted on a support vehicle providing met data to help optimize power for the new solar-powered, Cruiser-Class car dubbed “Eos II.” Besides speed, Cruiser-Class vehicles focus on practicality and number of people in the car. Gearing up for the race, Berglund related, “We’ve been test driving a lot for the past few days and have been using your weather station for gathering accurate power to drive data for our car. -
The Solar LED Street Light
UNIVERSITA DEGLI STUDI DI PADOVA Scuola di Ingegneria Dipartimento di Ingegneria dell'Informazione Corso di Laurea Triennale in Ingegneria Elettronica Tesina di Laurea The solar LED street light Relatore: Prof. Paolo Tenti Candidato: Ma Hao Luglio 2013 I Index Introduction 1 1 Solar LED Street Light 2 1.1 Requirements on solar LED street light and significance of design....................2 1.2 Overview of solar LED Street light .....................................................................3 1.2.1 Basic components........................................................................................3 1.2.2 Operation principle......................................................................................4 1.3 Current situation and Development......................................................................5 2 Device in solar LED street light system 7 2.1 Solar panel............................................................................................................7 2.1.1 Working principle........................................................................................7 2.1.2 V-I Characteristic of Solar Cell...................................................................8 2.1.3 Selection of solar panels..............................................................................9 2.1.4 Power of the of solar panels........................................................................9 2.1.5 Installation of the solar panel....................................................................10 2.2 Battery -
Solar Street Light
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 10, 2019 (Special Issue) © Research India Publications. http://www.ripublication.com SOLAR STREET LIGHT 1Gurpreet Singh, 2Anish Kamal, 3Ankit Rajput, 4Ankit Kashyap, 5Abhishek Yadav, 1Assistant Professor, 2Student, 3Student, 4Student, 5Student 3. Rechargeable Battery Abstract: The demand of energy has increased in the A rechargeable battery stores the electricity from solar panel world now. So, to fulfil the demands of energy more and during the day time and provides energy to the fixture during more fossil fuels are used, as a result fossil fuels will the night. The rechargeable batteries usually are of two types: extinguish in future if they are used at such a rate. To Gel cell deep cycle battery replace the loss of fossil fuels we can use renewable energy Lead acid battery. as they are freely available and adequate. Today, LED (light emitting diode) lamps have replaced the HID (high 4. Pole intensity discharge) lamps that were used in urban street Street poles are mandatory part to all street lights. This is lights. Solar street lights work on the principle of because there are often components mounted on the top of the photovoltaic cell or solar cell. In short, this paper is based pole like: on the idea of maintaining the maximum utilization and minimum loss of available energy. Fixtures, Panels, and Keywords— Demand Energy, Fossil Fuels, LED Batteries. 1. Introduction Solar energy is the radiant energy emitted by sun. Solar 3. Solar Power System energy can be converted into electricity in two ways: 1. -
Power Saving Solar Street Lights
International Journal of Emerging Technologies in Engineering Research (IJETER) Volume 5, Issue 5, May (2017) www.ijeter.everscience.org Power Saving Solar Street lights Badri Narayan Mohapatra Assistant Professor of ETC Department at Oxford College of Engineering and Management, India. Aishwarya Dash Assistant Professor of ETC Department at Oxford College of Engineering and Management, India. Bipin Prasad Jarika Diploma Final Year student of ETC Department at Oxford School of Polytechnic, India. Abstract –This project is based on the idea of maintaining which the lights will glow automatically from time to time maximum utilization and minimum loss of available energy. The with automatically controlled intensity[4]. Thus the plenty of solar energy available during the day time is stored in a unnecessary power wastage is reduced up to a large extent. solar cell and the stored energy is used to glow the street lights during the whole night. Also the system provides a power saving mode of operation by adapting the method of automation. A dark sensor and a light sensor provides the automatic “ON”/”OFF” facility to the street lights, so that it will glow automatically when it is required(i.e. when the surrounding will be dark) and it will be turned “OFF” automatically if sufficient light is available in the surrounding. Again the auto intensity control mechanism has been applied by the help of a microcontroller to control the light intensity of the luminaries as per the requirement. Hence the loss of energy due to unnecessary glow of the street lights can be avoided. Index Terms – PV module, DS1307, intelligent Street light, LDR (Light depending Resistor), IR Sensor (Infra red Sensor). -
Next-Generation Solar Power Dutch Technology for the Solar Energy Revolution Next-Generation High-Tech Excellence
Next-generation solar power Dutch technology for the solar energy revolution Next-generation high-tech excellence Harnessing the potential of solar energy calls for creativity and innovative strength. The Dutch solar sector has been enabling breakthrough innovations for decades, thanks in part to close collaboration with world-class research institutes and by fostering the next generation of high-tech talent. For example, Dutch student teams have won a record ten titles in the World Solar Challenge, a biennial solar-powered car race in Australia, with students from Delft University of Technology claiming the title seven out of nine times. 2 Solar Energy Guide 3 Index The sunny side of the Netherlands 6 Breeding ground of PV technology 10 Integrating solar into our environment 16 Solar in the built environment 18 Solar landscapes 20 Solar infrastructure 22 Floating solar 24 Five benefits of doing business with the Dutch 26 Dutch solar expertise in brief 28 Company profiles 30 4 Solar Energy Guide The Netherlands, a true solar country If there’s one thing the Dutch are remarkably good at, it’s making the most of their natural circumstances. That explains how a country with a relatively modest amount of sunshine has built a global reputation as a leading innovator in solar energy. For decades, Dutch companies and research institutes have been among the international leaders in the worldwide solar PV sector. Not only with high-level fundamental research, but also with converting this research into practical applications. Both by designing and refining industrial production processes, and by developing and commercialising innovative solutions that enable the integration of solar PV into a product or environment with another function. -
The History of Solar
Solar technology isn’t new. Its history spans from the 7th Century B.C. to today. We started out concentrating the sun’s heat with glass and mirrors to light fires. Today, we have everything from solar-powered buildings to solar- powered vehicles. Here you can learn more about the milestones in the Byron Stafford, historical development of solar technology, century by NREL / PIX10730 Byron Stafford, century, and year by year. You can also glimpse the future. NREL / PIX05370 This timeline lists the milestones in the historical development of solar technology from the 7th Century B.C. to the 1200s A.D. 7th Century B.C. Magnifying glass used to concentrate sun’s rays to make fire and to burn ants. 3rd Century B.C. Courtesy of Greeks and Romans use burning mirrors to light torches for religious purposes. New Vision Technologies, Inc./ Images ©2000 NVTech.com 2nd Century B.C. As early as 212 BC, the Greek scientist, Archimedes, used the reflective properties of bronze shields to focus sunlight and to set fire to wooden ships from the Roman Empire which were besieging Syracuse. (Although no proof of such a feat exists, the Greek navy recreated the experiment in 1973 and successfully set fire to a wooden boat at a distance of 50 meters.) 20 A.D. Chinese document use of burning mirrors to light torches for religious purposes. 1st to 4th Century A.D. The famous Roman bathhouses in the first to fourth centuries A.D. had large south facing windows to let in the sun’s warmth. -
Transportation Milestones
TRANSPORTATION MILESTONES The following is a list of transportation milestones that have occurred since the birth of our nation. Blue type indicates milestones for which a poster has been prepared in advance for your use. If time does not allow you to use all of the events listed, it is recommended the ones with an asterisk (*) be given highest priority— these are the ones provided on the sample timeline. Consider adding notable events that are of importance to your region— for example, Californians might want to include the Golden Gate Bridge while New Yorkers will probably add the Brooklyn Bridge. 1776 Propellor Submarine - Turtle (David Bushness, USA) 1779 Iron Bridge (Abraham Darby, England) 1781 Steam Engine Thomas Newcomen, England and James Watt, Scotland) 1781 Ornithopter (Karl Friedrich Meerwein, Germany) 1783 Hot Air Balloon (Joseph Michel and Jacques Étienne Montgolfier, France) 1787 Steamboat (John Fitch, USA— John Fitch is given credit for the first recorded steam-powered ship in the U.S. Connecticut and James The first successful trial of his boat was on the Delaware River in 1787. Delegates Rumsey, USA—West from the Constitutional Convention witnessed the event. The same year, James Virginia) Rumsey exhibited a steamboat on the Potomac River After a battle with Rumsey, Fitch was granted a U.S. patent for his steamboat in 1791—the men had similar designs. Fitch continued to build boats. While they were mechanically successful, Fitch failed to pay sufficient attention to construction and operating costs and was unable to justify the economic benefits of steam navigation. This was left to others. -
Mit Solar Electric Vehicle Team
MIT SOLAR ELECTRIC VEHICLE TEAM The MIT Solar Electric Vehicle Team (SEVT) TEAM GOALS: is a student organization dedicated to • Facilitate continuous demonstrating the viability of alternative innovation and deve- energy-based transportation. The team was lopment in all fields founded in 1985 and since 1993 has worked related to solar under the auspices of MIT’s Edgerton electric vehicles Center. through international participation and We build each vehicle from the ground competition up, allowing us to apply our theoretical knowledge while gaining hands-on • Give our sponsors manufacturing experience and project publicity through management skills. Team members work positive exposure and with professors and industry to overcome press coverage. the design and fabrication challenges • Provide members of inherent to this complex project. Since the MIT community its creation, the SEVT has built nearly 15 with incomparable vehicles and competed successfully in experience in engin- national and international races, most eering, management, recently the 2015 World Solar Challenge in marketing, and Austrailia. We are currently constructing business. our newest race vehicle for competition in the 2017 World Solar Challenge. • Be active in the com- munity, promoting We share our enthusiasm for applied alternative energy and engineering and renewable technologies by transportation. actively reaching out to local schools and • Inspire children the Greater Boston community. Through to pursue careers our interactions, we hope to educate in science and the public about alternative energy and engineering. transportation, as well as inspire the next generations of innovators. WHAT IS SOLAR RACING? In a solar car race, highly specialized Each solar car is accompanied by provement in efficiency and perfor- vehicles that run entirely on solar lead and chase vehicles to provide mance of their vehicles. -
Presentation of Solar Cylinder Street Light Post
Presentation of Solar Cylinder Street Light Post The most aesthetically new generation of solar street lights CONTENTS 01. SYSTEM OVERVIEW 02. SOLAR CYLINDER 03. SOALR LIGHT HEADS 04. APPLICATION 01 SYSTEM OVERVIEW REFURBISH THE STREET WITH SOLAR CYLINDER POSTS. Solar Cylinder Street Light The new generation of solar street lights with aesthetically designed 1.1 Post WHAT IS IT Solar cylinder solar street post is the advanced combination with latest technology. It adopts the cylindrical solar modules as a revolutionary design in 2019. Solar cylinder is based on modular conception which is can be easily mounted to any kind of pole within diameter 165mm, It adopts mono crystalline silicon with high power efficiency up to 21.2% and more than 20 years lifetime. It has a very aesthetical appearance and has a much better wind resistance rather than regular solar panel. The whole post only includes two functional components including solar cylinder and solar light head which are connected directly by MC4 connectors. The battery and solar controller are built inside of light fixture. The power of lights covers from 20W to 120W which can be installed on poles from 5M to 14M. Solar cylinder light post is a premium and advanced products which are specially for these projects concerning a lot on aesthetical appearance as well as high luminous, durable quality system and longtime lifetime. Solar Cylinder Street Light The new generation of solar street lights with aesthetically designed 1.2 Post ADVANTAGES Detachable Design 360° All Day Charging Better Wind Resistance Easy to Clean No Snow Covering Aesthetic Appearance This solar cylinder 6 slim solar panels are The cylindrical design Much less dust will fall Solar cylinder modular Comparing with regular module is based on fixed tightly on a reduces the wind on surface than regular mounted in vertical is solar panel. -
2021 Team Manager's GUIDE
2021 team manager’s GUIDE Document Control The purpose of the manual is to provide information about the important logistical challenges of attending the Bridgestone World Solar Challenge. It may be updated by the issue of further editions. Release version 1 issued 19 June 2020 Copyright statement The Government of South Australia supports and encourages the dissemination and exchange of public sector information and endorses the use of Creative Commons Licenses by its agencies. With the exception of the Piping Shrike emblem, images, and other material or devices protected by a trademark and subject to review by the Government of South Australia at all times, the content of this document is licensed under the Creative Commons Australia Attribution 4.0 Licence. All other rights are reserved. Where specific licence terms (such as Creative Commons) are applied to this document, those licence terms shall prevail over any inconsistent provisions in this statement. The Government of South Australia has undertaken reasonable enquiries to identify material owned by third parties and secure permission for its reproduction. Permission may need to be obtained from third parties to reuse their material. When using content from this document that is licensed under a Creative Commons Licence you are required to attribute the work in the manner specified in the licence (but not in any way that suggests that the Government of South Australia endorses you or your use of the work) and the Government of South Australia requires that you use the following form of attribution. The Government of South Australia, >>title of works<>insert date the content was sourced<>insert URL< IMPORTANT This printed version may not contain all updates and bulletins. -
World Solar Challenge!
TROTTEMANT 11/26/03 4:55 PM Page 52 Education Nuna II Breaks All Records to Win the World Solar Challenge! Eric Trottemant favourite because of its use – like its Education Office, ESA Directorate of forerunner Nuna in 2001 – of advanced Administration, ESTEC, space technology provided to the team via Noordwijk, The Netherlands ESA’s Technology Transfer Programme, which gives the car a theoretical top speed of 170 km per hour. he Dutch solar car ‘Nuna II’, using The aerodynamically optimised outer ESA space technology, again shell consists of space-age plastics to keep Tfinished first in the 2003 World it light and strong. The main body is made Solar Challenge, a 3010 km race from from carbon fibre, reinforced on the upper north to south across Australia for cars side and on the wheels’ mudguards with powered only by solar energy. Having set aramide, better known under the trade off from Darwin on Sunday 19 October, name of Twaron. The latter is used in Nuna II crossed the finishing line in satellites as protection against micro- Adelaide on Wednesday 22 October in a meteorite impacts, and nowadays also in new record-breaking time of 30 hours 54 high-performance protective clothing like minutes, 1 hour and 43 minutes ahead of its bulletproof vests. nearest rival and beating the previous The car’s shell is covered with the best record of 32 hours 39 minutes set by its triple-junction gallium-arsenide solar cells, predecessor Nuna in 2001. developed for satellites. These cells The average speed of Nuna II, nick- harvest 10% more energy from the Sun named the ‘Flying Dutchman’ by the than those used on Nuna for the 2001 race. -
A COST EFFECTIVE SOLAR POWERED LED STREET LIGHT FREDERICK WONG TSUN KIONG a Project Report Submitted in Partial Fulfillment of T
A COST EFFECTIVE SOLAR POWERED LED STREET LIGHT FREDERICK WONG TSUN KIONG A project report submitted in partial fulfillment of the requirement for the award of the Degree of Master of Electrical Engineering Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia JULY 2014 v ABSTRACT A cost effective solar powered LED street light was designed based on the current solar powered street light installed at Masjid Nurul Huda, Kampung Gentisan, Sepanggar, Sabah, Malaysia. A new load profile is obtained based on a thirty day data collection at site utilizing motion sensor to record movement at the area. A proposed algorithm to control the LED light intensity was presented. The new load profile was processed based on the proposed algorithm. Simulation to design a new solar powered LED street light was done using the new load profile. The design uses 180W Solar Panel, with 8 x 6V (10Ah) batteries. The system has the design capability to last for 38.6 hours. Results are compared with existing solar powered LED street light and also existing mercury vapor street light. An economic analysis for 25 years is also performed to determine the cost effectiveness of the new system where the Life Cycle Cost is found to be RM 11,143.00 compared to the existing conventional design of RM 13,626.00 which is equivalent to 18.22% of cost savings. vi ABSTRAK Satu sistem lampu jalan LED yang berkuasakan solar yang kos efektif telah direka berdasarkan lampu jalan LED berkuasa solar yang telah dipasang di Masjid Nurul Huda, Kampung Gentisan, Sepanggar, Sabah, Malaysia.