Encyclopedia of Pest Management Walnut Insects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Isbn 967-960-176-5 Inaugural Lecture
Hak cipta terpelihara. Tiada bahagian terbitan ini boleh diterbitkan semula, disimpan untuk pengeluaran atau ditukarkan ke dalarn sebarang bentuk atau dengan sebarang alat juga pun, sarna ada dengan cara elektronik, garnbar serta rakarnan dan sebagainya tanpa kebenaran bertulis daripada Bahagian Komunikasi Korporat UPM terlebih dahulu. Diterbitkan di Malaysia oleh Bahagian Komunikasi Korporat . Universiti Putra Malaysia 43400 UPM Serdang Selangor, Malaysia Tel: 603-8946 6003 Fax: 603-8948 7273 e-mail: [email protected] ISBN 967-960-176-5 INAUGURAL LECTURE PROF. DR. YUSOF IBRAHIM , ) The Spider Mite Saga - Quest for Biorational Management Strategies 22 May 2004 DEWAN TAKLIMAT , ) TINGKAT 1, BANGUNAN PENTADBIRAN UNIVERSITI PUTRA MALAYSIA _~~~~~~~~~0~," YUSOF BIN IBRAHIM Born in 1948 in [ohor Bahru, Professor Dr.Yusof Ibrahim attended College of Agriculture, Malaya in 1967 and obtained a Diploma in Agriculture in 1970. In 1971 he left for California and obtained a Bachelor of Science in Entomology in 1973 from University of California at Davis. He continued his education at Pennsylvania State University at State College in 1974 and obtained a Master of Science in Entomology two years later. He was awarded a PhD. in Entomology (Behavioural Toxicology) in 1985 from University of Missouri at Columbia, USA. Professor Yusof began his career as a lecturer at the Institute of Agriculture, Serdang in 1970 and was appointed the Farm Manager in 1971. In 1976 he began his service at Universiti Putra Malaysia as a lecturer at the Department of Plant Protection, Faculty of Agriculture. In 1993 he was promoted to Associate Professor and then Professor of Entomology 10 years later. -
Biological Control of Insect Pests in the Tropics - M
TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol. III - Biological Control of Insect Pests In The Tropics - M. V. Sampaio, V. H. P. Bueno, L. C. P. Silveira and A. M. Auad BIOLOGICAL CONTROL OF INSECT PESTS IN THE TROPICS M. V. Sampaio Instituto de Ciências Agrária, Universidade Federal de Uberlândia, Brazil V. H. P. Bueno and L. C. P. Silveira Departamento de Entomologia, Universidade Federal de Lavras, Brazil A. M. Auad Embrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária, Brazil Keywords: Augmentative biological control, bacteria, classical biological control, conservation of natural enemies, fungi, insect, mite, natural enemy, nematode, predator, parasitoid, pathogen, virus. Contents 1. Introduction 2. Natural enemies of insects and mites 2.1. Entomophagous 2.1.1. Predators 2.1.2. Parasitoids 2.2. Entomopathogens 2.2.1. Fungi 2.2.2. Bacteria 2.2.3. Viruses 2.2.4. Nematodes 3. Categories of biological control 3.1. Natural Biological Control 3.2. Applied Biological Control 3.2.1. Classical Biological Control 3.2.2. Augmentative Biological Control 3.2.3. Conservation of Natural Enemies 4. Conclusions Glossary UNESCO – EOLSS Bibliography Biographical Sketches Summary SAMPLE CHAPTERS Biological control is a pest control method with low environmental impact and small contamination risk for humans, domestic animals and the environment. Several success cases of biological control can be found in the tropics around the world. The classical biological control has been applied with greater emphasis in Australia and Latin America, with many success cases of exotic natural enemies’ introduction for the control of exotic pests. Augmentative biocontrol is used in extensive areas in Latin America, especially in the cultures of sugar cane, coffee, and soybeans. -
San Jose Scale and Its Natural Enemies: Investigating Natural Or Augmented Controls
California Tree Fruit Agreement Research Report 2002 SAN JOSE SCALE AND ITS NATURAL ENEMIES: INVESTIGATING NATURAL OR AUGMENTED CONTROLS Project Leaders: Kent M. Daane Cooperators: Glenn Y. Yokota, Walter J. Bentley, Karen Sime, and Brian Hogg ABSTRACT San Jose scale (SJS) and its natural enemies were studied from 1999 through 2002. Natural populations were followed in stone fruit and almond blocks, with orchard management practices divided into “conventional” and “sustainable” practices, based on dormant and in-season insecticide use. Results generally show higher fruit damage at harvest-time in sustainably managed fields, although, these results are not consistent among orchards and exceptions to this pattern were found. In conventionally managed blocks, later harvest dates resulted in higher SJS fruit damage, although this did not hold true in sustainably managed orchards. Results from SJS pheromone-baited traps show a predominant seasonal pattern of SJS densities progressively increasing and parasitoid (Encarsia perniciosi) densities progressively decreasing. These data are discussed with respect to SJS fruit damage and parasitoid establishment and efficiency. SJS and parasitoid sampling methodology and distribution were investigated. Comparing SJS pheromone trap data to numbers of crawlers on double-sided sticky tape and SJS infested fruit at harvest show a significant correlation between pheromone trap counts of SJS males and numbers of SJS crawlers. Results suggest that there is a small window in the season (April-May) when sticky tape provides important information on crawler abundance and damage. Results show a negative correlation between the early season abundance of Encarsia (as measured by pheromone traps) and SJS damage at harvest. These results suggest that early-season ratios of parasitoid : SJS can not be used to predict fruit damage or biological control (these data require more analysis). -
Bionomics of Chilocorus Infernalis Mulsant, 1853 (Coleoptera
doi:10.14720/aas.2019.113.1.07 Original research article / izvirni znanstveni članek Bionomics of Chilocorus infernalis Mulsant, 1853 (Coleoptera: Coccinellidae), a predator of San Jose scale, Diaspidiotus perniciosus (Comstock, 1881) under laboratory conditions Razia RASHEED1*, A.A. BUHROO1 and Shaziya GULL1 Received July 23, 2018; accepted January 03, 2019. Delo je prispelo 23. julija 2018, sprejeto 03. januarja 2019. ABSTRACT IZVLEČEK The bionomics of Chilocorus infernalis Mulsant, 1853, a BIONOMIJA VRSTE Chilocorus infernalis Mulsant, 1853 natural enemy of San Jose scale, was studied under laboratory (Coleoptera: Coccinellidae), PLENILCA AMERIŠKEGA conditions (26 ± 2˚C, and 65 ± 5% relative humidity). The KAPARJA (Diaspidiotus perniciosus (Comstock, 1881)) V eggs were deposited in groups and on average 45.68 ± 24.70 LABORATORIJSKIH RAZMERAH eggs were laid by female. Mean observed incubation period was 6.33 ± 1.52 days. Four instar grubs were observed, and Bionomija vrste Chilocorus infernalis Mulsant, 1853, mean duration of all four grubs was found to be 19.98 days. naravnega sovražnika ameriškega kaparja, je bila preučevana The pupal stage lasted for 8.00 ± 0.50 days and after adults v laboratorijskih razmerah (26 ± 2˚C in 65 ± 5 % relativne emerged out. zračne vlažnosti). Samice plenilca so jajčeca odlagale v skupinah, v poprečju 45,68 ± 24,70 jajčec na samico. V Key words: bionomics; natural enemies; San Jose scale; povprečju so se ličinke razvile iz jajčec v 6,33 ± 1,52 dneh. incubation period; larval instars Ugotovljene so bile štiri larvalne stopnje, katerih povprečna življenska doba je bila 19,98 dni. Razvojni štadij bube je trajal 8,00 ± 0,50 dni, nakar so se izlegli imagi. -
Taxonomic Redescription of the Species of Sub- Family Chilocorinae
International Journal of Chemical Studies 2018; 6(6): 1465-1469 P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2018; 6(6): 1465-1469 Taxonomic redescription of the species of sub- © 2018 IJCS Received: 26-09-2018 family Chilocorinae (Coleoptera: Coccinellidae) Accepted: 30-10-2018 from Jammu and Kashmir, India Ajaz Ahmad Kundoo Division of Entomology, Sher-e-Kashmir University of Ajaz Ahmad Kundoo, Akhtar Ali Khan, Ishtiyaq Ahad, NA Bhat, MA Agricultural Sciences and Chatoo and Khalid Rasool Technology of Kashmir, Wadura Campus, Baramullah, Jammu and Kashmir, India Abstract Ladybugs are diverse group of living organisms. They belong to family Coccinellidae of order Akhtar Ali Khan Coleoptera. The family has been subdivided into six subfamilies: Sticholotidinae, Chilochorinae, Division of Entomology, Scymninae, Coccidulinae, Coccinellinae and Epilachninae. These are universal predators and occupy Sher-e-Kashmir University of important place in biological control. In this paper four species of the subfamily Chilocorinae have been Agricultural Sciences and collected and rediscribed as no taxonomic work has been done on this group in Kashmir, India. This Technology of Kashmir, paper provides a detailed taxonomy of Chilocorus infernalis, Chilocorus rubidus, Pricibrumus Shalimar Campus, Jammu and uropygialis and Platynaspidius saundersi on the basis of advanced taxonomic character that is male Kashmir, India genitalia. Detailed description of adults, male genitalia and taxonomic keys are provided for each species Ishtiyaq Ahad along with color plates. Division of Entomology, Sher-e-Kashmir University of Keywords: Chilocorinae, Kashmir, male genitalia, taxonomy, taxonomic keys. Agricultural Sciences and Technology of Kashmir, Wadura Introduction Campus, Baramullah, Jammu Coccinellids are commonly known as ladybird beetles. -
Spruce Spider Mite Oligonychus Ununguis Order Acari, Family Tetranychidae; Spider Mites Native Pest
Pests of Trees and Shrubs Spruce spider mite Oligonychus ununguis Order Acari, Family Tetranychidae; spider mites Native pest Host plants: Blue spruce, Norway, and white spruce are preferred, but arborvitae, cedar, cryptomeria, dawn redwood, Douglas-fir, hemlock, juniper, larch, and pine, are also susceptible. Description: Adult mites are approximately 0.5 mm long with eight legs. They are dark green when young but turn darker green as they mature. Protonymphs are smaller and lighter. Eggs are reddish-orange and oval to circular. Life history: This is a cold tolerant spider mite not active in hot summer temperatures. Eggs hatch in April and May. Feeding damage may be first observed after feeding started. Activity eases in summer with the arrival of 90 degree F temperatures and resumes with cooler weather in fall. There are several generations a year. Overwintering: Eggs on bark and needles. Damage to blue spruce in June caused by spruce spider mite; Damage symptoms: Mite feeding causes color changes note discoloration on the older needles. (234) in needles, giving them first a mottled appearance, then Photo: Cliff Sadof turning needles yellow and finally bronze. Damaged needles may drop prematurely. Severe infestations can cause loss of foliage, twig dieback, even branch dieback. Host trees may be killed, if extremely heavy infestations occur when they are stressed. Monitoring: Eggs hatch when PJM rhododendron blooms in mid April (Herms). Look for fine stippling turning into bronzing of needles beginning in June. To confirm mite presence, hold a sheet of white paper under a branch and tap the branch to dislodge mites. -
Arthropods of Elm Fork Preserve
Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux. -
A Preliminary Assessment of Amblyseius Andersoni (Chant) As a Potential Biocontrol Agent Against Phytophagous Mites Occurring on Coniferous Plants
insects Article A Preliminary Assessment of Amblyseius andersoni (Chant) as a Potential Biocontrol Agent against Phytophagous Mites Occurring on Coniferous Plants Ewa Puchalska 1,* , Stanisław Kamil Zagrodzki 1, Marcin Kozak 2, Brian G. Rector 3 and Anna Mauer 1 1 Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland; [email protected] (S.K.Z.); [email protected] (A.M.) 2 Department of Media, Journalism and Social Communication, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland; [email protected] 3 USDA-ARS, Great Basin Rangelands Research Unit, 920 Valley Rd., Reno, NV 89512, USA; [email protected] * Correspondence: [email protected] Simple Summary: Amblyseius andersoni (Chant) is a predatory mite frequently used as a biocontrol agent against phytophagous mites in greenhouses, orchards and vineyards. In Europe, it is an indige- nous species, commonly found on various plants, including conifers. The present study examined whether A. andersoni can develop and reproduce while feeding on two key pests of ornamental coniferous plants, i.e., Oligonychus ununguis (Jacobi) and Pentamerismus taxi (Haller). Pinus sylvestris L. pollen was also tested as an alternative food source for the predator. Both prey species and pine pollen were suitable food sources for A. andersoni. Although higher values of population parameters Citation: Puchalska, E.; were observed when the predator fed on mites compared to the pollen alternative, we conclude that Zagrodzki, S.K.; Kozak, M.; pine pollen may provide adequate sustenance for A. -
New Records and Taxonomic Updates for Adventive Sap Beetles (Coleoptera: Nitidulidae) in Hawai`I
42 BISHOP MUSEUM OCCASIONAL PAPERS: No. 79, 2004 Expedition, 1895-’97, Nos. 501-705. Made by Perkins in 1936. Box 1, Bishop Museum Archives. (Photocopy of original in British Museum of Natural History). Sharp, D. 1878. On some Nitidulidae from the Hawaiian Islands. Trans. R. Entomol. Soc. Lond. 26: 127–140. ———. & H. Scott. 1908. Coleoptera III, p. 435–508. In: Sharp D., ed. Fauna Hawaii- ensis, Volume 3, Part 5. The University Press, Cambridge, England. Figs. 1–3. Prosopeus male genitalia. 1, Prosopeus subaeneus Murray; tegmen of male, ventral; 2, same, apex of inverted male internal sac; 3, Prosopeus scottianus (Sharp); apex of inverted male internal sac. sd, sperm duct; v, ventral surface. Scale bars 0.1mm. New records and taxonomic updates for adventive sap beetles (Coleoptera: Nitidulidae) in Hawai`i CURTIS P. EWING (Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York 14853-0901, USA; email: [email protected]) and ANDREW S. CLINE (Louisiana State Arthropod Museum, Department of Entomology, Louisiana State University, Baton Rouge, Louisiana 10803, USA; email: [email protected]) The adventive sap beetles present in Hawai`i are all saprophagous, except for Cybocephalus nipponicus Endrödy-Younga, which is predatory. Species in the genus Carpophilus are the most commonly encountered and are considered nuisance pests around pineapple fields and canneries (Illingworth, 1929; Schmidt, 1935; Hinton, 1945). The remaining species are less frequently encountered and are not considered to be impor- tant pests. We report 2 new state records, 5 new island records, and 4 taxonomic changes for the adventive sap beetles in Hawai`i. With the exception of Stelidota chontalensis Sharp, all of the species reported are widely distributed outside Hawai`i. -
Interrelation of Mating, Flight, and Fecundity in Navel Orangeworm Females Angela M
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Entomology Publications Entomology 4-2018 Interrelation of mating, flight, and fecundity in navel orangeworm females Angela M. Rovnyak Iowa State University Charles S. Burks U.S. Department of Agriculture Aaron J. Gassmann Iowa State University, [email protected] Thomas W. Sappington Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/ent_pubs Part of the Agricultural Economics Commons, Entomology Commons, and the Population Biology Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ent_pubs/484. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Interrelation of mating, flight, and fecundity in navel orangeworm females Abstract The an vel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae, Phycitini), is an economically important pest of nut crops in California, USA. Improved management will require better understanding of insect dispersal, particularly relative to when mating occurs. A previous study demonstrated a more robust laboratory flight capacity compared to other orchard moth pests, but it was unclear how mating affects dispersal, and how dispersal affects fecundity. In this study, 1‐ and 2‐day‐old females were allowed to fly overnight on a flight mill either before or after mating, respectively, and were then allowed to oviposit. -
Coleoptera: Coccinellidae): Influence of Subelytral Ultrastructure
Experimental & Applied Acarology, 23 (1999) 97–118 Review Phoresy by Hemisarcoptes (Acari: Hemisarcoptidae) on Chilocorus (Coleoptera: Coccinellidae): influence of subelytral ultrastructure M.A. Houck* Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409–3131, USA (Received 9 January 1997; accepted 17 April 1998) ABSTRACT The non-phoretic stages of mites of the genus Hemisarcoptes are predators of the family Diaspididae. The heteromorphic deutonymph (hypopus) maintains a stenoxenic relationship with beetles of the genus Chilocorus. The mites attach to the subelytral surface of the beetle elytron during transport. There is variation in mite density among species of Chilocorus. Both Hemisarcoptes and Chilocorus have been applied to biological control programmes around the world. The objective of this study was to determine whether subelytral ultrastructure (spine density) plays a role in the evolution of symbiosis between the mite and the beetle. The subelytral surfaces of 19 species of Chilocorus and 16 species of Exochomus were examined. Spine density was determined for five subelytral zones: the anterior pronotal margin, medial central region, caudoventral tip, lateral distal margin and epipleural region. Spine density on the subelytral surface of Chilocorus and Exochomus was inversely correlated with the size of the elytron for all zones except the caudoventral tip. This suggests that an increase in body size resulted in a redistribution of spines and not an addition of spines. The pattern of spine density in Exochomus and Chilocorus follows a single size–density trajectory. The pattern of subelytral ultrastructure is not strictly consistent with either beetle phylogeny or beetle allometry. The absence of spines is not correlated with either beetle genus or size and species of either Chilocorus or Exochomus may be devoid of spines in any zone, irrespective of body size. -
Status Report on Arthropod Predators of the Asian Citrus Psyllid in Mexico
Status report on arthropod predators of the Asian Citrus Psyllid in Mexico Esteban Rodríguez-Leyva Colegio de Postgraduados, Montecillo, Texcoco, MEXICO. Importance of Citrus in Mexico 525 000 ha 23 States Citrus production 6.7 million ton/year 68% Orange, 20% Mexican lime, 5% Persian lime 2.5% Grapefruit , 2.5% Tangerine The insect problem Diaphorina citri in Mexico (www.senasica.gob.mx) Searching for natural enemies of ACP on citrus trees and orange jessamine Coccinellidae Azya orbigera Brachiacantha decora Chilocorus cacti Cycloneda sanguinea Harmonia axyridis Hippodamia convergens Olla v-nigrum López- Arroyo et al. 2008 Marín 2009, personal com. Sánchez-González & Arredondo-Bernal 2009, personal com. Gaona-García et al. 2009 Chrysopidae Chrysoperla rufilabris C. comanche C. externa Ceraeochrysa sp. nr. cincta C. valida López- Arroyo et al. 2008 Cortez-Mondaca et al. 2008 Syrphidae Allographa obliqua Pseudodoros clavatus Toxomerus marginatus Toxomerus politus Miscelaneous predators of ACP Spiders, Wasps (Vespidae), Ants (Ponerinae) López- Arroyo et al. 2008 Sánchez-González & Arredondo-Bernal 2009, personal com. Abundance of ladybirds (Coccinellidae) predators on citrus trees, at Nuevo Leon (northeast), Mexico. (Insect net, two sides of each mature tree, n=30). López-Arroyo, 2010, personal com. Abundance of lacewings (Chrysopidae) predators on citrus trees, at Nuevo Leon (northeast), Mexico. (Insect net two sides of each mature tree, n=30). López-Arroyo, 2010, personal com. Abundance of lacewings (Chrysopidae) predators on citrus trees, at Nuevo Leon (northeast), Mexico. (Insect net two sides of each mature tree, n=30). López-Arroyo, 2010, personal com. Abundance of predators (specially C. rufilabris) on Diaphorina citri on citrus trees at Nuevo Leon (northeast), Mexico.