DPPH Radical Scavenging Potential of Ginger Leaves and Rhizomes

Total Page:16

File Type:pdf, Size:1020Kb

DPPH Radical Scavenging Potential of Ginger Leaves and Rhizomes Research Article DPPH Radical Scavenging Potential of Ginger Leaves and Rhizomes Gina Batoy Barbosa1,*, Nonita Picardal Peteros2 1Department of Chemistry, Central Mindanao University, University Town, Musuan, Bukidnon, PHILIPPINES. 2Department of Chemistry, Mindanao State University-Iligan Institute of Technology, Iligan City, PHILIPPINES. Submission Date: 15-09-2018; Revision Date: 19-11-2018; Accepted Date: 20-12-2018 Correspondence: ABSTRACT Dr. Gina Batoy Barbosa, Introduction: Department of Chemistry, Gingers, belonging to the family Zingiberaceae, are popularly known for their Central Mindanao University, beneficial uses in medicine and culinary applications. Aim: This study was conducted to evaluate University Town, Musuan, the DPPH radical scavenging activity of the leaves and rhizomes of Zingiber officinale Rosc., Bukidnon, PHILIPPINES. Curcuma longa L., and Etlingera elatior (Jack) R.M. Smith. Methods: The plant samples were collected from Bukidnon, Mindanao, Philippines. Both water and ethanolic extracts were prepared Phone no: +63-917-426- 8951 separately from its leaves and rhizomes. The extracts were subjected to the determination of Email: ginavbatoy@yahoo. DPPH radical scavenging activity relative to ascorbic acid. Results and Discussion: Leaves, in com general, had higher radical scavenging activity in water than in ethanol extracts. On the other hand, rhizomes had generally higher radical scavenging activity in ethanol than in water extracts except for E. elatior. Among the leaf extracts, E. elatior possessed the highest radical scavenging activity. In both water and ethanol, E. elatior displayed higher radical scavenging activity in its leaves that its rhizomes. Conclusion: Findings of this study suggest the potential of E. elatior leaves as source of antioxidants. Key words: Gingers, Curcuma longa, Etlingera elatior, Zingiber officinale, DPPH. INTRODUCTION Free radicals cause lipid peroxidation and production of fore, have health-promoting e ects in the prevention of [3] highly toxic lipid derivatives, which in turn can modify degenerative diseases. Naturally occurring antioxidant ff cell functions and even may lead to cell death.[1] Cellu- supplements from plants are vital to counter the oxida- [2] lar damage or oxidative injury arising from free radicals tive damage in cells. or reactive oxygen species now appears to be the fun- Thus, an increase in the consumption of dietary anti- damental mechanism underlying a number of human oxidants, which can scavenge free radicals, may be a neurodegenerative disorders, diabetes, inflammation, strategy to prevent free radical-induced damage to viral infections, autoimmune pathologies and digestive biomolecules of lipids, proteins and deoxyribonucleic system disorders.[2] acid, including low density lipoprotein oxidation and An antioxidant, which can quench reactive free radicals, cancer cell initiation, an important beginning stage of [5] can prevent the oxidation of other molecules,[3] pro- carcinogenesis. Antioxidant research is a key topic in [4] tects the body from reactive species[4] and may, there- both the medical and food industry today. The DPPH assay is a very popular[6] and simplest method which is SCAN QR CODE TO VIEW ONLINE considered the first approach to evaluate the antioxidant www.ajbls.com potential of an extract, compound or biological sources. [7] DPPH assay utilizes DPPH● radical, one of the few DOI : stable organic nitrogen radicals, which bears a deep 10.5530/ajbls.2018.7.10 purple color. It is commercially available and does not have to be generated before assay. This assay is based Asian Journal of Biological and Life Sciences, Vol 7, Issue 3, Sep-Dec, 2018 87 Barbosa and Peteros.: DPPH Radical Scavenging Potential of Ginger Leaves and Rhizomes on the measurement of the reducing ability of antioxi- zomes of Curcuma longa, Etlingera elatior and Zingiber offi- dants toward DPPH●. The ability can be evaluated by cinale were evaluated. electron spin resonance or by measuring the decrease of its absorbance.[8] MATERIALS AND METHODS Zingiberaceae plants have received much attention since they produce many complex compounds that are Plant Sampling useful in food as herbs and spices, flavoring and sea- E. elatior plant samples were collected in June 2014 while soning and in the cosmetics and medicinal industries C. longa and Z. officinale were collected in October, 2014 as antioxidant and antimicrobial agents.[9] In Zingib- in Musuan, Maramag, Bukidnon, Philippines. eraceae, it is generally believed that antioxidants and Preparation of plant extracts other secondary metabolites are transported to the rhi- zomes where they are accumulated.[10] This implies that Preparation of plants extracts was done as previously [23] rhizomes would have higher antioxidant activity than reported in Barbosa et al. Briefly, cut plant samples of would other plant parts.[10] Rhizomes of cultivated spe- freshly collected leaves and rhizomes were boiled in suf- cies have been reported to possess radical-scavenging ficient distilled water for five minutes and filtered. The compounds comparable to commercial antioxidants residue left after freeze drying was stored at least -15°C on a weight per weight basis.[10] With these, several past until analysis. This served as the water extract. Etha- antioxidant studies on ginger species were confined to nol extracts were prepared by soaking separately leaves rhizomes.[11-16] The most common Zingiberaceae plant and rhizomes in 95 % ethanol for 48 hrs. The ethanol is the Zingiber officinale, commonly known as ginger. Z. extract obtained after solvent removal in vacuo using a rotary evaporator at 40°C was stored inside refrigerator officinale has shown significant efficacy in nausea, vomit- prior its usage. ing, motion sickness and arthritis and active compounds with antioxidant, anti-mutagenic, antimicrobial and anti- DPPH Radical Scavenging Activity cancer properties have been isolated and require further DPPH radical scavenging activities of the water and [17] scrutiny. Another rhizomatous herbaceous perennial ethanol extracts were determined using the method of plant of the Zingiberaceae family is Curcuma longa L. Lee and Shibamoto.[24] Briefly, various amounts of the Once a native to South Asia, it is now widely cultivated samples (500-, 100-, 50- and 10 µg/mL) were mixed in the tropical and subtropical regions of the world[18] with three mL of methanolic solution of DPPH (0.1 Commonly known as the golden spice turmeric, C. mM). The mixture was shaken vigorously in a vortex longa has been popular because of its component cur- mixer for 10 seconds and allowed to stand in the dark at cumin. Some promising effects have been observed on room temperature for one hour. Absorbance was then patients with cancer, arthritis, ulcerative proctitis, ulcer- measured at 517 nm against methanol as a blank in a ative colitis, psoriasis, atherosclerosis, diabetes, lupus Lasany double beam UV-Vis spectrophotometer (Hary- nephritis, renal conditions, acquired immunodeficiency ana, India). syndrome, gastric inflammation, vitiligo, Crohn’s dis- The DPPH solution alone in methanol was used as con- ease, irritable bowel disease, tropical pancreatitis, trol. Each sample was assayed in triplicate and mean acquired immunodeficiency syndrome and cholecystitis. values were calculated. L-Ascorbic acid was used as [19] Etlingera elatior (Jack) R. M. Smith is a natural species standard. The radical scavenging activity of samples in Sumatra, Indonesia and has been distributed through- corresponds to the intensity of quenching DPPH. The out Southeast Asia. In Peninsular Malaysia, its young percent of DPPH discoloration of the samples was cal- flowers shoots can be eaten raw and used for flavoring culated and results expressed as percentage inhibition in local dishes.[20] It is traditionally used for flavoring[20-21] using the formula shown below: [21] and medicine. % Inhibition = [(Acontrol – Asample) / Acontrol] x 100 Although leaves of ginger species have been used for where Acontrol and Asample are the absorbance values of the food flavoring and in traditional medicine, little research control and test sample, respectively. has been done on their antioxidant properties until The effective concentration of sample required to scav- [22] recent years. It is imperative that scientific attention enge DPPH radical by 50% (EC50) was obtained by lin- should also be given to ginger leaves. In this study, the ear regression analysis of dose-response curve plotting DPPH radical scavenging activity of the leaves and rhi- between % inhibition and concentration. 88 Asian Journal of Biological and Life Sciences, Vol 7, Issue 3, Sep-Dec, 2018 Barbosa and Peteros.: DPPH Radical Scavenging Potential of Ginger Leaves and Rhizomes RESULTS The data in Table 1 shows the percentage inhibition of DPPH radical by the scavenging activity of the ethanol DPPH Radical Scavenging Activity and water extracts of the leaves and rhizomes of the Percentage inhibition represents the DPPH radi- studied Zingiberaceae plants and the EC50 values. The cal scavenging activity of the sample extract. Figure 1 lower the EC50 value, the higher is the radical scavenging depicts a representative concentration-percent (%) inhi- activity of the plant extract. In order to illustrate direct relationship between EC bition curve for the DPPH radical scavenging activity. 50 and antioxidant activity, anti-radical power, 1/EC , Median effective concentration of each extract, that is, 50 was calculated by getting
Recommended publications
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • Adaptação E Desenvolvimento De Bastão-Do-Imperador Em Lavras-Mg
    ÂNGELA MARIA PEREIRA DO NASCIMENTO ADAPTAÇÃO E DESENVOLVIMENTO DE BASTÃO-DO-IMPERADOR EM LAVRAS-MG LAVRAS-MG 2013 ÂNGELA MARIA PEREIRA DO NASCIMENTO ADAPTAÇÃO E DESENVOLVIMENTO DE BASTÃO-DO-IMPERADOR EM LAVRAS-MG Dissertação apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de pós- graduação em Agronomia/ Fitotecnia, área de concentração em Produção Vegetal, para obtenção do título de Mestre. Orientadora Dra. Patrícia Duarte de Oliveira Paiva LAVRAS-MG 2013 Ficha Catalográfica Elaborada pela Divisão de Processos Técnicos da Biblioteca da UFLA Nascimento, Ângela Maria Pereira do. Adaptação e desenvolvimento de bastão-do-imperador em Lavras-MG / Ângela Maria Pereira do Nascimento. – Lavras : UFLA, 2013. 67 p. : il. Dissertação (mestrado) – Universidade Federal de Lavras, 2013. Orientador: Patrícia Duarte de Oliveira Paiva. Bibliografia. 1. Etlingera elatior. 2. Plantas tropicais. 3. Luminosidade. 4. Espaçamento. 5. Flores para corte. I. Universidade Federal de Lavras. II. Título. CDD – 635.93421 ÂNGELA MARIA PEREIRA DO NASCIMENTO ADAPTAÇÃO E DESENVOLVIMENTO DE BASTÃO-DO-IMPERADOR EM LAVRAS-MG Dissertação apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de pós- graduação em Agronomia/ Fitotecnia, área de concentração em Produção Vegetal, para obtenção do título de Mestre. APROVADA em 21 de fevereiro de 2013 Dra. Rosângela Alves Tristão UFLA Dr. Paulo Roberto Corrêa Landgraft UNIFENAS Dra. Elka Fabiana Aparecida Almeida EPAMIG Dra. Patrícia Duarte de Oliveira Paiva Orientadora LAVRAS-MG 2013 A Deus, por todas as flores em minha vida. OFEREÇO Aos meus pais, José Luiz e Eurides pelo amor, incentivo, apoio e confiança. Ao meu irmão José Luiz pela amizade e companheirismo.
    [Show full text]
  • Flores Vivar S.Pdf
    ENVIRONMENTAL CONDITIONS, CULTIVAR, AND PROPAGATION MATERIAL AFFECT RHIZOME YIELD AND POSTHARVEST QUALITY OF GINGER (ZINGIBER OFFICINALE ROSC.), GALANGAL (ALPINIA GALANGA LINN.), AND TURMERIC (CURCUMA SPP.) By SOFIA JESUS FLORES VIVAR A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2019 © 2019 Sofia J. Flores Vivar To my parents, siblings, and plant friends ACKNOWLEDGMENTS I would like to thank Dr. Rosanna Freyre and Dr. Paul Fisher for giving me the opportunity to work for their program initially as a Research Visiting Scholar. After that first experience, they let me continue working and guided me through my masters’ studies. I thank Dr. Sargent for his advice and help during my postharvest evaluations. Special thanks to present and past students from Dr. Fisher and Dr. Freyre’s labs for their help and support. Thanks to Victor Zayas, Erin Yafuso, Ulrich Adegbola, George Grant, Jonathan Clavijo, Henry Kironde, and Nicholas Genna for being amazing friends. I thank Brian Owens, Mark Kann and their teams for always being there to help me in the greenhouse and field. I would like to thank Dr. Pearson and his team from Mid-Florida Research and Education Center in Apopka for letting me work in their lab and providing instruction to perform the chemical analyses of my plants. I thank Dr. Rathinasabapathi for his advice and willingness to help me with the analysis of my rhizomes. I would like to thank Dr. Gomez for her friendship and unwavering support. Thanks to James Colee from UF Agriculture Statistics for support with statistical analysis.
    [Show full text]
  • Complete Chloroplast Genomes of Three Medicinal Alpinia Species: Genome Organization, Comparative Analyses and Phylogenetic Relationships in Family Zingiberaceae
    plants Article Complete Chloroplast Genomes of Three Medicinal Alpinia Species: Genome Organization, Comparative Analyses and Phylogenetic Relationships in Family Zingiberaceae Dong-Mei Li *, Gen-Fa Zhu *, Ye-Chun Xu, Yuan-Jun Ye and Jin-Mei Liu Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; [email protected] (Y.-C.X.); [email protected] (Y.-J.Y.); [email protected] (J.-M.L.) * Correspondence: [email protected] (D.-M.L.); [email protected] (G.-F.Z.); Tel.: +86-20-875-93429 (D.-M.L.) Received: 6 February 2020; Accepted: 20 February 2020; Published: 24 February 2020 Abstract: Alpinia katsumadai (A. katsumadai), Alpinia oxyphylla (A. oxyphylla) and Alpinia pumila (A. pumila), which belong to the family Zingiberaceae, exhibit multiple medicinal properties. The chloroplast genome of a non-model plant provides valuable information for species identification and phylogenetic analysis. Here, we sequenced three complete chloroplast genomes of A. katsumadai, A. oxyphylla sampled from Guangdong and A. pumila, and analyzed the published chloroplast genomes of Alpinia zerumbet (A. zerumbet) and A. oxyphylla sampled from Hainan to retrieve useful chloroplast molecular resources for Alpinia. The five Alpinia chloroplast genomes possessed typical quadripartite structures comprising of a large single copy (LSC, 87,248–87,667 bp), a small single copy (SSC, 15,306–18,295 bp) and a pair of inverted repeats (IR, 26,917–29,707 bp). They had similar gene contents, gene orders and GC contents, but were slightly different in the numbers of small sequence repeats (SSRs) and long repeats.
    [Show full text]
  • Phytochemical Constituents and in Vitro Bioactivity of Ethanolic Aromatic Herb Extracts (Kandungan Fitokimia Dan Bioaktiviti in Vitro Etanol Ekstrak Aromatik Herba)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UKM Journal Article Repository Sains Malaysiana 41(11)(2012): 1437–1444 Phytochemical Constituents and In Vitro Bioactivity of Ethanolic Aromatic Herb Extracts (Kandungan Fitokimia dan Bioaktiviti In Vitro Etanol Ekstrak Aromatik Herba) NURAIN AZIMAN, NORIHAM ABDULLAH*, ZAINON MOHD NOOR, KHAIRUSY SYAKIRAH ZULKIFLI & WAN SAIDATUL SYIDA WAN KAMARUDIN ABSTRACT Phytochemical compounds, antioxidant and antibacterial activities of selected ethanolic aromatic Malaysian herbal extracts namely Persicaria hydropiper, Citrus hystrix, Murraya koenigii, Etlingera elatior, Cymbopogon citratus and Kaempferia galanga were screened and determined. Antioxidant activities were analysed using Ferric Reducing Antioxidant Power (FRAP), β-carotene bleaching and Oxygen Radical Absorbance Capacity (ORAC) assays. Disc diffusion assay was used to determine antibacterial activity against six bacteria strains. Alkaloids, flavonoids, saponins, tannins, terpenoids and steroids were detected in the herb extracts. P. hydropiper extract had the highest antioxidant activities in FRAP and ORAC assays in which 1676.67 mM TE/g EW and 11.20 mmol TE/g EW were obtained, respectively. However, M. koenigii extract showed 61.8% inhibition in β-carotene bleaching assay among samples but lower than BHA/BHT standard. M. koenigii extract showed the most effective antibacterial activity against three Gram-positive bacteria. Aromatic Malaysian herbs such as P. hydropiper and M. koenigii were found to exhibit high antioxidant and antibacterial activities. Keywords: Antibacterial; antioxidant; ethanolic extracts; herbs; phytochemical ABSTRAK Penyaringan sebatian fitokimia, aktiviti anti-oksida dan anti-bakteria bagi ekstrak etanol herba aromatik terpilih di Malaysia iaitu Persicaria hydropiper, Citrus hystrix, Murraya koenigii, Etlingera elatior, Cymbopogon citratus dan Kaempferia galanga telah ditentukan.
    [Show full text]
  • Variegated Shell Ginger, Alpinia Zerumbet 'Variegata'
    A Horticulture Information article from the Wisconsin Master Gardener website, posted 29 Nov 2013 Variegated Shell Ginger, Alpinia zerumbet ‘Variegata’ Alpinia zerumbet is a tender herbaceous perennial in the ginger family (Zingiberaceae) grown throughout the world for its attractive fl owers and foliage. This plant native to open woodlands of tropical eastern Asia is frequently used as an annual foliage plant in colder climates, with a variegated cultivar native to India the most common type available in the Midwest. It is winter hardy in zones 8-10, although it may survive in zone 7 with winter protection. Plants grow in upright Variegated shell ginger, Alpinia zerumbet “Variegata’. clumps from heavy, fl eshy rhizomes that look (and smell) like that of culinary ginger (Zingiber offi cinale). The rhizomes produce stout, slightly arching stems with evergreen leaves. Several dark green, lance-shaped leaves up to 2 feet long grow at intervals along the stems. The species can grow up to 10 feet tall, but in gardens, and especially in northern areas where grown as an annual, they generally only get 3 or 4 feet tall. The cultivar ‘Variegata’ Variegated shell ginger is widely used as a is a smaller, more tough landscape in mild climates. compact plant featuring boldly, irregularly striped foliage. The leaves vary considerably in the amount of variegation, with some mostly green streaked with creamy yellow or gold, whereas others are primarily yellow with some green stripes. Variegated shell ginger is often grown as an annual in cool climates. Alpinia zerumbet produces an infl orescence on old growth, so The amount of variegation on the leaves varies a lot.
    [Show full text]
  • Traditional Usages and Phytochemical Screenings of Selected Zingiberaceae from Central Sulawesi, Indonesia
    Pharmacogn J. 2019; 11(3): 505-510 A Multifaceted Journal in the field of Natural Products and Pharmacognosy Original Article www.phcogj.com Traditional Usages and Phytochemical Screenings of Selected Zingiberaceae from Central Sulawesi, Indonesia Ramadanil1,*, Damry2, Rusdi2, Baharuddin Hamzah3, Muhammad Sulaiman Zubair4 ABSTRACT Background: Zingiberaceae is one of the significant components of the herbaceous ground flora of Southeast Asia tropical forests. This family includes some medicinally important species, in particular the members of genera of Alpinia, Curcuma, Etlingera and Zingiber (Van Balgooy, 2001). Objective: to identify the traditional usages and evaluate for phytochemical screening of selected Zingiberaceae from Central Sulawesi, Indonesia. Material and Methods: Zingiberaceae samples were collected from the Lore Lindu National Park (LLNP), Central Sulawesi Indonesia and its surroundings and evaluated for their phytochemical contents by using TLC method with particular spraying reagents. Results: the plants were used by the local ethnics for different daily and medicinal purposes. All part of each selected species of Zingiberaceae contain flavonoid, tannins, saponins, triterpenoid and alkaloid although steroids were only found in the leaves of Etlingera flexuosa, Curcuma mangga and Alpinia galanga. Alkaloids were only found in the rhyzome of Etlingera flexuosa, Curcuma aerugynosa, Zingiber montanum. Besides it was also detected in leaves of both Alpinia rubricaulis and Etlingera Ramadanil1,*, Damry2, acanthoides. Additionally, Alkaloids were also discovered in the stem of Ammomum aculeata, Rusdi2, Baharuddin Alpinia galanga and Curcuma mangga. Hamzah3, Muhammad Key words: Traditional usages, Phytochemical screening, Zingiberaceae, Central Sulawesi Sulaiman Zubair4 Indonesia. 1Department of Biology, Faculty of Mathemathics and Natural Sciences, Tadulako University, Palu City, Central INTRODUCTION Sulawesi 94148, INDONESIA.
    [Show full text]
  • In Vitro Multiplication of Kaempferia Galanga L. an Endangered Species
    International Research Journal of Biotechnology (ISSN: 2141-5153) Vol. 3(2) pp. 027-031, February, 2012 Available online http://www.interesjournals.org/IRJOB Copyright © 2012 International Research Journals Full Length Research Paper In vitro multiplication of Kaempferia galanga L. An endangered species K.P. Kochuthressia 1, S.John Britto 2 and M.O. Jaseentha 1 11Department of Botany, Carmel College, Mala, Thrissur-680732 2 The Rapinat Herbarium and Centre for Molecular Systematics St.Joseph’s College (Autonomous), Tiruchirappalli- 620002 Accepted 06 February, 2012 An efficient protocol is out lined for multiple shoot induction of a medicinally valuable Kaempferia galanga L. using rhizome segment explants. Murashige and Skoog medium supplemented with BA (2.0 mg/ml) and Kn (1.0 mg/ml) exhibited regeneration rate up to 10.85±1.34 shoot/explants. Spontaneous rooting of shoots occurred in the same concentration of cytokinin. The number of leaves (5.21±0.34) and profuse rooting (12.14±1.67) facilitated 100% of plant recovery on acclimation. In vitro derived plants were morphologically identical to the mother plant. Keywords: Kaempferia galanga , multiplication, regeneration,rhizome segment. INTRODUCTION Kaempferia galanga L. an endangered medicinal plant of The plant exhibit dormancy during drought and sprouts Zingiberaceae (Kareem 1997, Shanker et al ., 1997), is only in spring. Conventional propagation of the species is native to india , and is cultivated mainly in South East through rhizomes and there is no seed setting under Asia and China (Kirtikar and Basu 1996) for its aromatic natural conditions. Hence, in vitro methods are desirable rhizome. The plant is an economically important for conserving this valuable medicinal species.
    [Show full text]
  • Alpinia Zerumbet 'Variegata'
    Fact Sheet FPS-36 October, 1999 Alpinia zerumbet ‘Variegata’1 Edward F. Gilman2 Introduction Variegated Ginger is a 4- to 8-foot-tall herbaceous perennial that is used in the landscape for its attractive foliage and shell-like flowers (Fig. 1). The leaves of this plant are green and yellow variegated and are quite striking. They are 18 to 24 inches long and have a distinct, spicy fragrance. The white, fragrant flowers of the Variegated Ginger are borne in drooping clusters toward the stem ends. These fascinating flowers appear periodically throughout the year on the heavily foliated stems. The fruits are long, red capsules but are inconspicuous. General Information Scientific name: Alpinia zerumbet ‘Variegata’ Pronunciation: al-PIN-ee-uh zair-um-BET Common name(s): Variegated Shellflower, Variegated Shell Ginger Family: Zingiberaceae Plant type: herbaceous USDA hardiness zones: 9 through 11 (Fig. 2) Figure 1. Variegated Shellflower. Planting month for zone 9: year round Planting month for zone 10 and 11: year round Origin: not native to North America Height: 4 to 7 feet Uses: specimen; border; mass planting; accent; suitable for Spread: 5 to 8 feet growing indoors; cut flowers Plant habit: upright Availablity: generally available in many areas within its Plant density: open hardiness range Growth rate: moderate Texture: coarse Description Foliage 1.This document is Fact Sheet FPS-36, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: October 1999. Please visit the EDIS web site at http://edis.ifas.ufl.edu.
    [Show full text]
  • Palm Beach County Preferred Plant Species List
    Preferred Species List The Palm Beach County Zoning Division has prepared the following list of plants to assist industry and the public with selecting the right plants for the appropriate location. The list contains trees, pahns, shrubs and groundcovers. (ffl}.. PZB, ZONING DIVISION ---------------------------------------~--------------------------~~ Table of Contents Trees Palms Shrubs Groundcovers Trees Monday, October 18, 2004 11:28:28 A Palm Beach County Trees Common Name Scientific Salt Light Mature Growth Type Comments FL Native FL Recommended Flowering Name Size Hardiness Species Street Tree Range Acacia, Sweet Acacia farnesiana H Sun 15x20' M Evergreen Small, thorny, bushy. Fragrant 9b-11 flowers. Native to So. Florida, occasionally in Panhandle. New growth and leaves damaged at 20°F, severe damage at 15°F. Recommended small tree. African Tulip Tree Spathodea M Sun 50x50' F Evergreen Requires little maintenance but is 10b-11 campanulata a messy tree. Has big orange and yellow flowers during winter and spring. Black Olive Bucida buceras H Sun 30x45' M Evergreen An overused tree, can be spiny, 10a-11 leave stain surfaces. Will suffer freeze damage. Large street tree. Moderate value as a street tree. Key: Salt Tolerant L-Low, M-Medium, H-High Light P-Partial, L-Low, Sun-Full, Sh-Shade Native checked=yes; not checked=no "Plant List" Fla Hardiness Range - Plant Zone in Palm Beach County 9b to 10b Common Name Scientific Salt Light Mature Growth Type Comments FL Native FL Recommended Flowering Name Size Hardiness Species Street Tree Range Blolly Guapira discolor H Sun 30x40' M Evergreen A drought tolerant native tree. 9b-11 Smooth gray bark & attractive leaves.
    [Show full text]
  • An Identification Picture Book for Heliconias and Gingers for Cut Flower Growers
    AN IDENTIFICATION PICTURE BOOK FOR HELICONIAS AND GINGERS FOR CUT FLOWER GROWERS J. HINTZE Jungle Plant & Flower Service Darwin, NT © J. Hintze, JPFS, Darwin NT, Australia © J.Hintze Heliconia rostrata, Parrot’s beak. Small sized, although can grow long, pendular heliconia flower, very popular. Picked with 6 to 8 bracts open, or longer if still unmarked. Vase life varies from plant to plant, and needs to be tested, since some only last a few days. The top bract is often removed, since it commonly has black marks on it. Photo location: Darwin, Australia. © J.Hintze Heliconia chartacea, Sexy Pink Medium to large pendular. Very popular hanging flower, clear pink with green edge. Long lasting, green day flowers, flowers all year through. Photo location: Darwin, Australia. © J.Hintze Heliconia chartacea, Sexy Yellow Similar to other H. chartaceas, long lasting clear colour, yellow/green form. Photo location: Darwin, Australia. © J.Hintze Heliconia chartacea, Sexy Scarlet or Marissa Smaller than Sexy Pink, but otherwise the same, a bit darker and very popular. Flowers year round. Very long lasting. Photo location: Darwin, Australia. © J.Hintze Heliconia collinsiana Red and orange pendular flower, large. Flowers from October to April. Very popular garden flower, as well as good cut. Photo location: Darwin, Australia. © J.Hintze Heliconia bihai x caribaea, Hot Rio Nites This is one of the tallest Heliconias, with a very large red/pink flower. Lasts well, but doesn’t like cold temperatures even when cut –it will turn black. Photo location: Darwin, Australia. © J.Hintze Heliconia bourgeana A smallish plant –2 metres – with a very large flower of a deep intense pink, with a paler inside to the bracts.
    [Show full text]
  • Nueces County Plant List
    710 E. Main, Suite 1 (361) 767-5217 - Phone Robstown, TX 78380 (361) 767-5248 - Fax NUECES COUNTY LANDSCAPE PLANT LIST COMMON NAME SCIENTIFIC NAME HABIT LIGHT WATER SALT TOL. TX. NATIVE COMMENT GROUND COVER Asparagus fern Asparagus sprengeri Evergreen F/P L Y N Perennial Spider Plant, Airplane Plant Chlorophytum comosum Perennial F/P/S M N N May freeze Fig Ivy Ficus pumila Perennial F/P/S M N N Creeping Vine Shore Juniper Juniperus conferta Evergreen F M N N Trailing Juniper Juniperus horizontalis. Evergreen F M N N Bar Harbor, Blue Rug Tam Trailing Lantana Lantana montevidensis Simi - F L N Y Trailing Purple or White Deciduous Lighting Lily Turf, Liriope, Big Blue Liriope muscari Evergreen P/S M N N Mondo Grass, Monkey Grass Ophiopogon japonicus Evergreen P/S M N N Trailing Rosemary Rosemarinus prostrata Evergreen F/P L/M N N Needs drainage Purple Heart Setcreasea pallida Evergreen P/S M N N Arrowhead plant Syngunium podophyllum Evergreen P/S M N N Vine Asiatic Jasmine Trachelospermum asiaticum Evergreen F/S L Y N Verbena Verbena spp. Perennial F L N Y Wedelia Wedelia trilobata Perennial F/P M Y N PALM Cocus Plumosa, Queen Palm Arecastrum romanzoffanum Evergreen F L Y N Half-hardy/25' Fast Grower Mexican Blue Palm Brahea armata Evergreen F L N N Not for the island Pindo, Cocos Australis, Jelly Butia capitata Evergreen F L Y N 1 COMMON NAME SCIENTIFIC NAME HABIT LIGHT WATER SALT TOL. TX. NATIVE COMMENT Mediterranean Fan Palm Chamaerops humulis Evergreen F L Y N Hardy, bushy to 10' Sago Palm Cycas revoluta Evergreen F L Y N Cycad - to
    [Show full text]