(12) Patent Application Publication (10) Pub. N0.: US 2008/0293702 A1 Garvey (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. N0.: US 2008/0293702 A1 Garvey (43) Pub US 20080293702Al (19) United States (12) Patent Application Publication (10) Pub. N0.: US 2008/0293702 A1 Garvey (43) Pub. Date: NOV. 27, 2008 (54) NITRIC OXIDE ENHANCING PYRUVATE A61K 31/4245 (2006.01) COMPOUNDS, COMPOSITIONS AND A61K 31/42 (2006.01) METHODS OF USE C07D 273/00 (2006.01) C07D 413/04 (2006.01) (75) Inventor: David S. Garvey, Dover, MA (U S) A61 K 31/53 77 (200601) A61P 9/00 (2006.01) Correspondence Address: A 61p 9/06 (200601) WILMERHALE/NITROMED A 611) 9/10 (200601) 1875 PENNSYLVANIA AVE, NW A611) 9/12 (200601) WASHINGTON, DC 20006 (US) _ _ (52) US. Cl. .................... .. 514/222.5; 548/125; 514/364; (73) Assrgnee: NITROMED, INC., Lexington, 514/361; 544/138; 514/2362 MA (U S) (21) Appl. N0.: 12/096,867 (57) ABSTRACT (22) PCT F 11 e d: D e c_ 19, 2006 The invention provides novel compositions and kits compris ing at least one nitric oxide enhancing pyruvate compound, or (86) PCT NO; PCT M52006 /0 4819 4 a pharmaceutically acceptable salt thereof, and, optionally, at least one nitric oxide enhancing compound and/ or at least one § 371 (OX1), therapeutic agent. The invention also provides methods for (2)’ (4) Date; Jun_ 10, 2008 (a) treating cardiovascular diseases; (b) treating renovascular diseases; (0) treating diabetes; (d) treating diseases resulting Related US. Application Data from oxidative stress; (e) treating endothelial dysfunctions; (f) treating diseases caused by endothelial dysfunctions; (g) (60) Provisional application No. 60/753,971, ?led on Dec. treating cirrhosis; (h) treating pre-eclampsia; (j) treating 22, 2005. osteoporosis; (k) treating nephropathy; (l) treating peripheral vascular diseases; (m) treating portal hypertension (n) treat Publication Classi?cation ing reperfusion injury following ischemia; and/or (m) pre (51) Int. Cl. serving tissues, organs, organ parts and/or limbs. The nitric A61K 31/546 (2006.01) oxide enhancing pyruvate compounds comprise at least one C07D 271/08 (2006.01) nitroxide group. US 2008/0293702 A1 Nov. 27, 2008 NITRIC OXIDE ENHANCING PYRUVATE tuted With at least one heterocyclic nitric oxide donor group COMPOUNDS, COMPOSITIONS AND and/or at least one nitroxide group and pharmaceutically METHODS OF USE acceptable salts thereof. The pyruvate compound can be sub stituted With the heterocyclic nitric oxide donor group and/ or RELATED APPLICATIONS the nitroxide group through one or more sites such as oxygen [0001] This application claims priority under 35 USC § 1 19 (hydroxyl condensation), sulfur (sulfhydryl condensation) to US. Application No. 60/753,971 ?led Dec. 22, 2005; the and/or nitrogen via a bond or moiety that can be hydrolyZed. disclosure of Which is incorporated by reference herein in its The heterocyclic nitric oxide donors are furoxans, sydnon entirety. imines, oxatriaZole-5-ones and/or oxatriaZole-5-imines. The invention also provides compositions comprising the novel FIELD OF THE INVENTION compounds described herein in a pharmaceutically accept [0002] The invention provides novel compositions and kits able carrier. comprising at least one nitric oxide enhancing pyruvate com [0006] The invention is also based on the discovery that pound, or a pharmaceutically acceptable salt thereof, and, administering at least one pyruvate compound, comprising at optionally, at least one nitric oxide enhancing compound least one nitric oxide enhancing group (i.e. heterocyclic nitric and/ or at least one therapeutic agent. The invention also pro oxide donor group and/ or nitroxide group), and, optionally, at vides methods for (a) treating cardiovascular diseases; (b) least one nitric oxide enhancing compound can be used for the treating renovascular diseases; (c) treating diabetes; (d) treat targeted delivery of the compounds to organs, cells or tissues ing diseases resulting from oxidative stress; (e) treating containing the enZyme gamma-glutamyl transpeptidase and endothelial dysfunctions; (f) treating diseases caused by for the delivery of nitric oxide at the targeted site. Nitric oxide endothelial dysfunctions; (g) treating cirrhosis; (h) treating enhancing compounds include, for example, S-nitrosothiols, pre-eclampsia; (j) treating osteoporosis; (k) treating nephr nitrates, nitrates, N-oxo-N-nitrosamines, furoxans, sydnon opathy; (l) treating peripheral vascular diseases; (m) treating imines, SPM 3672, SPM 4757, SPM 5185, SPM 5186 and portal hypertension; (n) treating reperfusion injury folloWing analogues thereof, substrates of the various isoZymes of nitric ischemia; and/or (m) preserving tissues, organs, organ parts oxide synthase, and nitroxides. Thus, another embodiment of and/or limbs. The nitric oxide enhancing pyruvate com the invention provides compositions comprising at least one pounds comprise at least one heterocyclic nitric oxide donor nitric oxide enhancing pyruvate compound and at least one group and/or at least one nitroxide group. nitric oxide enhancing compound. The invention also pro vides for such compositions in a pharmaceutically acceptable BACKGROUND OF THE INVENTION carrier. [0003] Normal metabolic processes in vascular cells are [0007] The invention provides compositions comprising at associated With the generation of reactive oxygen intermedi least one nitric oxide enhancing pyruvate compound, and, ates that must be neutraliZed in order to limit oxidative dam optionally, at least one nitric oxide enhancing compound age and cellular dysfunction. In the setting of common dis and/or at least one therapeutic agent, including, but not lim orders or in the presence of common risk factors for numerous ited to, aldosterone antagonists, alpha-adrenergic receptor diseases reactive oxygen species (ROS) are generated in antagonists, angiotensin II antagonists, angiotensin-convert abundance and their rate of synthesis and ?ux typically ing enZyme (ACE) inhibitors, antidiabetic compounds, anti exceeds the capacity of endogenous antioxidant mechanisms. hyperlipidemic compounds, antioxidants, antithrombotic and For example, hypercholesterolemia, hyperglycemia (Keaney vasodilator compounds, [3-adrenergic antagonists, calcium et al, Circulation, 99:189-191 (1999)), cigarette smoking, channel blockers, digitalis, diuretics, endothelin antagonists, hyperhomocysteinemia, hypertension, and atherosclerosis hydralaZine compounds, H2 receptor antagonists, neutral are all accompanied by an increase in plasma and tissue ROS endopeptidase inhibitors, nonsteroidal antiin?ammatory generation. Superoxide anion, hydrogen peroxide, hydroxyl compounds (NSAIDs), phosphodiesterase inhibitors, potas radical, peroxynitrite, and lipid peroxides all increase in dis sium channel blockers, platelet reducing agents, proton pump eases resulting from oxidative stress. inhibitors, renin inhibitors, selective cyclooxygenase-2 [0004] It is believed that oxidative damage is mediated by (COX-2) inhibitors, and combinations of tWo or more thereof. intracellular redox-active metal reactions catalyZed by highly In one embodiment the at least one therapeutic agent is reactive oxygen species (i.e. hydroxyl radicals). The genera selected from the group consisting of an aldosterone antago tion of such reactive oxygen species depends on the availabil nist, an angiotensin II antagonist, an angiotensin-converting ity of their common precursor, the superoxide anion. Mito enZyme (ACE) inhibitors, a [3-adrenergic antagonist, a cal chondria, microsomes and other various enZyme systems are cium channel blocker, a diuretic, a hydralaZine compound knoWn to produce superoxide anion that reacts With nitric and a renin inhibitor. The invention also provides for such oxide at or near diffusion controlled rates to form the poWer compositions in a pharmaceutically acceptable carrier. ful oxidant peroxynitrite. At pH 7.4, peroxynitrite protonates [0008] Another embodiment of the invention provides to form peroxynitrous acid (pKa 6.6) Which decays homolyti compositions comprising at least one at least one nitric oxide cally to form hydroxyl and nitrogen dioxide radicals in addi enhancing pyruvate compound, and at least one therapeutic tion to a host of other ions. The extent to Which these later agent is selected from the group consisting of an aldosterone reactive ions and radicals can cause cellular damage and antagonist, an angiotensin II antagonist, an angiotensin-con death depends on the rate of formation of their peroxynitrite verting enZyme (ACE) inhibitor, a [3-adrenergic antagonist, a precursor. calcium channel blocker, a diuretic, a hydralaZine compound and a renin inhibitor. The invention also provides for such SUMMARY OF THE INVENTION compositions in a pharmaceutically acceptable carrier. [0005] The invention provides novel nitric oxide enhancing [0009] The invention provides methods for (a) treating car pyruvate compounds and derivatives thereof that are substi diovascular diseases; (b) treating renovascular diseases; (c) US 2008/0293702 A1 Nov. 27, 2008 treating diabetes; (d) treating diseases resulting from oxida [0011] These and other aspects of the invention are tive stress; (e) treating endothelial dysfunctions; (f) treating described in detail herein. diseases caused by endothelial dysfunctions; (g) treating cir rhosis; (h) treating pre-eclampsia; (j) treating osteoporosis; DETAILED DESCRIPTION OF THE INVENTION (k) treating nephropathy; (l) treating peripheral vascular dis [0012] As used throughout the disclosure, the folloWing eases; (m) treating portal hypertension; (n) treating reperfu temms, unless otherWise indicated, shall be understood to sion injury folloWing ischemia;
Recommended publications
  • Quantification of Oxidative Stress Biomarkers: Development of a Method by Ultra Performance Liquid Chromatography MASTER DISSERTATION
    DM Quantification of Oxidative Stress Biomarkers: Development of a Method by Ultra Performance Liquid Chromatography MASTER DISSERTATION Nome Autor do Liliana da Silva Rodrigues MASTER IN APPLIED BIOCHEMISTRY Quantification of Oxidative Stress Biomarkers: Development of a Method by Ultra Performance Liquid Chromatography Liliana da Silva Rodrigues July | 2016 Nome do Projecto/Relatório/Dissertação de Mestrado e/ou Tese de Doutoramento | Nome do Projecto/Relatório/Dissertação de Mestrado e/ou Tese DIMENSÕES: 45 X 29,7 cm NOTA* PAPEL: COUCHÊ MATE 350 GRAMAS Caso a lombada tenha um tamanho inferior a 2 cm de largura, o logótipo institucional da UMa terá de rodar 90º , para que não perca a sua legibilidade|identidade. IMPRESSÃO: 4 CORES (CMYK) ACABAMENTO: LAMINAÇÃO MATE Caso a lombada tenha menos de 1,5 cm até 0,7 cm de largura o laoyut da mesma passa a ser aquele que consta no lado direito da folha. Quantification of Oxidative Stress Biomarkers: Development of a Method by Ultra Performance Liquid Chromatography MASTER DISSERTATION Liliana da Silva Rodrigues MASTER IN APPLIED BIOCHEMISTRY ORIENTADORA Helena Caldeira Araújo CO-ORIENTADOR José de Sousa Câmara Quantification of oxidative stress biomarkers: Development of a Method by Ultra Performance Liquid Chromatography Dissertation submitted at the University of Madeira in order to obtain the degree of Master in Applied Biochemistry Liliana da Silva Rodrigues Work developed under the orientation of: Supervisor Prof. Doctor Helena Cardeira Araújo Co-supervisor Prof. Doctor José de Sousa Câmara Funchal, Portugal July 2016 To my Family “Sem eles nada disto seria possível” ***** Quantification of Oxidative Stress Biomarkers: Development of a Method by Ultra Performance Liquid Chromatography July 2016 Acknowledgment I would like to address an acknowledgement to all the people who collaborated in the accomplishment of this work.
    [Show full text]
  • Bacteriostatic and Bactericidal Effects of Free Nitrous Acid on Model Microbes in Wastewater Treatment
    Bacteriostatic and bactericidal effects of free nitrous acid on model microbes in wastewater treatment Shuhong Gao Master of Science Harbin Institute of Technology, Harbin, China A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2016 School of Chemical Engineering Advanced Water Management Centre Abstract There is great potential to use free nitrous acid (FNA), the protonated form of nitrite (HNO2), as an antimicrobial agent due to its bacteriostatic and bactericidal effects on a range of microorganisms. However, the antimicrobial mechanism of FNA is largely unknown. The overall objective of this thesis is to elucidate the responses of two model bacteria, namely Psuedomonas aeruginosa PAO1 and Desulfovibrio vulgaris Hildenborough, in wastewater treatment in terms of microbial susceptibility, tolerance and resistance to FNA exposure. The effects of FNA on the opportunistic pathogen P. aeruginosa PAO1, a well-studied denitrifier capable of nitrate/nitrite reduction through anaerobic respiration, were determined. It was revealed that the antimicrobial effect of FNA is concentration-determined and population-specific. By applying different levels of FNA, it was seen that 0.1 to 0.2 mg N/L FNA exerted a temporary inhibitory effect on P. aeruginosa PAO1 growth, while complete respiratory growth inhibition was not detected until an FNA concentration of 1.0 mg N/L was applied. The FNA concentration of 5.0 mg N/L caused complete cell killing and likely cell lysis. Differential killing by FNA in the P. aeruginosa PAO1 subpopulations was detected, suggesting intra-strain heterogeneity. A delayed recovery from FNA treatment suggested that FNA caused cell damage which required repair prior to P.
    [Show full text]
  • Antioxidant Properties of Catechins Comparison with Other Antioxidants
    Food Chemistry 241 (2018) 480–492 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Antioxidant properties of catechins: Comparison with other antioxidants MARK ⁎ Michalina Grzesika, Katarzyna Naparłoa, Grzegorz Bartoszb, Izabela Sadowska-Bartosza, a Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, ul. Zelwerowicza 4, 35-601 Rzeszów, Poland b Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland ARTICLE INFO ABSTRACT Keywords: Antioxidant properties of five catechins and five other flavonoids were compared with several other natural and Catechins synthetic compounds and related to glutathione and ascorbate as key endogenous antioxidants in several in vitro % Flavonoids tests and assays involving erythrocytes. Catechins showed the highest ABTS -scavenging capacity, the highest FRAP stoichiometry of Fe3+ reduction in the FRAP assay and belonged to the most efficient compounds in protection Hemolysis against SIN-1 induced oxidation of dihydrorhodamine 123, AAPH-induced fluorescein bleaching and hypo- chlorite-induced fluorescein bleaching. Glutathione and ascorbate were less effective. (+)-catechin and (−)-epicatechin were the most effective compounds in protection against AAPH-induced erythrocyte hemolysis while (−)-epicatechin gallate, (−)-epigallocatechin gallate and (−)-epigallocatechin protected at lowest con- centrations against hypochlorite-induced
    [Show full text]
  • On the Liquid Chemistry of the Reactive Nitrogen Species Peroxynitrite and Nitrogen Dioxide Generated by Physical Plasmas
    biomolecules Article On the Liquid Chemistry of the Reactive Nitrogen Species Peroxynitrite and Nitrogen Dioxide Generated by Physical Plasmas Giuliana Bruno 1, Sebastian Wenske 1, Jan-Wilm Lackmann 2, Michael Lalk 3 , Thomas von Woedtke 4 and Kristian Wende 1,* 1 Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; [email protected] (G.B.); [email protected] (S.W.) 2 Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany; [email protected] 3 Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany; [email protected] 4 Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany; [email protected] * Correspondence: [email protected] Received: 9 November 2020; Accepted: 9 December 2020; Published: 16 December 2020 Abstract: Cold physical plasmas modulate cellular redox signaling processes, leading to the evolution of a number of clinical applications in recent years. They are a source of small reactive species, including reactive nitrogen species (RNS). Wound healing is a major application and, as its physiology involves RNS signaling, a correlation between clinical effectiveness and the activity of plasma-derived RNS seems evident. To investigate the type and reactivity of plasma-derived RNS in aqueous systems, a model with tyrosine as a tracer was utilized. By high-resolution mass spectrometry, 26 different tyrosine derivatives including the physiologic nitrotyrosine were identified. The product pattern was distinctive in terms of plasma parameters, especially gas phase composition. By scavenger experiments and isotopic labelling, gaseous nitric dioxide radicals and liquid phase peroxynitrite ions were determined as dominant RNS.
    [Show full text]
  • Hydrogen Sulfide and Persulfides Oxidation by Biologically Relevant
    antioxidants Review Hydrogen Sulfide and Persulfides Oxidation by Biologically Relevant Oxidizing Species Dayana Benchoam 1,2, Ernesto Cuevasanta 1,2,3, Matías N. Möller 2,4 and Beatriz Alvarez 1,2,* 1 Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; [email protected] (D.B.); [email protected] (E.C.) 2 Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo 11800, Uruguay; [email protected] 3 Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay 4 Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay * Correspondence: [email protected] Received: 22 January 2019; Accepted: 19 February 2019; Published: 22 February 2019 – Abstract: Hydrogen sulfide (H2S/HS ) can be formed in mammalian tissues and exert physiological effects. It can react with metal centers and oxidized thiol products such as disulfides (RSSR) and sulfenic acids (RSOH). Reactions with oxidized thiol products form persulfides (RSSH/RSS–). Persulfides have been proposed to transduce the signaling effects of H2S through the modification of critical cysteines. They are more nucleophilic and acidic than thiols and, contrary to thiols, also possess electrophilic character. In this review, we summarize the biochemistry of hydrogen sulfide and persulfides, focusing on redox aspects. We describe biologically relevant one- and two-electron oxidants and their reactions with H2S and persulfides, as well as the fates of the oxidation products. The biological implications are discussed. Keywords: hydrogen sulfide; persulfide; hydropersulfide; reactive oxygen species; sulfiyl radical 1.
    [Show full text]
  • GC-MS) Techniques and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) Assessment of Volatiles Produced from Nitric Oxide Producing Smart Dressings
    The detection of trace volatiles from complex matrices using gas chromatography mass spectrometry (GC-MS) techniques and selected ion flow tube mass spectrometry (SIFT-MS) assessment of volatiles produced from nitric oxide producing smart dressings Oliver John Gould A thesis submitted in partial fulfilment of the requirements of the University of the West of England, Bristol for the degree of Doctor of Philosophy Faculty of Health and Applied Sciences, University of the West of England, Bristol 2019 Copyright declaration This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgment. i Acknowledgements I would like to thank my supervisors Professor Norman Ratcliffe, and Associate Professor Ben de Lacy Costello for all their help, guidance, and support over the course of this work, and for their co-authorship on the published versions of chapters 2 and 3. I would also like to thank Dr Hugh Munro and Edixomed Ltd for financial support and scientific guidance with chapter 4. I would like to thank my co-authors on the publication of chapter 2 Tom Wieczorek, Professor Raj Persad. Also thank you to my co-authors on the publication of chapter 3, Amy Smart, Dr Angus Macmaster, and Dr Karen Ransley; and express my appreciation to Givaudan for funding the work undertaken in chapter 3. Thank you also to my colleagues and fellow post graduate research students at the University of the West of England for always being on hand for discussion and generation of ideas. A special mention to Dr Peter Jones who has been mentoring me on mass spectrometry for a number of years.
    [Show full text]
  • The Decomposition of Peroxynitrite to Nitroxyl Anion (NO ) and Singlet
    The decomposition of peroxynitrite to nitroxyl anion NO؊) and singlet oxygen in aqueous solution) Ahsan Ullah Khan*†, Dianne Kovacic*, Alexander Kolbanovskiy*, Mehul Desai‡, Krystyna Frenkel‡, and Nicholas E. Geacintov* *Department of Chemistry, New York University, New York, NY 10003; and †Department of Environmental Medicine, New York University, New York, NY 10016 Communicated by Michael Kasha, Florida State University, Tallahassee, FL, December 31, 1999 (received for review November 22, 1999) The mechanism of decomposition of peroxynitrite (OONO؊)in reaction of the acidic with the basic reactant and the local aqueous sodium phosphate buffer solution at neutral pH was non-equilibrium conditions made extrapolating this interpreta- investigated. The OONO؊ was synthesized by directly reacting tion to biological conditions at pH 7 uncertain. We decided to nitric oxide with superoxide anion at pH 13. The hypothesis was examine the nature of the reactive species generated in the explored that OONO؊, after protonation at pH 7.0 to HOONO, decomposition of peroxynitrite under more controlled and 1 decomposes into O2 and HNO according to a spin-conserved physiologically relevant conditions. unimolecular mechanism. Small aliquots of the concentrated alka- In this communication we report an important reaction path- line OONO؊ solution were added to a buffer solution (final pH way for the decomposition of peroxynitrite that yields two ؊ Ϫ 1 7.0–7.2), and the formation of O2 and NO in high yields was transient species, nitroxyl anion (NO ) and singlet molecular 1 observed. The O2 generated was trapped as the transannular oxygen. By using well established analytical procedures, an Ϸ peroxide (DPAO2) of 9,10-diphenylanthracene (DPA) dissolved in aqueous alkaline solution (pH 13) of peroxynitrite was allowed carbon tetrachloride.
    [Show full text]
  • On the Possibilities of Straightforward Characterization of Plasma Activated Water
    On the possibilities of straightforward characterization of plasma activated water Citation for published version (APA): Hoeben, W., van Ooij, P., Schram, D., Huiskamp, T., Pemen, G., & Lukes, P. (2019). On the possibilities of straightforward characterization of plasma activated water. Plasma Chemistry and Plasma Processing, 39(3), 597-626. https://doi.org/10.1007/s11090-019-09976-7 DOI: 10.1007/s11090-019-09976-7 Document status and date: Published: 02/04/2019 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
    [Show full text]
  • This Student Paper Was Written As an Assignment in the Graduate Course
    77:222 Spring 2005 Free Radicals in Biology and Medicine Page 0 This student paper was written as an assignment in the graduate course Free Radicals in Biology and Medicine (77:222, Spring 2005) offered by the Free Radical and Radiation Biology Program B-180 Med Labs The University of Iowa Iowa City, IA 52242-1181 Spring 2005 Term Instructors: GARRY R. BUETTNER, Ph.D. LARRY W. OBERLEY, Ph.D. with guest lectures from: Drs. Freya Q . Schafer, Douglas R. Spitz, and Frederick E. Domann The Fine Print: Because this is a paper written by a beginning student as an assignment, there are no guarantees that everything is absolutely correct and accurate. In view of the possibility of human error or changes in our knowledge due to continued research, neither the author nor The University of Iowa nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from the use of such information. Readers are encouraged to confirm the information contained herein with other sources. All material contained in this paper is copyright of the author, or the owner of the source that the material was taken from. This work is not intended as a threat to the ownership of said copyrights. O. Zagorodna Peroxynitrite: An Overview 1 Peroxynitrite: An Overview by Oksana Zagorodna 1189 Medical Laboratories Biosciences Department The University of Iowa Iowa City, IA 52242-1181 [email protected] For 77:222, Spring 2005 9.
    [Show full text]
  • A Mechanistic Investigation of the Reactions of Diselenides with Biological Oxidants
    A mechanistic investigation of the reactions of diselenides with biological oxidants Kelly Gardiner Faculty of Medicine (Sydney Medical School) The University of Sydney A thesis submitted to fulfil the requirements for the degree of Doctor of Philosophy 2019 Declaration This is to certify that, to the best of my knowledge, the content of this thesis is my own work. This thesis has not been submitted for any degree or other purpose. I certify that the intellectual content of this thesis is the product of my own work and that all the assistance received in preparing this thesis and sources have been acknowledged. Signed, Kelly Gardiner, BBiomedSc (Hons) ii Table of Contents Abstract ...................................................................................................................................ix Acknowledgements .................................................................................................................xi List of Abbreviations ............................................................................................................xii List of Figures ......................................................................................................................xvii List of Tables ........................................................................................................................xxv Publications Arising from this Thesis ..............................................................................xxvi 1. Introduction ........................................................................................................................1
    [Show full text]
  • Nitrogen Oxide Delivery Systems for Biological Media
    Nitrogen Oxide Delivery Systems for Biological Media by Brian Thomas Skinn B.S. Chemical Engineering (2004) Case Western Reserve University Submitted to the Department of Chemical Engineering In Partial Fulfillment of the Requirements of the Degree of DOCTOR OF PHILOSOPHY IN CHEMICAL ENGINEERING at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2012 © Massachusetts Institute of Technology 2012 All Rights Reserved Signature of Author .............................................................................................................. Department of Chemical Engineering December 2, 2011 Certified by .......................................................................................................................... William M. Deen Carbon P. Dubbs Professor of Chemical Engineering Thesis Supervisor Accepted by ......................................................................................................................... William M. Deen Carbon P. Dubbs Professor of Chemical Engineering Chairman, Committee for Graduate Students Nitrogen Oxide Delivery Systems for Biological Media by Brian Thomas Skinn Submitted to the Department of Chemical Engineering on December 2, 2011 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Chemical Engineering ABSTRACT Elevated levels of nitric oxide (NO) in vivo are associated with a variety of cellular modifications thought to be mutagenic or carcinogenic. These processes are likely mediated by reactive nitrogen species (RNS) such as nitrogen dioxide
    [Show full text]
  • Download E-Book (PDF)
    OPEN ACCESS African Journal of Pharmacy and Pharmacology 8 April, 2018 ISSN 1996-0816 DOI: 10.5897/AJPP www.academicjournals.org ABOUT AJPP The African Journal of Pharmacy and Pharmacology (AJPP) is published weekly (one volume per year) by Academic Journals. African Journal of Pharmacy and Pharmacology (AJPP) is an open access journal that provides rapid publication (weekly) of articles in all areas of Pharmaceutical Science such as Pharmaceutical Microbiology, Pharmaceutical Raw Material Science, Formulations, Molecular modeling, Health sector Reforms, Drug Delivery, Pharmacokinetics and Pharmacodynamics, Pharmacognosy, Social and Administrative Pharmacy, Pharmaceutics and Pharmaceutical Microbiology, Herbal Medicines research, Pharmaceutical Raw Materials development/utilization, Novel drug delivery systems, Polymer/Cosmetic Science, Food/Drug Interaction, Herbal drugs evaluation, Physical Pharmaceutics, Medication management, Cosmetic Science, pharmaceuticals, pharmacology, pharmaceutical research etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in AJPP are peer-reviewed. Contact Us Editorial Office: [email protected] Help Desk: [email protected] Website: http://www.academicjournals.org/journal/AJPP Submit manuscript online http://ms.academicjournals.me/ Editors Associate Editors Himanshu Gupta Department of Pharmacy Practice Dr. B. Ravishankar University of
    [Show full text]