The Movement Ecology of an Agricultural Pest, Navel Orangeworm, Amyelois Transitella
Total Page:16
File Type:pdf, Size:1020Kb
The Movement Ecology of an Agricultural Pest, Navel Orangeworm, Amyelois transitella By Stephen Kyle Bayes A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Stephen C. Welter, Chair Professor Nicholas J. Mills Professor Marc Hellerstein Fall 2014 Abstract The Movement Ecology of an Agricultural Pest, Navel Orangeworm, Amyelois transitella by Stephen Kyle Bayes Doctor of Philosophy in Environmental Science, Policy and Management University of California, Berkeley Professor Stephen C. Welter, Chair Tracking the movement of small organisms is of tremendous importance to understanding the ecology of populations, communities, and ecosystems. However, it remains one of the most difficult challenges facing the field of movement ecology. This dissertation focuses on the movement of an agricultural pest, the navel orangeworm (Amyelois transitella, NOW). I first examined intercrop movement of NOW between two agricultural commodities, almonds and walnuts. By using protein markers and an enzyme-linked immunosorbant assay technique to detect markers on recaptured moths, I demonstrated significant male NOW movement (up to 300 meters) and no significant directional preferences of movement based on crop, season, or wind velocity. However, protein marker contamination of control moths within traps was significant, limiting our ability to detect movement patterns. In addition, the scale of this study may have been too small to capture larger scale directional patterns of movement. In order to overcome some of the observed challenges of protein marking techniques for small organisms, I developed and tested an intrinsic marking technique for tracking NOW using dietary fatty acid profiles as a biomarker. This was accomplished by analyzing fatty acids from NOW moths raised on two different host plants with significantly different fatty acid profiles. Using this data a linear discriminant analysis model was developed and validated to distinguish NOW based on their larval host plant. Results showed that NOW fatty acid profiles are strikingly similar to those of their host plant. Therefore fatty acids can act as a valuable intrinsic marking technique for tracking small organisms, avoiding many of the drawbacks of external markers, and providing a useful tool for the study of movement ecology. Fatty acid tracking is effective for small organisms, but does not determine movement paths, direction, or distance of movement in a localized setting. In order to draw meaningful conclusions from localized movement data using intrinsic marking techniques, I developed a Gaussian-based dispersal model. This model was applied to field-caught NOW moths from three sites in the central valley of California. Average movement distance was estimated to be about 50 m per generation at two sites and about 600 m per generation at the third site. The study demonstrates that probability-based dispersal models combined with intrinsic marking techniques provides a useful tool for both tracking and understanding the localized movement capabilities of small organisms. 1 Dedication This dissertation is dedicated to my parents, Jane and Kyle Bayes, for their love and support in this and all of my other endeavors. i Table of Contents List of Figures ................................................................................................................................ iv List of Tables ...................................................................................................................................v Acknowledgements ........................................................................................................................ vi Introduction ....................................................................................................................................1 Chapter 1: Intercrop movement of navel orangeworm monitored using enzyme linked immunosorbant assays .....................................................................................................................4 Abstract ................................................................................................................................4 Introduction ..........................................................................................................................5 Materials and Methods .........................................................................................................6 Results ..................................................................................................................................9 Discussion ..........................................................................................................................10 Acknowledgements ............................................................................................................12 Literature Cited ..................................................................................................................13 Tables .................................................................................................................................16 Figures................................................................................................................................19 Chapter 2: You are what you eat: fatty acid profiles as a method to track the habitat movement of an insect ....................................................................................................................................23 Abstract ..............................................................................................................................23 Introduction ........................................................................................................................24 Materials and Methods .......................................................................................................25 Results ................................................................................................................................27 Discussion ..........................................................................................................................28 Acknowledgements ............................................................................................................30 Literature Cited ..................................................................................................................31 Figures................................................................................................................................35 ii Chapter 3: Estimating the dispersal of an intrinsically marked insect from known larval food sources: application to movement of navel orangeworm ..............................................................40 Abstract ..............................................................................................................................40 Introduction ........................................................................................................................41 Dispersal Model for Intrinsic Marker Datasets .................................................................42 Materials and Methods .......................................................................................................43 Results ................................................................................................................................46 Discussion ..........................................................................................................................47 Literature Cited ..................................................................................................................49 Tables .................................................................................................................................51 Figures................................................................................................................................52 Conclusions ...................................................................................................................................59 iii List of Tables Chapter 1 Table 1: Timing of marker applications.............................................................................16 Table 2: GLM examining effectiveness of protein markers ..............................................17 Table 3: GLM examining directional movement...............................................................18 Chapter 3 Table 1: GLM examining NOW trap catch .......................................................................51 iv List of Figures Chapter 1 Figure 1: Experimental layout of an orchard site ...............................................................19 Figure 2: Mean marked moths versus distance traveled ....................................................20 Figure 3: Mean proportions of marked moths across plots and moth types ......................21 Figure 4: Mean moths captured for each crop type ...........................................................22 Chapter 2 Figure 1: Fatty acid profiles from nuts and moths in the laboratory .................................35 Figure 2: LDA of FAME profiles for the training and validation data sets ......................36 Figure 3: LDA of FAME profiles for the complete model ................................................37