Download E-Book (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Download E-Book (PDF) OPEN ACCESS African Journal of Pharmacy and Pharmacology 8 April, 2018 ISSN 1996-0816 DOI: 10.5897/AJPP www.academicjournals.org ABOUT AJPP The African Journal of Pharmacy and Pharmacology (AJPP) is published weekly (one volume per year) by Academic Journals. African Journal of Pharmacy and Pharmacology (AJPP) is an open access journal that provides rapid publication (weekly) of articles in all areas of Pharmaceutical Science such as Pharmaceutical Microbiology, Pharmaceutical Raw Material Science, Formulations, Molecular modeling, Health sector Reforms, Drug Delivery, Pharmacokinetics and Pharmacodynamics, Pharmacognosy, Social and Administrative Pharmacy, Pharmaceutics and Pharmaceutical Microbiology, Herbal Medicines research, Pharmaceutical Raw Materials development/utilization, Novel drug delivery systems, Polymer/Cosmetic Science, Food/Drug Interaction, Herbal drugs evaluation, Physical Pharmaceutics, Medication management, Cosmetic Science, pharmaceuticals, pharmacology, pharmaceutical research etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in AJPP are peer-reviewed. Contact Us Editorial Office: [email protected] Help Desk: [email protected] Website: http://www.academicjournals.org/journal/AJPP Submit manuscript online http://ms.academicjournals.me/ Editors Associate Editors Himanshu Gupta Department of Pharmacy Practice Dr. B. Ravishankar University of Toledo SDM Centre for Ayurveda and Allied Sciences, Toledo, OH SDM College of Ayurveda Campus, USA. Karnataka India. Prof. Zhe-Sheng Chen College of Pharmacy and Health Sciences Dr. Natchimuthu Karmegam St. John's University Department of Botany, New York, Government Arts College, USA. Tamil Nadu, India. Dr. Huma Ikram Neurochemistry and Biochemical Dr. Manal Moustafa Zaki Neuropharmacology Research Unit, Department of Veterinary Hygiene and Department of Biochemistry, Management University of Karachi Faculty of Veterinary Medicine, Karachi-75270 Cairo University Pakistan Giza, Egypt. Dr. Shreesh Kumar Ojha Molecular Cardiovascular Research Program Prof. George G. Nomikos College of Medicine Takeda Global Research & Development Center Arizona Health Sciences Center USA. University of Arizona Arizona, Prof. Mahmoud Mohamed El-Mas USA. Department of Pharmacology, Faculty of Pharmacy Dr. Vitor Engracia Valenti University of Alexandria, Departamento de Fonoaudiologia Alexandria, Faculdade de Filosofia e Ciências, Egypt. UNESP Brazil. Dr. Kiran K. Akula Electrophysiology & Neuropharmacology Research Unit Dr. Caroline Wagner Department of Biology & Biochemistry Universidade Federal do Pampa University of Houston Avenida Pedro Anunciação Houston, TX Brazil. USA. Dr. Ravi Shankar Shukla Macromolecule and Vaccine Stabilization Center Department of Pharmaceutical Chemistry University of Kansas USA. Editorial Board Prof. Fen Jicai Dr. Sirajunnisa Razack School of life science, Xinjiang University, Department of Chemical Engineering, Annamalai China. University, Annamalai Nagar, Tamilnadu, Dr. Ana Laura Nicoletti Carvalho India. Av. Dr. Arnaldo, 455, São Paulo, SP. Brazil. Prof. Ehab S. EL Desoky Professor of pharmacology, Faculty of Medicine Dr. Ming-hui Zhao Assiut University, Assiut, Professor of Medicine Egypt. Director of Renal Division, Department of Medicine Peking University First Hospital Dr. Yakisich, J. Sebastian Beijing 100034 Assistant Professor, Department of Clinical Neuroscience PR. China. R54 Karolinska University Hospital, Huddinge Prof. Ji Junjun 141 86 Stockholm , Guangdong Cardiovascular Institute, Guangdong General Sweden. Hospital, Guangdong Academy of Medical Sciences, China. Prof. Dr. Andrei N. Tchernitchin Head, Laboratory of Experimental Endocrinology and Prof. Yan Zhang Environmental Pathology LEEPA Faculty of Engineering and Applied Science, University of Chile Medical School, Memorial University of Newfoundland, Chile. Canada. Dr. Sirajunnisa Razack Dr. Naoufel Madani Department of Chemical Engineering, Medical Intensive Care Unit Annamalai University, Annamalai Nagar, Tamilnadu, University hospital Ibn Sina, Univesity Mohamed V India. Souissi, Rabat, Morocco. Dr. Yasar Tatar Marmara Unıversıty, Dr. Dong Hui Turkey. Department of Gynaecology and Obstetrics, the 1st hospital, NanFang University, Dr Nafisa Hassan Ali China. Assistant Professor, Dow institude of medical technology Dow University of Health Sciences,Chand bbi Road, Karachi, Prof. Ma Hui Pakistan. School of Medicine, Lanzhou University, China. Dr. Krishnan Namboori P. K. Computational Chemistry Group, Computational Prof. Gu HuiJun Engineering and Networking, School of Medicine, Taizhou university, Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore- China. 641 112 India. Dr. Chan Kim Wei Research Officer Prof. Osman Ghani Laboratory of Molecular Biomedicine, University of Sargodha, Institute of Bioscience, Universiti Putra, Pakistan. Malaysia. Dr. Liu Xiaoji Dr. Fen Cun School of Medicine, Shihezi University, Professor, Department of Pharmacology, Xinjiang China. University, China. African Journal of Pharmacy and Pharmacology Table of Contents: Volume 12 Number 13 8 April, 2018 ARTICL ES A systematic review: Application of in silico models for antimalarial drug discovery 159 Anurak Cheoymang and Kesara Na-Bangchang In vitro anti-inflammatory activity of Vangueria infausta: An edible wild fruit from Zimbabwe 168 Luke Gwatidzo, Leo Chowe, Cexton Musekiwa and Netai Mukaratirwa-Muchanyereyi Vol. 12(13), pp. 159-167, 8 April, 2018 DOI: 10.5897/AJPP2018.4904 Article Number: C72C07656648 African Journal of Pharmacy and ISSN 1996-0816 Copyright © 2018 Pharmacology Author(s) retain the copyright of this article http://www.academicjournals.org/AJPP Review A systematic review: Application of in silico models for antimalarial drug discovery Anurak Cheoymang1 and Kesara Na-Bangchang1,2,3* 1Chulabhorn International College of Medicine, Thammasat University, Phahonyothin Road, Klonglung, Pathum Thani 12120, Thailand. 2Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University (Rangsit Campus), Paholyothin Rd., Pathumthani 12121, Thailand. 3Drug Discovery Center, Thammasat University (Rangsit Campus), Paholyothin Rd., Pathumthani 12121, Thailand. Received 14 February, 2018; Accepted 26 March, 2018 Malaria remains the global public health problem due to the reemergence of drug resistance. There is an urgent need for development of new antimalarial candidates which are effective against resistant malaria parasite. This systematic review evaluates the published research studies that applied in silico modeling during the discovery process of antimalarial drugs. Literature searches were conducted using PubMed, EBSCO, EMBASE, and Web of Science to identify the relevant articles using the search terms “Malaria” “In silico model”, “Computer-based drug design”, “Antimalarial drug”, and “Drug discovery”. Only the articles published in English between 2008 and May 2015 were included in the analysis. A total of 17 relevant articles met the search criteria. Most articles are studies specific to Plasmodium falciparum targets; 3 and 1 articles, respectively involve target for P. vivax and liver stage of Plasmodium. Both structure-based and ligand-based approaches were applied to obtain lead antimalarial candidates. Two articles also assessed absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Confirmation of activity of the candidate leads by in vitro and/or in vivo assays were reported in some studies. Homology modelling, molecular docking, 2D- or 3D-QSAR and pharmacophore modeling are commonly applied methods. One study used de novo synthesis for lead identification and one study applied phylogenetic analysis for target identification/validation. Key words: Plasmodium, malaria, antimalarial drug, drug discovery, in silico modeling, computer-based drug design, systematic review. INTRODUCTION Malaria is one of the most important global infectious developing countries (WHO, 2015). The major problem diseases affecting hundreds of millions of people each in malaria treatment and control is the emergence and year and is the main cause of socio-economic loss in spread of multidrug resistance Plasmodium falciparum *Corresponding author. E-mail: [email protected]. Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License 160 Afr. J. Pharm. Pharmacol. including artemisinin drugs. It is therefore an urgent are predicted to bind with high affinity and selectivity to need to search for alternative effective drug candidates. the target may be designed using interactive graphics Nevertheless, the process of drug discovery and and the intuition of a medicinal chemist or various development is both time-consuming (approximately 10- automated computational procedures to suggest new 15 years) and resource-consuming (approximately $1.5 drug candidates (Lounnas et al., 2013; March-Vila et al., billion per successful drug) (Ren et al., 2016). 2017). This systematic review focused on the analysis Rational drug design is an intensive process of finding of research articles which applied computational new medications based on knowledge of a biological approaches for antimalarial drug discovery. The target. Drug design involves the design of small information is useful for further development
Recommended publications
  • Quantification of Oxidative Stress Biomarkers: Development of a Method by Ultra Performance Liquid Chromatography MASTER DISSERTATION
    DM Quantification of Oxidative Stress Biomarkers: Development of a Method by Ultra Performance Liquid Chromatography MASTER DISSERTATION Nome Autor do Liliana da Silva Rodrigues MASTER IN APPLIED BIOCHEMISTRY Quantification of Oxidative Stress Biomarkers: Development of a Method by Ultra Performance Liquid Chromatography Liliana da Silva Rodrigues July | 2016 Nome do Projecto/Relatório/Dissertação de Mestrado e/ou Tese de Doutoramento | Nome do Projecto/Relatório/Dissertação de Mestrado e/ou Tese DIMENSÕES: 45 X 29,7 cm NOTA* PAPEL: COUCHÊ MATE 350 GRAMAS Caso a lombada tenha um tamanho inferior a 2 cm de largura, o logótipo institucional da UMa terá de rodar 90º , para que não perca a sua legibilidade|identidade. IMPRESSÃO: 4 CORES (CMYK) ACABAMENTO: LAMINAÇÃO MATE Caso a lombada tenha menos de 1,5 cm até 0,7 cm de largura o laoyut da mesma passa a ser aquele que consta no lado direito da folha. Quantification of Oxidative Stress Biomarkers: Development of a Method by Ultra Performance Liquid Chromatography MASTER DISSERTATION Liliana da Silva Rodrigues MASTER IN APPLIED BIOCHEMISTRY ORIENTADORA Helena Caldeira Araújo CO-ORIENTADOR José de Sousa Câmara Quantification of oxidative stress biomarkers: Development of a Method by Ultra Performance Liquid Chromatography Dissertation submitted at the University of Madeira in order to obtain the degree of Master in Applied Biochemistry Liliana da Silva Rodrigues Work developed under the orientation of: Supervisor Prof. Doctor Helena Cardeira Araújo Co-supervisor Prof. Doctor José de Sousa Câmara Funchal, Portugal July 2016 To my Family “Sem eles nada disto seria possível” ***** Quantification of Oxidative Stress Biomarkers: Development of a Method by Ultra Performance Liquid Chromatography July 2016 Acknowledgment I would like to address an acknowledgement to all the people who collaborated in the accomplishment of this work.
    [Show full text]
  • Bacteriostatic and Bactericidal Effects of Free Nitrous Acid on Model Microbes in Wastewater Treatment
    Bacteriostatic and bactericidal effects of free nitrous acid on model microbes in wastewater treatment Shuhong Gao Master of Science Harbin Institute of Technology, Harbin, China A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2016 School of Chemical Engineering Advanced Water Management Centre Abstract There is great potential to use free nitrous acid (FNA), the protonated form of nitrite (HNO2), as an antimicrobial agent due to its bacteriostatic and bactericidal effects on a range of microorganisms. However, the antimicrobial mechanism of FNA is largely unknown. The overall objective of this thesis is to elucidate the responses of two model bacteria, namely Psuedomonas aeruginosa PAO1 and Desulfovibrio vulgaris Hildenborough, in wastewater treatment in terms of microbial susceptibility, tolerance and resistance to FNA exposure. The effects of FNA on the opportunistic pathogen P. aeruginosa PAO1, a well-studied denitrifier capable of nitrate/nitrite reduction through anaerobic respiration, were determined. It was revealed that the antimicrobial effect of FNA is concentration-determined and population-specific. By applying different levels of FNA, it was seen that 0.1 to 0.2 mg N/L FNA exerted a temporary inhibitory effect on P. aeruginosa PAO1 growth, while complete respiratory growth inhibition was not detected until an FNA concentration of 1.0 mg N/L was applied. The FNA concentration of 5.0 mg N/L caused complete cell killing and likely cell lysis. Differential killing by FNA in the P. aeruginosa PAO1 subpopulations was detected, suggesting intra-strain heterogeneity. A delayed recovery from FNA treatment suggested that FNA caused cell damage which required repair prior to P.
    [Show full text]
  • Antioxidant Properties of Catechins Comparison with Other Antioxidants
    Food Chemistry 241 (2018) 480–492 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Antioxidant properties of catechins: Comparison with other antioxidants MARK ⁎ Michalina Grzesika, Katarzyna Naparłoa, Grzegorz Bartoszb, Izabela Sadowska-Bartosza, a Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, ul. Zelwerowicza 4, 35-601 Rzeszów, Poland b Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland ARTICLE INFO ABSTRACT Keywords: Antioxidant properties of five catechins and five other flavonoids were compared with several other natural and Catechins synthetic compounds and related to glutathione and ascorbate as key endogenous antioxidants in several in vitro % Flavonoids tests and assays involving erythrocytes. Catechins showed the highest ABTS -scavenging capacity, the highest FRAP stoichiometry of Fe3+ reduction in the FRAP assay and belonged to the most efficient compounds in protection Hemolysis against SIN-1 induced oxidation of dihydrorhodamine 123, AAPH-induced fluorescein bleaching and hypo- chlorite-induced fluorescein bleaching. Glutathione and ascorbate were less effective. (+)-catechin and (−)-epicatechin were the most effective compounds in protection against AAPH-induced erythrocyte hemolysis while (−)-epicatechin gallate, (−)-epigallocatechin gallate and (−)-epigallocatechin protected at lowest con- centrations against hypochlorite-induced
    [Show full text]
  • On the Liquid Chemistry of the Reactive Nitrogen Species Peroxynitrite and Nitrogen Dioxide Generated by Physical Plasmas
    biomolecules Article On the Liquid Chemistry of the Reactive Nitrogen Species Peroxynitrite and Nitrogen Dioxide Generated by Physical Plasmas Giuliana Bruno 1, Sebastian Wenske 1, Jan-Wilm Lackmann 2, Michael Lalk 3 , Thomas von Woedtke 4 and Kristian Wende 1,* 1 Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; [email protected] (G.B.); [email protected] (S.W.) 2 Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany; [email protected] 3 Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany; [email protected] 4 Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany; [email protected] * Correspondence: [email protected] Received: 9 November 2020; Accepted: 9 December 2020; Published: 16 December 2020 Abstract: Cold physical plasmas modulate cellular redox signaling processes, leading to the evolution of a number of clinical applications in recent years. They are a source of small reactive species, including reactive nitrogen species (RNS). Wound healing is a major application and, as its physiology involves RNS signaling, a correlation between clinical effectiveness and the activity of plasma-derived RNS seems evident. To investigate the type and reactivity of plasma-derived RNS in aqueous systems, a model with tyrosine as a tracer was utilized. By high-resolution mass spectrometry, 26 different tyrosine derivatives including the physiologic nitrotyrosine were identified. The product pattern was distinctive in terms of plasma parameters, especially gas phase composition. By scavenger experiments and isotopic labelling, gaseous nitric dioxide radicals and liquid phase peroxynitrite ions were determined as dominant RNS.
    [Show full text]
  • Hydrogen Sulfide and Persulfides Oxidation by Biologically Relevant
    antioxidants Review Hydrogen Sulfide and Persulfides Oxidation by Biologically Relevant Oxidizing Species Dayana Benchoam 1,2, Ernesto Cuevasanta 1,2,3, Matías N. Möller 2,4 and Beatriz Alvarez 1,2,* 1 Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; [email protected] (D.B.); [email protected] (E.C.) 2 Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo 11800, Uruguay; [email protected] 3 Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay 4 Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay * Correspondence: [email protected] Received: 22 January 2019; Accepted: 19 February 2019; Published: 22 February 2019 – Abstract: Hydrogen sulfide (H2S/HS ) can be formed in mammalian tissues and exert physiological effects. It can react with metal centers and oxidized thiol products such as disulfides (RSSR) and sulfenic acids (RSOH). Reactions with oxidized thiol products form persulfides (RSSH/RSS–). Persulfides have been proposed to transduce the signaling effects of H2S through the modification of critical cysteines. They are more nucleophilic and acidic than thiols and, contrary to thiols, also possess electrophilic character. In this review, we summarize the biochemistry of hydrogen sulfide and persulfides, focusing on redox aspects. We describe biologically relevant one- and two-electron oxidants and their reactions with H2S and persulfides, as well as the fates of the oxidation products. The biological implications are discussed. Keywords: hydrogen sulfide; persulfide; hydropersulfide; reactive oxygen species; sulfiyl radical 1.
    [Show full text]
  • GC-MS) Techniques and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) Assessment of Volatiles Produced from Nitric Oxide Producing Smart Dressings
    The detection of trace volatiles from complex matrices using gas chromatography mass spectrometry (GC-MS) techniques and selected ion flow tube mass spectrometry (SIFT-MS) assessment of volatiles produced from nitric oxide producing smart dressings Oliver John Gould A thesis submitted in partial fulfilment of the requirements of the University of the West of England, Bristol for the degree of Doctor of Philosophy Faculty of Health and Applied Sciences, University of the West of England, Bristol 2019 Copyright declaration This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgment. i Acknowledgements I would like to thank my supervisors Professor Norman Ratcliffe, and Associate Professor Ben de Lacy Costello for all their help, guidance, and support over the course of this work, and for their co-authorship on the published versions of chapters 2 and 3. I would also like to thank Dr Hugh Munro and Edixomed Ltd for financial support and scientific guidance with chapter 4. I would like to thank my co-authors on the publication of chapter 2 Tom Wieczorek, Professor Raj Persad. Also thank you to my co-authors on the publication of chapter 3, Amy Smart, Dr Angus Macmaster, and Dr Karen Ransley; and express my appreciation to Givaudan for funding the work undertaken in chapter 3. Thank you also to my colleagues and fellow post graduate research students at the University of the West of England for always being on hand for discussion and generation of ideas. A special mention to Dr Peter Jones who has been mentoring me on mass spectrometry for a number of years.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. N0.: US 2008/0293702 A1 Garvey (43) Pub
    US 20080293702Al (19) United States (12) Patent Application Publication (10) Pub. N0.: US 2008/0293702 A1 Garvey (43) Pub. Date: NOV. 27, 2008 (54) NITRIC OXIDE ENHANCING PYRUVATE A61K 31/4245 (2006.01) COMPOUNDS, COMPOSITIONS AND A61K 31/42 (2006.01) METHODS OF USE C07D 273/00 (2006.01) C07D 413/04 (2006.01) (75) Inventor: David S. Garvey, Dover, MA (U S) A61 K 31/53 77 (200601) A61P 9/00 (2006.01) Correspondence Address: A 61p 9/06 (200601) WILMERHALE/NITROMED A 611) 9/10 (200601) 1875 PENNSYLVANIA AVE, NW A611) 9/12 (200601) WASHINGTON, DC 20006 (US) _ _ (52) US. Cl. .................... .. 514/222.5; 548/125; 514/364; (73) Assrgnee: NITROMED, INC., Lexington, 514/361; 544/138; 514/2362 MA (U S) (21) Appl. N0.: 12/096,867 (57) ABSTRACT (22) PCT F 11 e d: D e c_ 19, 2006 The invention provides novel compositions and kits compris ing at least one nitric oxide enhancing pyruvate compound, or (86) PCT NO; PCT M52006 /0 4819 4 a pharmaceutically acceptable salt thereof, and, optionally, at least one nitric oxide enhancing compound and/ or at least one § 371 (OX1), therapeutic agent. The invention also provides methods for (2)’ (4) Date; Jun_ 10, 2008 (a) treating cardiovascular diseases; (b) treating renovascular diseases; (0) treating diabetes; (d) treating diseases resulting Related US. Application Data from oxidative stress; (e) treating endothelial dysfunctions; (f) treating diseases caused by endothelial dysfunctions; (g) (60) Provisional application No. 60/753,971, ?led on Dec. treating cirrhosis; (h) treating pre-eclampsia; (j) treating 22, 2005.
    [Show full text]
  • The Decomposition of Peroxynitrite to Nitroxyl Anion (NO ) and Singlet
    The decomposition of peroxynitrite to nitroxyl anion NO؊) and singlet oxygen in aqueous solution) Ahsan Ullah Khan*†, Dianne Kovacic*, Alexander Kolbanovskiy*, Mehul Desai‡, Krystyna Frenkel‡, and Nicholas E. Geacintov* *Department of Chemistry, New York University, New York, NY 10003; and †Department of Environmental Medicine, New York University, New York, NY 10016 Communicated by Michael Kasha, Florida State University, Tallahassee, FL, December 31, 1999 (received for review November 22, 1999) The mechanism of decomposition of peroxynitrite (OONO؊)in reaction of the acidic with the basic reactant and the local aqueous sodium phosphate buffer solution at neutral pH was non-equilibrium conditions made extrapolating this interpreta- investigated. The OONO؊ was synthesized by directly reacting tion to biological conditions at pH 7 uncertain. We decided to nitric oxide with superoxide anion at pH 13. The hypothesis was examine the nature of the reactive species generated in the explored that OONO؊, after protonation at pH 7.0 to HOONO, decomposition of peroxynitrite under more controlled and 1 decomposes into O2 and HNO according to a spin-conserved physiologically relevant conditions. unimolecular mechanism. Small aliquots of the concentrated alka- In this communication we report an important reaction path- line OONO؊ solution were added to a buffer solution (final pH way for the decomposition of peroxynitrite that yields two ؊ Ϫ 1 7.0–7.2), and the formation of O2 and NO in high yields was transient species, nitroxyl anion (NO ) and singlet molecular 1 observed. The O2 generated was trapped as the transannular oxygen. By using well established analytical procedures, an Ϸ peroxide (DPAO2) of 9,10-diphenylanthracene (DPA) dissolved in aqueous alkaline solution (pH 13) of peroxynitrite was allowed carbon tetrachloride.
    [Show full text]
  • On the Possibilities of Straightforward Characterization of Plasma Activated Water
    On the possibilities of straightforward characterization of plasma activated water Citation for published version (APA): Hoeben, W., van Ooij, P., Schram, D., Huiskamp, T., Pemen, G., & Lukes, P. (2019). On the possibilities of straightforward characterization of plasma activated water. Plasma Chemistry and Plasma Processing, 39(3), 597-626. https://doi.org/10.1007/s11090-019-09976-7 DOI: 10.1007/s11090-019-09976-7 Document status and date: Published: 02/04/2019 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
    [Show full text]
  • This Student Paper Was Written As an Assignment in the Graduate Course
    77:222 Spring 2005 Free Radicals in Biology and Medicine Page 0 This student paper was written as an assignment in the graduate course Free Radicals in Biology and Medicine (77:222, Spring 2005) offered by the Free Radical and Radiation Biology Program B-180 Med Labs The University of Iowa Iowa City, IA 52242-1181 Spring 2005 Term Instructors: GARRY R. BUETTNER, Ph.D. LARRY W. OBERLEY, Ph.D. with guest lectures from: Drs. Freya Q . Schafer, Douglas R. Spitz, and Frederick E. Domann The Fine Print: Because this is a paper written by a beginning student as an assignment, there are no guarantees that everything is absolutely correct and accurate. In view of the possibility of human error or changes in our knowledge due to continued research, neither the author nor The University of Iowa nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from the use of such information. Readers are encouraged to confirm the information contained herein with other sources. All material contained in this paper is copyright of the author, or the owner of the source that the material was taken from. This work is not intended as a threat to the ownership of said copyrights. O. Zagorodna Peroxynitrite: An Overview 1 Peroxynitrite: An Overview by Oksana Zagorodna 1189 Medical Laboratories Biosciences Department The University of Iowa Iowa City, IA 52242-1181 [email protected] For 77:222, Spring 2005 9.
    [Show full text]
  • A Mechanistic Investigation of the Reactions of Diselenides with Biological Oxidants
    A mechanistic investigation of the reactions of diselenides with biological oxidants Kelly Gardiner Faculty of Medicine (Sydney Medical School) The University of Sydney A thesis submitted to fulfil the requirements for the degree of Doctor of Philosophy 2019 Declaration This is to certify that, to the best of my knowledge, the content of this thesis is my own work. This thesis has not been submitted for any degree or other purpose. I certify that the intellectual content of this thesis is the product of my own work and that all the assistance received in preparing this thesis and sources have been acknowledged. Signed, Kelly Gardiner, BBiomedSc (Hons) ii Table of Contents Abstract ...................................................................................................................................ix Acknowledgements .................................................................................................................xi List of Abbreviations ............................................................................................................xii List of Figures ......................................................................................................................xvii List of Tables ........................................................................................................................xxv Publications Arising from this Thesis ..............................................................................xxvi 1. Introduction ........................................................................................................................1
    [Show full text]
  • Nitrogen Oxide Delivery Systems for Biological Media
    Nitrogen Oxide Delivery Systems for Biological Media by Brian Thomas Skinn B.S. Chemical Engineering (2004) Case Western Reserve University Submitted to the Department of Chemical Engineering In Partial Fulfillment of the Requirements of the Degree of DOCTOR OF PHILOSOPHY IN CHEMICAL ENGINEERING at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2012 © Massachusetts Institute of Technology 2012 All Rights Reserved Signature of Author .............................................................................................................. Department of Chemical Engineering December 2, 2011 Certified by .......................................................................................................................... William M. Deen Carbon P. Dubbs Professor of Chemical Engineering Thesis Supervisor Accepted by ......................................................................................................................... William M. Deen Carbon P. Dubbs Professor of Chemical Engineering Chairman, Committee for Graduate Students Nitrogen Oxide Delivery Systems for Biological Media by Brian Thomas Skinn Submitted to the Department of Chemical Engineering on December 2, 2011 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Chemical Engineering ABSTRACT Elevated levels of nitric oxide (NO) in vivo are associated with a variety of cellular modifications thought to be mutagenic or carcinogenic. These processes are likely mediated by reactive nitrogen species (RNS) such as nitrogen dioxide
    [Show full text]