brain sciences Article Imaging of Functional Brain Circuits during Acquisition and Memory Retrieval in an Aversive Feedback Learning Task: Single Photon Emission Computed Tomography of Regional Cerebral Blood Flow in Freely Behaving Rats Katharina Braun 1,2,*, Anja Mannewitz 1, Joerg Bock 2,3, Silke Kreitz 4, Andreas Hess 4, Henning Scheich 2,5,† and Jürgen Goldschmidt 2,5,† 1 Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany;
[email protected] 2 Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany;
[email protected] (J.B.);
[email protected] (H.S.);
[email protected] (J.G.) 3 PG “Epigenetics and Structural Plasticity”, Institute of Biology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany 4 Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University, 91054 Erlangen, Germany;
[email protected] (S.K.);
[email protected] (A.H.) 5 Combinatorial Neuroimaging Core Facility, Leibniz Institute for Neurobiology, 39106 Magdeburg, Germany * Correspondence:
[email protected]; Tel.: +49-391-67-55001 † Shared senior authorship. Citation: Braun, K.; Mannewitz, A.; Abstract: Active avoidance learning is a complex form of aversive feedback learning that in humans Bock, J.; Kreitz, S.; Hess, A.; Scheich, and other animals is essential for actively coping with unpleasant, aversive, or dangerous situations. H.; Goldschmidt, J. Imaging of Since the functional circuits involved in two-way avoidance (TWA) learning have not yet been entirely Functional Brain Circuits during Acquisition and Memory Retrieval in identified, the aim of this study was to obtain an overall picture of the brain circuits that are involved an Aversive Feedback Learning Task: in active avoidance learning.