Squeezed Dry : the Historical Trajectory of the Lower Jordan River Basin

Total Page:16

File Type:pdf, Size:1020Kb

Squeezed Dry : the Historical Trajectory of the Lower Jordan River Basin 2 Squeezed Dry: the Historical Trajectory of the Lower Jordan River Basin Mauro Van Aken,1* François Molle2** and Jean-Philippe Venot3*** 1University of Milan-Bicocca, Italy; 2Centre IRD, Montpellier, France; 3International Water Management Institute, Accra, Ghana; e-mails: *[email protected]; **[email protected]; ***[email protected] Introduction response options are interdependent and reveal the political and contested nature of The lower Jordan River basin (LJRB) provides resource sharing and water management (Molle a fascinating tale of coupled social and environ- et al., 2007). This chapter describes how these mental transformations of a waterscape. In this processes, constrained by the drastic natural semi-arid to desert area, water is an essential conditions of the basin, have unfolded since determinant of life, cultural values, social struc- the late 1950s and explores possible futures. tures, economic activities, power and politics. The trajectory of this basin from a nomadic agro-pastoral Bedouin culture to an urbanized Features of the Lower Jordan River Basin region where water circulation is highly artifi- cial, illustrates how a particular resource The Jordan River is an international river endowment is valued, mobilized, shared, used which drains a total area of about 18,000 km². and fought for. Its three headwater tributaries originate in This chapter first recounts past water Lebanon and Syria and flow into Lake Tiberius, resource development in the LJRB – defined as a freshwater reservoir now used almost exclu- the Jordanian part of the Jordan River basin, sively by Israel (Fig. 2.1). The Jordan River downstream of Lake Tiberius – and dwells on then flows southward before discharging into the specific relationships between water, local the Dead Sea. culture and national/regional politics. The Ten kilometres downstream of Lake historical evolution of supply and demand is Tiberius, the lower Jordan River receives water then expressed in terms of water balances that from its main tributary, the Yarmouk River, quantify the degree of closure of the basin.1 which originates in Syria. The Zarqa River and Water challenges and response options are several temporary streams of lesser impor- then addressed through the lens of the distribu- tance, named side-wadis, come from the two tion of the benefits and costs they entail, and of mountainous banks and feed the lower Jordan their linkages with the current distribution of River (Fig. 2.1). Prior to water development decision making and political power. Basin projects, the original flow of the Jordan River closure induces increased interconnectedness into the Dead Sea varied between 1100 and between water users and ecosystems through 1400 Mm3/year (El-Nasser, 1998; Klein, an increasingly manipulated water cycle: 1998; Al-Weshah, 2000). © CAB International 2009. River Basin Trajectories: Societies, Environments and Development 20 (eds F. Molle and P. Wester) The Lower Jordan River Basin 21 Fig. 2.1. The lower Jordan River basin in Jordan. This chapter focuses on the LJRB and does • The Jordan valley is a 110 km stretch not dwell on the geopolitical issues related to between the Yarmouk River in the north water sharing between the riparian states of and the Dead Sea in the south. Its altitude the Jordan River (Lebanon, Syria, Israel, varies from 200 m (in the north) to 400 m Jordan). The Yarmouk River and the upper below sea level (in the south). The valley Jordan are thus considered as contributing can be considered as a natural greenhouse, inflow to this basin. Moreover, the other with moderate temperatures during winter streams draining to the Dead Sea from the and high records during summer, commonly south and from Israel are also not analysed. exceeding 45 °C. Rainfall ranges from 350 The LJRB represents 40% of the entire mm/year in the north to 50 mm/year near Jordan River basin but only 7.8% of the the Dead Sea (Fig. 2.3). The Jordan River Jordanian territory (cf. Fig. 2.1). The basin so flows in a 30–60 m deep gorge through a defined is nevertheless the wettest area in 0.2–2 km wide fertile alluvial plain, locally Jordan, is home to 83% of the population, called Al Zhor (Fig. 2.2). The rest of the supplies 80% of the national water resources, valley, Al Ghor, is a 4–20 km wide area and encompasses most irrigated areas. The with deep and fertile colluviums. basin, like the country, is divided into two main • The highlands comprise a mountain range areas (see Fig. 2.2): running alongside the Jordan valley (named 22 M. Van Aken et al. Uplands hereafter) and a badia (desert ations (Amman, Irbid, Al-Baq’ah, Jerash, plateau) extending eastwards to Syria and Ajloun) are concentrated. Eastward, precipita- Iraq (Fig. 2.2). About 30 km wide, with an tion becomes scarcer (between 200 and 300 altitude reaching 1000 m above sea level, mm/year), and only nomadic livestock farming these mountains receive around 400–600 and some groundwater-irrigated farms can be mm of rain per year, while snowfall can also found. be observed during winter (Fig. 2.3). Total precipitation in the LJRB is estimated Historically, they were covered with forests at 2235 Mm3. In crude terms, 88% of this (essentially composed of Mediterranean precipitation is directly evaporated (40% of this coni fers), but are now mostly composed of evaporation being beneficial, i.e. consumed by rangelands with olive trees and stone-fruit irrigated and rainfed crops or domestic and trees. industrial uses), 5% flows into the rivers, and the remaining 7% infiltrates to recharge the The eastern plateau has an average altitude aquifers (and is then pumped to meet human of 600 m, and rainfed cereals are grown near demands). the mountains, in the area where rainfall is still The flow at Lake Tiberius, which averaged sufficient and where main urban agglomer- 605 Mm3/year before the 1950s (Klein, Fig. 2.2. Topography of the lower Jordan River basin in Jordan. Fig. 2.3. Average rainfall distribution in the lower Jordan River basin in Jordan.2 The Lower Jordan River Basin 23 1998), is now diverted by Israel to its National Jordan, where they established themselves in Water Carrier. The Yarmouk River is thus the the eastern steppe and, with the help of ingen- main source of surface water: its flow averaged ious hydraulic infrastructures, were able to 470 Mm3/year in the 1950s (Salameh and farm the land at Petra while maintaining impor- Bannayan, 1993), while the side-wadis and the tant trading activities. After the conquest of the Zarqa River originally contributed 120 and 90 region by the Romans, the economy came to Mm3/year, respectively (Baker and Harza, rely on a flourishing irrigated agriculture, trade 1955). and Christian pilgrimages (Lancaster, 1999). The main aquifers closely dovetail with the Through ups and downs, the region five main sub-basins (Fig. 2.3): the Yarmouk witnessed the Islamic conquest, the Ummayads, basin (YM), which drains northward to the the Abbasids, the Crusades, the Ayyubid– Yarmouk River; the Zarqa basin (AZB), which Mamluk era (1187–1516) and the Ottoman drains most of the badia towards the valley; conquest in 1516. The Jordan valley reached the northern and southern side-wadi basins the peak of its agricultural development during (NSW and SSW, respectively), which pool the first period of the Mamluks (14–15th lateral wadis north and south of the Zarqa century). Irrigation developed wherever possi- River; and the Jordan valley (JV) itself. Annual ble, and sugar mills, powered by water, were recharge of the aquifers is estimated at built in many spots in the valley. The Ottoman 155–160 Mm3/year (THKJ, 2004). administration period, in contrast, was charac- terized by instability and depopulation in both the valley and the highlands. In 1956, the A Chronology of Water Resources population of the east bank of the Jordan River Development (Transjordan) was estimated at 52,000 (Abujaber, 1988). Ancient settlements and early land In Western travel accounts of the 19th development century, the Jordan valley appears as a wild and dangerous place (with the threat of malaria The lower Jordan River basin is at the heart of and the fear of attack and robbery by Bedouin historical transformations in the Middle East, tribes) but, at the same time, as a biblical region due to its central position ‘as a land bridge for with impressive, exotic scenery. The valley was animals and humans between Africa and a large grazing ground and an important region Eurasia; a Levantine corridor, a transit route intersecting the tribal land of several Bedouin for large and small migrant groups but also an tribes. Up to World War II, surface irrigation area pinned between powerful states: Egypt to was practised along the wadi valleys and, most one side, Northern Syria/Mesopotamia to the prominently, at the point where wadis formed other’ (van der Koij and Ibrahim, 1990: 14). alluvial fans in the Jordan valley (Lancaster, Large settlements like Ain Ghazal (near 1999; Suleiman, 2004). Management was today’s Amman) are associated with the com munal, under the authority of the tribes’ Neolithic period (c.8000–6000 BC ). In this sheikh, but coexisted with forms of private period, plants and animals (sheep, goats, cattle, ownership of land and even of collective owner- pigs) were domesticated. Rainfed farming of ship of spring water and well water (Shryock, wheat, barley and legumes expanded later, in 1997). the fourth millennium BC , to lentils, bitter vetch, sesame, olives, flax, dates and grapes. Rock basins and pools collecting natural water were The first planning interventions: 1921–1973 utilized for storage for domestic and agricul- tural uses (Lancaster, 1999). Transjordan was placed under temporary British Later, 900–300 BC was a flourishing period administration (Mandate) in 1921 and became for the Arabic kingdoms and a peaceful time in fully independent in 1946, as the Hashemite the LJRB.
Recommended publications
  • Fish Species Assemblages in Two Riverine Systems of Mujib Basin in Jordan and the Effects of Impoundment
    Volume 7, Number 3, September .2014 ISSN 1995-6673 JJBS Pages 179 - 185 Jordan Journal of Biological Sciences Fish Species Assemblages in Two Riverine Systems of Mujib Basin in Jordan and the Effects of Impoundment Nashat A. F. Hamidan* Royal Society for the Conservation of Nature [RSCN], Jordan; and Centre for Conservation Ecology and Environmental Science, School of Applied Sciences, Bournemouth University, Poole, BH12 5BB, United Kingdom. Received: April 4, 2014 Revised: May 6, 2014 Accepted: May 15, 2014 Abstract Mujib and Haidan rivers were sampled in July 2011 to identify fish populations in the riverine system, and to investigate the impact caused by the existence of two dams. Fishes were sampled by electofishing gear through 14 sampling points distributed along the two rivers. The Mujib Dam lake was sampled by gillnets. A total of 2,854 fish specimen were caught during the study of which most consisted of native species but included small numbers of invasive species. The native Capoeta damascina and Oxynoemacheilus insignis were found in both rivers but Garra rufa was only recorded below their confluence to the west. Four invasive species were recorded. The cichlids Oreochromis aureus and Tilapia zillii were sampled along Mujib River, and the African Catfish Clarias gariepinus and the Common Carp Cyprinus carpio were observed only in the lake of Mujib Dam but were not sampled. The construction of the two dams has led to significant changes in the habitats, water flow, and hydrology of the two rivers both upstream and downstream, and enhanced the colonisation of invasive species. There is, therefore, an urgent need to review the management of the system across all stakeholders and to continue monitoring on a regular basis.
    [Show full text]
  • Water Reuse and Environmental Conservation Project Contract No
    WATER REUSE AND ENVIRONMENTAL CONSERVATION PROJECT CONTRACT NO. EDH–I–00–08–00024–00 ORDER NO. 04 PRELIMINARY SITE ASSESSMENT FOR WATER REUSE PILOT AT AL-LAJJOUN December 2014 IMPLEMENTED BY AECOM December 2014 This document was produced for review by the United States Agency for International Development. It was prepared by AECOM. i WATER REUSE AND ENVIRONMENTAL CONSERVATION PROJECT CONTRACT NO. EDH–I–00–08– 00024–00 ORDER NO. 04 PRELIMINARY SITE ASSESSMENT FOR WATER REUSE PILOT AT AL-LAJJOUN DECEMBER 2014 Submitted to: USAID Jordan Prepared by: AECOM DISCLAIMER: The authors‟ views expressed in this document do not necessarily reflect the views of the United States Agency for International Development or the United States Government. Table of Contents Contents 1. Introduction and Baseline Assessment ..................................................................... 1 1.1 Introduction ..................................................................................................................... 1 1.1.1 Background .............................................................................................................. 1 1.1.2 Summary of conclusions .......................................................................................... 2 1.2 Baseline Study ................................................................................................................. 2 1.2.1 Site Description........................................................................................................ 3 1.3 Biophysical Environment
    [Show full text]
  • National Water Master Plan 2004, Please Contact
    Water Governance Benchmarking Criteria Click on each red number in order to link to the corresponding paragraph. Click again on the red number in order to return to criteria page. Numbers found next to an article or item title correspond to the entire article or item. Numbers found next to document title correspond to the entire document. A. GOVERNANCE FUNCTIONS 1. Organizing and building capacity in the water sector 1.1 Creating and modifying an organizational structure 1.2 Assigning roles and responsibilities 1.3 Setting national water policy 1.4 Establishing linkages among sub-sectors, levels, and national sub-regions 1.5 Establishing linkages with neighboring riparian countries 1.6 Building public and political awareness of water sector issues 1.7 Securing and allocating funding for the sector 1.8 Developing and utilizing well-trained water sector professionals 2. Planning strategically 2.1 Collecting, managing, storing and utilizing water-relevant data 2.2 Projecting future supply and demand for water 2.3 Designing strategies for matching expected long-term water supply an demand and dealing with shortfalls (including drought mitigation strategies) 2.4 Developing planning and management tools to support decision making 3. Allocating water 3.1 Awarding and recording water rights and corollary responsibilities 3.2 Establishing water and water rights transfer mechanisms 3.3 Adjudicating disputes 3.4 Assessing and managing third party impacts of water and water rights transactions 4. Developing and managing water resources 4.1 Constructing public infrastructure and authorizing private infrastructure development 4.2 Forecasting seasonal supply and demand and matching the two 4.3 Operating and maintaining public infrastructure according to established plans and strategic priorities 4.4 Applying incentives and sanctions to achieve long and short term supply/demand matching (including water pricing) 4.5 Forecasting and managing floods and flood impacts 5.
    [Show full text]
  • 690 Mw Hydropower Plant 70 Mw Diesel Power
    INFORMATION ON THE LAHMEYER INTERNATIONAL GROUP, NO. 49 / JANUARY 2005 BOSNIA-HERCEGOVINA: ICELAND: 690 MW HYDROPOWER PLANT 400 KV TRANSMISSION LINE KÁRAHNJÚKAR YEMEN: SUDAN: 70 MW DIESEL POWER PLANT AL-MANSURA BASIC SURVEYING FOR MEROWE DAM PROJECT ONTENTS p. 3 Albania: The Reform of the Power Sector C p. 4 Yemen: 70 MW Diesel Power Plant Al-Mansura p. 4 Kingdom of Saudi Arabia: 2400 MW Combined Cycle Power and Sea Water Desalination Plant in Jubail p. 5 Pakistan: Feasibility Study for Fauji Korangi CCPP p. 5 Bosnia-Hercegovina: 400 kV Transmission Line p. 6 Germany: New 110/15 kV Substation Dessau-Alten p. 7 Georgia: SCADA/EMS and Communication Systems for High-voltage Transmission Grid p. 7 Iran: 30 MW Wind Park in Manjil p. 8 Korea: Consulting Services for Business Development in the Photovoltaic Industry p. 9 Iceland: 690 MW Kárahnjúkar Hydroelectric Power Plant p. 10 Burkina Faso: Celebration on the Occasion of "Availability of Water from the Ziga Reservoir" in Ouagadougou p. 11 Germany: Preliminary Design for the New Pumped Storage Plant Waldeck I p. 12 Jordan: Mujib Dam p. 13 Mozambique: Strategic Sanitation Plans for Seven Municipalities p. 14 Sudan: Basic Surveying for Merowe Dam Project p. 15 Croatia: Modernization of Railway Corridor Vc p. 15 Greece: Stavros Depot of Athens Metro p. 16 Venezuela: Metro Los Teques p. 17 Greece: SYGROU - FIX Transfer Station in Athens p. 18 Germany: Modernization of the Auxiliary Klingenberg Dam p. 19 Germany: New Development of the ‘Berliner Platz’ in the City of Gießen COVER MASTHEAD Mujib Dam, Jordan Publisher: Lahmeyer International GmbH, The Mujib Dam is located near the most Bad Vilbel, Germany ancient road in the world, which has been Editorial Office: Jutta Kaufmann, Business Development continuously in use up to now, and which Design and Lithography: SaarRepro, Ottweiler, Germany was used in past times by Abraham and Print: Ottweiler Druckerei und Verlag GmbH, Ottweiler, Germany Lawrence of Arabia.
    [Show full text]
  • Water Resources Protection Plan for Zara – Ma`Een – Mujib Project Watershed Prepared By: Geo
    Water Resources Protection Plan for Zara – Ma`een – Mujib Project Watershed Prepared by: Geo. Abbas Kalbouneh (WAJ), Bio. Refiat Bani Khalaf (WAJ), Eng. Ahmmad Ulaimat (WAJ) and Geo. Ahmmad Abu Hejleh (CDM) Contents Page 1) Introduction………………………………………………………2 2) Objective of the project…………………………………………2 3) Project area descriptions ………………………………………2 3.1 Location………………………………………………..2 3.2 Climate…………………………………………………2 3.3 Topographic, Geologic and Structural Setting..........4 3.4 Water Resources……………………………………...7 3.5 Water Quality…………………………………………..10 4) Land use Practices and Its Possible Pollution Impacts……..12 5) Water Resources Protection Plan for ZZM Watershed……..17 6) Conclusions and recommendations……………………………21 1) Introduction Surface water resources are increasingly important for domestic water supply in Jordan. In order to protect the water resources in Zara- Ma`een- Mujib project watershed, WAJ with cooperation with USA-CDM Co. implement a project concerning surface and ground water resources protections in this watershed. Zara – Ma`een – Mujib (ZMM) Watershed is located in the central part of Jordan, including the majority of Madaba Governorate, and limited southern parts of Amman Governorate. In ZMM Watershed, the base flow and the flood flows are used to supply the Zara Maieen Water treatment plant with raw water that is treated and then pumped to the Capital Amman. This supply is done through The Mujib dam and the Walla dam. Other sources that includes the Wadi Zarqa Maieen springs, the hot springs and the Wadi Abu Khusheibah. Water Resources Protection Plan for Zara-Ma`een-Mujib Project Watershed is a technical definition used to explain the restrictions (prohibitions, limitations and measures) on urban, industrial, touristic and agricultural development.
    [Show full text]
  • JICA's Cooperation for Water Sector in Jordan
    JICA’s Cooperation for Water Sector in Jordan 30 years history of remarkable achievements 1 | P a g e Message from Chief Representative of JICA Jordan Mr. TANAKA Toshiaki Japanese ODA to Jordan started much earlier than the establishment of JICA office. The first ODA loan to Jordan was provided in 1974, the same year when Embassy of Japan in Jordan was established. The first technical cooperation project started in 1977, though technical cooperation to Jordan may have started earlier, and the first grant aid to Jordan was provided in 1979. Since then, the Government of Japan has provided Jordan with total amount of more than 200 billion Japanese yen as ODA loan, more than 60 billion yen as Grant aid and nearly 30 billion yen as technical cooperation. In 1985, two agreements between the two countries on JICA activities were concluded. One is the technical cooperation agreement and the other is the agreement on Japan Overseas Cooperation Volunteers. On the basis of the agreement, JICA started JOCV program in Jordan and established JOCV coordination office which was followed by the establishment of JICA Jordan office. For the promotion of South-South Cooperation in the region, Japan-Jordan Partnership Program was agreed in 2004, furthering Jordan’s position as a donor country and entering a new stage of relationship between the two countries. In 2006, Japan Bank for International Cooperation (JBIC) inaugurated Amman office, which was integrated with JICA Jordan office in 2008 when new JICA was established as a result of a merger of JICA with ODA loan operation of JBIC.
    [Show full text]
  • The Hashemite Kingdom of Jordan Ministry of Water & Irrigation Jordan
    The Hashemite Kingdom of Jordan Ministry of Water & Irrigation Jordan Valley Authority GENERAL INFORMATION THE THIRD COUNTRY TRAINING PROGRAMME For WATER RESOURCES MANAGEMENT August / September 2004 Water Resources Management 23 August – 02 September 2004 Water Resources Management 23 August – 02 September 2004 Table of Contents Background Jordan Valley Authority (JVA) Role Water Resources Surface water resources Ground water resources Treated Waste water Storage Reservoirs in the Jordan Valley Irrigation Networks Special Projects Water Resources Management Training Programe Tentative Curriculum of the Programme Tentative Schedule Water Resources Management 23 August – 02 September 2004 Background The Jordan Rift Valley (JRV) extends from the Yarmouk River in the north to the Gulf of Aqaba in the South for about 360 km, with an average width of 10 km. The elevation of its valley floor varies from -212m south of Lake Tiberias to - 415m at the Dead Sea, and it rises to +250 m in central Wadi Araba. The variations in temperature, humidity, and rainfall produced distinct agro-climatic zones. Annual rainfall starts in October and ends in May. Precipitation reaches 350- 400 mm/year in the north and drops down to 50 mm/year in the south. The warm winter of the valley allows the production of off-season crops and can be considered as a large green house. The annual available water resources in the valley spins around 250-300 MCM, while the annual demand for irrigation exceeds 500 MCM. Around 60 MCM of water is pumped up to the city of Amman and 20 MCM to Irbid for domestic uses. Jordan Valley Authority (JVA) Role The Jordan Valley Authority (JVA) is in charge of the integrated development of the Valley.
    [Show full text]
  • Water Budget Assessment for a Typical Watershed in the Karak Plateau, Jordan Ibrahim M
    Volume 7, (Number 2), Dec, 2015 ISSN 1995-6681 JJEES Pages 109 - 117 Jordan Journal of Earth and Environmental Sciences Water Budget Assessment for a Typical Watershed in the Karak Plateau, Jordan Ibrahim M. Oroud* Mu’tah University , Karak, Jordan Received 14 June, 2014; Accepted 12 August, 2015 Abstract Adequate assessment of water resources in arid and semiarid watersheds is essential for several purposes, such as the evaluation of biotic potentials for agricultural and grazing practices and for designing water dams. The water balance components of the watersheds in these environments are poorly understood due to the lack or the total absence of hydro- meteorological measurements. Simulation models would more likely fill this gap and can be applied to gauge these resources. The present investigation implements a physically based model with relatively fine spatial and temporal resolutions to examine the water budget components in the Numera catchment, a typical medium sized watershed draining the southwestern parts of the Karak Plateau. The model was able to reproduce the energy balance components adequately, and the results compared favorably well with the observed data. Simulated results of the various water budget components are comparable to those obtained in similar environments. The average annual blue water fluxes (surface runoff and deep recharge) in this catchment is calculated to be ~ 3.3 million m3 during the simulation period, 1996/1997 through 2001/2006. Blue water fluxes are generated primarily in the highlands of the watershed where relatively ample precipitation occurs. Steep terrains with limited vegetation cover experience significant runoff, implying the production of large quantities of sediments.
    [Show full text]
  • Numerical Modelling of Dynamic Stability of RCC Dam
    MATEC Web of Conferences 195, 03021 (2018) https://doi.org/10.1051/matecconf/201819503021 ICRMCE 2018 Numerical modelling of dynamic stability of RCC dam Omer Mughieda1,*, Kenan Hazirbaba2, Khaldoon Bani-Hani3, and Wassim Daoud4 1Dept. of Civil Engineering, Abu Dhabi University, Abu Dhabi, UAE 2Dept. of Civil and Infrastructure Engineering, American University of Ras Al Khaimah, UAE 3Dept. of Civil Engineering, Jordan University of science and Technology, Irbid, Jordan 4Dept. of Civil Engineering, Jordan University of science and Technology, (Formerly), Irbid, Jordan Abstract. Stability and stress analyses are the most important elements that require rigorous consideration in design of a dam structure. In the current research, dynamic structural stability of a roller-compacted-concrete (RCC) dam was performed. The RCC dam was modeled using the finite element method to investigate the stability against sliding and the structural stability of the body of the dam. The commercially available finite element software (SAP 2000) was used to analyze stresses in the body of the dam and foundation. A linear finite element dynamic analysis was performed. Response spectrum and time history methods were used with different earthquake loads. The response spectrum of the 1995 Aqaba earthquake and a representative elastic-spectrum with smooth plateau for both Operating Basis Earthquake (OBE) and Maximum Credible Earthquake (MCE) were used in this study. The analysis was carried out assuming that no slip will occur at the interface between the dam and the foundation. The greatest tension was found to develop in the rock adjacent to the toe of the upstream slope. The factor of safety against sliding along the entire base of the dam was found to be greater than 1 (FS>1), for both loading conditions.
    [Show full text]
  • In Jordan): Changes in Water Use and Projections (1950-2025)
    Research Report 9 Figure to be inserted Historical Transformations of the Lower Jordan River Basin (in Jordan): Changes in Water Use and Projections (1950-2025) Rémy Courcier, Jean-Philippe Venot and François Molle Postal Address: IWMI, P O Box 2075, Colombo, Sri Lanka Location: 127 Sunil Mawatha, Pelawatte, Battaramulla, Sri Lanka International Telephone: +94-11 2787404, 2784080 Fax: +94-11 2786854 Water Management Email: [email protected] Website: www.iwmi.org/assessment Institute ISSN 1391-9407 ISBN 92-9090-609 The Comprehensive Assessment of Water Management in Agriculture takes stock of the costs, benefits and impacts of the past 50 years of water development for agriculture, the water management challenges communities are facing today, and solutions people have developed. The results of the Assessment will enable farming communities, governments and donors to make better-quality investment and management decisions to meet food and environmental security objectives in the near future and over the next 25 years. The Research Report Series captures results of collaborative research conducted under the Assessment. It also includes reports contributed by individual scientists and organizations that significantly advance knowledge on key Assessment questions. Each report undergoes a rigorous peer-review process. The research presented in the series feeds into the Assessment’s primary output—a “State of the World” report and set of options backed by hundreds of leading water and development professionals and water users. Reports in this series may be copied freely and cited with due acknowledgement. Electronic copies of reports can be downloaded from the Assessment website (www.iwmi.org/assessment). If you are interested in submitting a report for inclusion in the series, please see the submission guidelines available on the Assessment website or send a written request to: Sepali Goonaratne, P.O.
    [Show full text]
  • JJNH4 Pages.Pdf
    Editorial Board Chief Editor Prof. Dr. Dawud Al-Eisawi Department of Biology The University of Jordan Amman - Jordan Associate Editor Dr. Nashat Hamidan Conservation Monitoring Centre The Royal Society for the Conservation of Nature Amman - Jordan Journal Secretary Anas Abu-Yahya Conservation Monitoring Centre The Royal Society for the Conservation of Nature Amman - Jordan Designed By Omar H. Homaid Amman - Jordan Advisory Board Prof. Dr. Abdul Kader Abed Prof. Dr. Zuhair Amr Department of Geology and Department of Biology Environmental Scienes Jordan University of Science & Technology The University of Jordan Irbid - Jordan Amman - Jordan Prof. Dr. Ahmad M. Disi Dr. Abdul Kareem Al-Nasher Department of Biology Department of Biology The University of Jordan University of San’a Amman - Jordan San’a - Yemen Dr. Max Kasparek Dr. Mohammed Shoubrak Mönchhofstr. 16 Biology Department 69120 Heidelberg Taif University Germany P.O. Box 888 Taif - Kingdom of Saudi Arabia Dr. Fares Khoury Department of Biology & Biotechnology Mr. Gary R. Feulner American University of Madaba P.O. Box 9342 Madaba - Jordan Dubai, U.A.E Prof. Dr. Ahmad Katbeh Bader Department of Plant Protection The University of Jordan Amman - Jordan Prof. Dr. Mazin Qumsiyeh Bethlehem University Bethlehem - Palestine Dr. Monuir Abi Said Department of Biology Lebanese University Beirut - Lebanon Jordan Journal of Natural History Scope The Jordan Journal of Natural History is an open access scientific publication published by the Conservation Monitoring Center at the Royal Society for the Conservation of Nature. The aim of the journal is to enrich knowledge on the regional fauna and flora of the Arabian countries of the Middle East (Bahrain, Iraq, Jordan, Kuwait, Lebanon, Oman, Palestine, Qatar, Saudi Arabia, Syria, United Arab Emirates, and Yemen).
    [Show full text]
  • Amphibian Asymmetry, a Useful Tool
    EQA – Environmental quality / Qualité de l’Environnement / Qualità ambientale, 23 (2017) 19-33 ENHANCING THE SUSTAINABILITY OF WATER RESOURCES IN THE ARID REGION OF JORDAN Zeyad Salem Tarawneh Civil Engineering Department of Hashemite University, Zarqa, Joordan *Corresponding author: [email protected] Abstract This article uses tree-ring reconstructed precipitation, began in 1743, to character- ize consistent dry and wet periods for further enhancements to the existed water re- sources in the arid region of Jordan. With the exemption of the 1958 – 1963 dry pe- riod, the analysis of the historical precipitation (1940 – 2010) showed the occur- rence of short dry and wet events ranging between 1 – 4 years, mostly 1 – 2 years. On other hand, the analysis of the 239 years of reconstructed precipitation succeed- ed to capture the occurrence of several long dry and wet events, i.e. the 6-year dry event (1785 – 1763), of 391mm total precipitation deficit, and the 7-year wet event (1817 – 1823) of 551mm total precipitation surplus that is 120% greater than the magnitude of the historical greatest wet period (454mm). Furthermore, this article presents generic theoretical models to compute the return period and the expected number of any dry or wet event that may emerge during the operation life of the surface water resource. Using the models, the obtained theoretical results were compared with analytical results attained from the analysis of the historical and re- constructed precipitation. The proposed models successfully modeled the historical dry and wet events in Madaba region, therefore can be used in water resources studies. Keywords: reconstructed precipitation, dry period, wet period, arid region Introduction The arid climate of Jordan usually limits the water resources leading to less water availability to end-users even during wet seasons.
    [Show full text]