Management of Navel Orangeworm (Lepidoptera: Pyralidae) Using Four
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forest Health Technology Enterprise Team
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Mating Disruption A REVIEW OF THE USE OF MATING DISRUPTION TO MANAGE GYPSY MOTH, LYMANTRIA DISPAR (L.) KEVIN THORPE, RICHARD REARDON, KSENIA TCHESLAVSKAIA, DONNA LEONARD, AND VICTOR MASTRO FHTET-2006-13 U.S. Department Forest Forest Health Technology September 2006 of Agriculture Service Enterprise Team—Morgantown he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ Cover photos, clockwise from top left: aircraft-mounted pod for dispensing Disrupt II flakes, tethered gypsy moth female, scanning electron micrograph of 3M MEC-GM microcapsule formulation, male gypsy moth, Disrupt II flakes, removing gypsy moth egg mass from modified delta trap mating station. Information about pesticides appears in this publication. Publication of this information does not constitute endorsement or recommendation by the U.S. Department of Agriculture, nor does it imply that all uses discussed have been registered. Use of most pesticides is regulated by State and Federal law. Applicable regulations must be obtained from appropriate regulatory agencies. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife if not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices given on the label for use and disposal of pesticides and pesticide containers. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S. -
US EPA, Pesticide Product Label, DCEPT CLM PLUS,01/06/2015
U.S. ENVIRONMENTAL PROTECTION AGENCY EPA Reg. Number: Date of Issuance: Office of Pesticide Programs Biopesticides and Pollution Prevention Division (751 IP) 80286-23 1/6/2016 1200 Pennsylvania Ave., N.W. (A) Washington, D.C. 20460 NOTICE OF PESTICIDE: Term of Issuance: X Registration ___Reregistration Unconditional (under FIFRA, as amended) Name of Pesticide Product: Dcept CLM Plus Name and Address of Registrant (include ZIP Code): ISCA Technologies, Inc. 1230 Spring Street Riverside, CA 92507 Note: Changes in labeling differing in substance from that accepted in connection with this registration must be submitted to and accepted by the Biopesticides and Pollution Prevention Division prior to use of the label in commerce. In any correspondence on this product, always refer to the above EPA Registration Number. On the basis of information furnished by the registrant, the above named pesticide is hereby registered under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA or the Act). Registration is in no way to be construed as an endorsement or recommendation of this product by the U.S. Environmental Protection Agency (EPA). In order to protect health and the environment, the Administrator, on his or her motion, may at any time suspend or cancel the registration of a pesticide in accordance with the Act. The acceptance of any name in connection with the registration of a product under the Act is not to be construed as giving the registrant a right to exclusive use of the name or to its use if it has been covered by others. This product is unconditionally registered in accordance with FIFRA section 3(c)(5) provided that you: 1. -
Combined Effects of Mating Disruption, Insecticides, and the Sterile Insect
insects Article Combined Effects of Mating Disruption, Insecticides, and the Sterile Insect Technique on Cydia pomonella in New Zealand Rachael M. Horner 1,* , Peter L. Lo 2, David J. Rogers 2, James T. S. Walker 2 and David Maxwell Suckling 1,3 1 The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand; [email protected] 2 The New Zealand Institute for Plant and Food Research Limited, Havelock North 4157, New Zealand; [email protected] (P.L.L.); [email protected] (D.J.R.); [email protected] (J.T.S.W.) 3 School of Biological Sciences, University of Auckland, Auckland 1072, New Zealand * Correspondence: [email protected]; Tel.: +64-3-940-3934 Received: 21 October 2020; Accepted: 25 November 2020; Published: 27 November 2020 Simple Summary: Codling moth is a major pest of apples, and was accidentally introduced into New Zealand over 150 years ago. Many countries that New Zealand exports apples to do not have codling moth present and they want to keep it out. Therefore, apple growers must heavily control codling moth populations on their orchards. Currently, the main control tactics are insecticide applications and mating disruption, which uses the moth’s own sex pheromone to make the males unable to find females to mate. We aimed to supplement these tactics with the sterile insect technique (SIT) to further suppress the codling moth on orchards. SIT involves mass rearing and sterilizing codling moth and then releasing them onto orchards where they mate with wild insects resulting in no offspring. -
Citrus Leafminer, Phyllocnistis Citrella Stainton (Insecta: Lepidoptera: Phyllocnistinae)1 J
EENY038 Citrus Leafminer, Phyllocnistis citrella Stainton (Insecta: Lepidoptera: Phyllocnistinae)1 J. B. Heppner and Thomas R. Fasulo2 Introduction Homestead, Florida, other parts of Dade county, and in Broward and Collier counties. Since then, it has spread The citrus leafminer (CLM), Phyllocnistis citrella Stainton, to all Florida citrus counties. By 1994, it has spread to is a potentially serious pest of citrus and related Rutaceae, Alabama, Louisiana and Texas (Nagamine and Heu 2003). and some related ornamental plants (Beattie 1989, Clausen By 1995, the citrus leafminer was discovered in Central 1933, Kalshoven 1981). CLM was previously intercepted in America, western Mexico, and several Caribbean islands the USA in 1914 (ports not noted) on citrus and Atalantia (Jones 2001). In 2000, it arrived in southern California horticulture stock imports from the Philippines (Sasscer from Mexico (Grafton-Cardwell et al. 2009), and was first 1915). In 1993, when it was finally discovered in Florida, it detected in Hawaii on Oahu, spreading to Kauai and Maui was a new record for Florida, the continental United States, in 2001 and Molokai and Hawaii (the Big Island) in 2002 and the Western Hemisphere. (Nagamine and Heu 2003) Distribution Description A widespread Asian species (Clausen 1931, 1933, CAB Adults of the CLM are minute moths with a 4 mm 1970), described from Calcutta, India (Stainton 1856), wingspread. It has white and silvery iridescent scales on CLM is known from East Africa — Sudan to Yemen the forewings, with several black and tan markings, plus (Badawy 1967), through southern Asia — Saudi Arabia a black spot on each wingtip. The hind wings and body to India (Fletcher 1920) and Indonesia (Kalshoven 1981), are white, with long fringe scales extending from the north to Hong Kong and China, Philippines (Sasscer 1915), hindwing margins. -
Interrelation of Mating, Flight, and Fecundity in Navel Orangeworm Females Angela M
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Entomology Publications Entomology 4-2018 Interrelation of mating, flight, and fecundity in navel orangeworm females Angela M. Rovnyak Iowa State University Charles S. Burks U.S. Department of Agriculture Aaron J. Gassmann Iowa State University, [email protected] Thomas W. Sappington Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/ent_pubs Part of the Agricultural Economics Commons, Entomology Commons, and the Population Biology Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ent_pubs/484. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Interrelation of mating, flight, and fecundity in navel orangeworm females Abstract The an vel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae, Phycitini), is an economically important pest of nut crops in California, USA. Improved management will require better understanding of insect dispersal, particularly relative to when mating occurs. A previous study demonstrated a more robust laboratory flight capacity compared to other orchard moth pests, but it was unclear how mating affects dispersal, and how dispersal affects fecundity. In this study, 1‐ and 2‐day‐old females were allowed to fly overnight on a flight mill either before or after mating, respectively, and were then allowed to oviposit. -
Dr. Frank G. Zalom
Award Category: Lifetime Achievement The Lifetime Achievement in IPM Award goes to an individual who has devoted his or her career to implementing IPM in a specific environment. The awardee must have devoted their career to enhancing integrated pest management in implementation, team building, and integration across pests, commodities, systems, and disciplines. New for the 9th International IPM Symposium The Lifetime Achievement winner will be invited to present his or other invited to present his or her own success story as the closing plenary speaker. At the same time, the winner will also be invited to publish one article on their success of their program in the Journal of IPM, with no fee for submission. Nominator Name: Steve Nadler Nominator Company/Affiliation: Department of Entomology and Nematology, University of California, Davis Nominator Title: Professor and Chair Nominator Phone: 530-752-2121 Nominator Email: [email protected] Nominee Name of Individual: Frank Zalom Nominee Affiliation (if applicable): University of California, Davis Nominee Title (if applicable): Distinguished Professor and IPM specialist, Department of Entomology and Nematology, University of California, Davis Nominee Phone: 530-752-3687 Nominee Email: [email protected] Attachments: Please include the Nominee's Vita (Nominator you can either provide a direct link to nominee's Vita or send email to Janet Hurley at [email protected] with subject line "IPM Lifetime Achievement Award Vita include nominee name".) Summary of nominee’s accomplishments (500 words or less): Describe the goals of the nominee’s program being nominated; why was the program conducted? What condition does this activity address? (250 words or less): Describe the level of integration across pests, commodities, systems and/or disciplines that were involved. -
Moth Species Captured with the Sex Pheromone of Stenoma Catenifer (Lepidoptera: Elachistidae) in Avocado Plantations of Southern Mexico
Castillo et al.: Moth Species Captured with Stenoma catenifer Sex Pheromone 1111 MOTH SPECIES CAPTURED WITH THE SEX PHEROMONE OF STENOMA CATENIFER (LEPIDOPTERA: ELACHISTIDAE) IN AVOCADO PLANTATIONS OF SOUTHERN MEXICO ALFREDO CASTILLO*, LEOPOLDO CRUZ-LOPEZ AND JAIME GÓMEZ El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto km 2.5. Tapachula, 30700 Chiapas, Mexico *Corresponding author; E-mail: [email protected] ABSTRACT Moth species trapped using the sex pheromone of Stenoma catenifer (LaSalle) as a lure, were registered at 2 commercial avocado orchards (one consisting of “Hass” and other of “Criollo”) and in wild “Criollo” avocado trees in southern Mexico. Traps were maintained for 1 mo in two seasons (dry and wet) on avocado trees under these 3 production conditions, changing the baits each season. Weekly observations registered no moths in the traps placed in the commercial “Hass” avocado orchard, in contrast to the other 2 sites, where Stenoma cateni- fer and Antaeotricha nictitans males were captured. Stenoma catenifer adults were always observed at the commercial “Criollo” orchard and wild “Criollo” avocado trees during the dry season (fructification period), but never in the wet season (non fruiting period). Under wild conditions A. nictitans was captured during both dry and wet seasons; however, it was never captured during the dry season at the commercial “Criollo” orchard. Populations of both moth species were similar -S. catenifer: 0.3 (wild trees) to 0.7 (orchard); and A. nicti- tans: 0.6 (wild trees) moth/trap/wk- during the dry season, and no differences were observed per species at each locality. The total number of captures per site during the fruiting season decreased significantly -0.9 (1st wk) to 0.2(4th wk) moth/trap/wk- during the observation period. -
Primer Registro De Amyelois Transitella (Walker) En El Fruto Del Tamarindo: El Caso De Santa Fe De Antioquia
Revista Científica Sabia, Vol 1 No. 3 págs 3 - 9 Buenaventura – Colombia. Enero – Diciembre 2014 ISSN 2323-0576 PRIMER REGISTRO DE AMYELOIS TRANSITELLA (WALKER) EN EL FRUTO DEL TAMARINDO: EL CASO DE SANTA FE DE ANTIOQUIA Amyelois transitella (Walker) in tamarind fruit, in Santa Fe de Antioquia Deicy Carolina Muñoz Agudelo¹; Gonzalo David Rueda1; Francisco Yepes Rodríguez³; Jhon Alveiro Quiroz Gamboa4 1Ing. Agrónomos, Universidad Nacional de Colombia-Medellín. Correo-e [email protected], y [email protected]; 3IA, MSc, Profesor Asociado. Universidad Nacional de Colombia-Medellín. Correo-e: [email protected]; 4Técnico Operativo. Universidad Nacional de Colombia-Medellín; Museo de Entomología Francisco Luis Gallego-MEFLG, correo-e: [email protected] Rec: 20.08.2014 Acept: 04.08.2015 Resumen En el municipio de Santa Fe de Antioquia (Colombia), se halló por primera vez la polilla mayor de la vaina o la polilla Amyelois transitella Walker de la naranja ombligona, afectando gravemente frutos maduros de tamarindo (Tamarindus indica, Fabaceae). Esta leguminosa es una planta promisoria para el occidente antioqueño. Su demanda se ha incrementado en la última década, tanto a nivel local como en el ámbito nacional. Debido a la alta demanda y las posibilidades de crecimiento poblacional del insecto en las bodegas de almacenamiento durante el proceso de postcosecha, se considera muy importante registrar su presencia en los cultivos de los municipios en esta parte del país. De esta manera se contribuye a la generación de alertas sanitarias dirigidas a los productores y a los que procesan su pulpa para facilitar su mercadeo, ya que todos están sufriendo pérdidas por el desconocimiento de las recomendaciones sobre el manejo integrado de esta plaga. -
National Program 304 – Crop Protection and Quarantine
APPENDIX 1 National Program 304 – Crop Protection and Quarantine ACCOMPLISHMENT REPORT 2007 – 2012 Current Research Projects in National Program 304* SYSTEMATICS 1245-22000-262-00D SYSTEMATICS OF FLIES OF AGRICULTURAL AND ENVIRONMENTAL IMPORTANCE; Allen Norrbom (P), Sonja Jean Scheffer, and Norman E. Woodley; Beltsville, Maryland. 1245-22000-263-00D SYSTEMATICS OF BEETLES IMPORTANT TO AGRICULTURE, LANDSCAPE PLANTS, AND BIOLOGICAL CONTROL; Steven W. Lingafelter (P), Alexander Konstantinov, and Natalie Vandenberg; Washington, D.C. 1245-22000-264-00D SYSTEMATICS OF LEPIDOPTERA: INVASIVE SPECIES, PESTS, AND BIOLOGICAL CONTROL AGENTS; John W. Brown (P), Maria A. Solis, and Michael G. Pogue; Washington, D.C. 1245-22000-265-00D SYSTEMATICS OF PARASITIC AND HERBIVOROUS WASPS OF AGRICULTURAL IMPORTANCE; Robert R. Kula (P), Matthew Buffington, and Michael W. Gates; Washington, D.C. 1245-22000-266-00D MITE SYSTEMATICS AND ARTHROPOD DIAGNOSTICS WITH EMPHASIS ON INVASIVE SPECIES; Ronald Ochoa (P); Washington, D.C. 1245-22000-267-00D SYSTEMATICS OF HEMIPTERA AND RELATED GROUPS: PLANT PESTS, PREDATORS, AND DISEASE VECTORS; Thomas J. Henry (P), Stuart H. McKamey, and Gary L. Miller; Washington, D.C. INSECTS 0101-88888-040-00D OFFICE OF PEST MANAGEMENT; Sheryl Kunickis (P); Washington, D.C. 0212-22000-024-00D DISCOVERY, BIOLOGY AND ECOLOGY OF NATURAL ENEMIES OF INSECT PESTS OF CROP AND URBAN AND NATURAL ECOSYSTEMS; Livy H. Williams III (P) and Kim Hoelmer; Montpellier, France. * Because of the nature of their research, many NP 304 projects contribute to multiple Problem Statements, so for the sake of clarity they have been grouped by focus area. For the sake of consistency, projects are listed and organized in Appendix 1 and 2 according to the ARS project number used to track projects in the Agency’s internal database. -
Use of Pheromones in IPM Thomas C
P1: aaa 9780521875950c21 cuuk358/Radcliffe ISBN: 978 0 521 87595 0 Top: 0.29637in Gutter: 0.79034in August 6, 2008 14:55 Chapter 21 Use of pheromones in IPM Thomas C. Baker During the past 68 years that have elapsed since ing crop damage after conducting experiments in the identification of the first insect pheromone which disruptant dispenser dosages and deploy- (Butenandt, 1959) there has been a bourgeoning ment densities have been varied. A mating dis- of basic and applied research that has resulted ruption system may work successfully from a bio- in an amazingly diverse and effective use of logical standpoint, but at the commercial level it pheromones in IPM. Other behavior-modifying may be too costly or not sufficiently user-friendly semiochemicals have had more limited success compared to standard practices, and the system on a commercial level, although much research is will have been judged to “fail” at this level. It is continuing to try to find new ways to make such important to distinguish between failure in the chemicals as host plant volatiles more useful in commercial arena versus biological failure of the IPM settings as attractants or deterrents. mating disruption system itself. Although pheromones have established them- selves in IPM systems, most end-users and even applied researchers do not realize how much work 21.1 Monitoring established goes into identifying and optimizing pheromone populations blends so that they become highly species-specific and optimally attractive to the target species so that they can be used to the best effect. Research The most widespread use of pheromones has to determine the most effective pheromone blend been for monitoring endemic pest species’ compositions and dispenser dosages for monitor- adult populations. -
Suppression of Mating by Blackheaded Fireworm (Lepidoptera: Tortricidae) in Wisconsin Cranberry Marshes by Using Mstrsrmdevices1
Suppression of Mating by Blackheaded Fireworm (Lepidoptera: Tortricidae) in Wisconsin Cranberry Marshes by Using MSTRSrMDevices1 Henry Y. Fadamiro,2 Allard A. Coss6,3 Timothy Dittl,4 and Thomas C. Baker Department of Entomology, Iowa State University, Ames, Iowa 50011 USA J Agric Entomol 15(4):377-386 (October 1998) ABSTRACT We conducted a study to optimize the deployment of our controlled pheromone release system called metered semiochemical timed release system (MSTRSTM)and to measure its impact on male blackheaded fireworm, Rhopobota naevana (Hubner) (Lepidoptera: Tortricidae) The deployment pattern and pheromone emission rate of the MSTRS devices were adjusted to give optimal mating disruption in the widely dispersed cranberry (Vaccinium macrocarpon Aiton) beds from a perimeter only pattern of deployment During the first flight, disruption of pheromone source location averaged 98, 98, and 40% in the first, second, and third grower sites, respectively During the second flight, disruption averaged 88% in the first grower site and 86% in the second and third grower sites More importantly, high levels of mating disruption were achieved, as measured by the frequency of mating by captured free-flying females About 24 and 15% fewer second-generation blackheaded fireworm females mated in the MSTRVM-treatedbeds in the first and second grower sites, respectively, compared with the check plots In the first grower site, the mean number of matings, as measured by the numbers of deposited spermatophores, per female captured during the second flight was 0 75 in the MSTRST"beds and 18in untreated beds Number of matings per female in the second grower site averaged 10 in the MSTRSTb'-treatedbeds and 148 in the untreated beds. -
Gypsy Moth (Lymantria Dispar )
Invasive Species Management and Control: Gypsy moth (Lymantria dispar) 1.0 INTEGRATED MANAGEMENT 2.0 PREVENTATIVE MEASURES 3.0 PREDICTION OF SPREAD 4.0 MONITORING OF IMPACT 5.0 PHYSICAL CONTROL 6.0 CHEMICAL CONTROL 7.0 BIOLOGICAL CONTROL 8.0 BREEDING RESISTANT TREES 1.0 INTEGRATED MANAGEMENT “To address the economic and environmental impacts caused by the expanding range of the gypsy moth infestation, a national strategy was developed to manage gypsy moth populations along the leading edge of the infestation. The goal of this USDA Forest Service project, known as the ‘Slow the Spread of the Gypsy Moth’ (STS) program, is to intensively monitor populations along the leading edge and apply treatments such that the rate of expansion of the infested area is reduced by 50%. These goals are achieved through the use of a sophisticated Internet-based data management system and a decision algorithm to aid in decision making (Tobin et al., 2004). The STS program was pilot tested in 1993, became fully implemented in 2000, and currently includes 10 states and nearly 40 million ha (Sharov et al., 2002a)” (Tobin et al. 2007). More information is available in the gypsy moth Slow the Spread (STS) website and factsheet. 2.0 PREVENTATIVE MEASURES Landscapes may be protected from the gypsy moth in many different ways. The forest can be altered to prevent outbreaks. High-risk forests can be harvested before outbreaks occur to prevent some economic loss. Thinning stands of medium to high quality can increase the vigor of surviving trees, reducing the risk of major outbreak.