1. Introduction 1.1. Overview This Introductory Chapter Aims to Present

Total Page:16

File Type:pdf, Size:1020Kb

1. Introduction 1.1. Overview This Introductory Chapter Aims to Present Chapter 1: Introduction of subduction channels and of coseismic 1. Introduction and interseismic deformation are reviewed. The temporal framework of deformation 1.1. Overview within the study area is mentioned on the base of published data. This chapter This introductory chapter aims to present provides information about the distribution the motivations and objectives for the here of different key features along the ancient presented thesis, and to give a guide post plate interface, which was restored into its through the different chapters. In addition, former subduction geometry on the base of both natural laboratories are shortly published and own geothermobarometric introduced. data. Finally, we discussed our field data in terms of post-accretion changes, long-term The here presented project is a PhD thesis kinematics, short-term kinematics, and supported by the German National Merit fluid flow. Foundation, together with the GeoResearchCentre Potsdam (GFZ). Chapter 5 (“Temporal constraints for unstable slip – 40Ar/39Ar geochronology Chapter 2 (“Methods”) gives an overview applied to pseudotachylytes”) over the methods used in this study, which concentrates on Ar/Ar age dating of encompasses the analyses of structural pseudotachylytes sampled at the data, estimation of PT conditions, image northwestern rim of the Engadine window analyses for clast scaling, microscopic immediately above the base of the upper scale investigations using petrographical plate. Pseudotachylytes are unambiguous and binocular microscopes and SEM, evidence for fossil seismicity. Despite of structural restoration of a cross section, analytical limitations and constraints by provenance analyses, analyses of Sr recrystallization of the pseudotachylyte isotope signatures, and Rb/Sr as well as groundmass since the time of melt Ar/Ar geochronology. generation, 40Ar/39Ar geochronology provides an approximation about the time Chapter 3 (“Anatomy of recently active frame of occurrence of unstable slip. plate interfaces”) gives an overview about the “state-of-the-art” knowledge of Chapter 6 (“Abandonment of the South structures and processes obtained from Penninic-Austroalpine paleosubduction recently active convergent plate margins. interface zone, Central Alps: constraints This includes hypotheses about the from Rb/Sr geochronology”) deals with subduction channel, a database of Rb/Sr isotopic data in order to constrain geophysical investigations, and the the termination of subduction related distribution of interface earthquakes in the deformation in the study area. In addition, depth range of the seismogenic coupling Sr isotope signatures of marine (meta-) zone. carbonates are used to define the influence and nature of fluids circulating through the Chapter 4 (“Anatomy of a fossil subduction mélange. We used our isotopic subduction channel – a quantitative view data as hints for the mass transfer mode on changing structures along the plate along the fossil plate interface zone. interface”) concentrates on the analysis of Tectonic erosion as the prevailing mass the fossil subduction mélange and its upper transfer mode is referred to the geological plate in the European Alps. Therein, a evolution of the Gosau group depocenters, coarse overview about the Alpine which represents slope basins formed onto evolution and the geology of the working the upper plate during the time of area are given. In addition, basic concepts subduction. Finally, isotopic dating yielded 1 Chapter 1: Introduction information about the pre-Alpine history of exposure exhibiting the complete the study area as well. seismogenic part of a subduction channel has been analyzed as yet. However, Chapter 7 (“Final discussion and outcrops of rocks, which suffered conclusions”) summarizes the results of subduction and subsequent exhumation, the different subchapters and aims to exist e.g. in the European Alps or Southern integrate them into a model of structures Chile. and processes along the seismogenic zone of convergent plate interfaces with special The here presented study contributes to the emphasize on the spatiotemporal understanding of convergent plate subduction history of the European Alps. boundaries in the depth range of their former seismogenic zone aiming at testing Additionally, microprobe analyses, inferences and hypotheses of the various 40Ar/39Ar analytical data, and sample kinematic and mechanical concepts locations are given in the “Appendix A, B presented for the seismogenic zone. and C”. Therefore, we use the complete exposure of this part of a former plate interface in the European Alps, one of the best-studied 1.2 Objectives and motivation mountain belts that has resulted from successive subduction, accretion and Convergent plate margins generate most of collision, where we analyzed a mélange the world’s seismicity, and nearly all of the zone tracing the plate interface zone of the earthquakes with magnitudes >8. They fossil convergent plate margin. initiate within the seismogenic coupling Additionally, we included information zone, which marks the transient, from Southern Chile, where material, seismically active part of the subduction which formerly underwent deformation channel developed between the two along the plate interface, was exhumed to converging plates. Despite the enormous the surface by large scale basal accretion at social, economic and scientific importance a certain depth to the base of the upper associated with seismogenic zones of plate. This part of the study provided convergent plate interfaces (e.g. additive hints for structures and processes destructive earthquakes, tsunamis), occurring along the plate interface zone of processes occurring in the intervening convergent plate margins (i.e. within the subduction channels are poorly understood. subduction channel), at least for a To date, the plate interface of convergent restricted PT domain. plate boundaries (i.e. subduction channels) cannot be directly accessed by drilling nor through surface observations, but has been 1.3. Working areas intensely studied with geophysical methods, numerical modeling, and 1.3.1. Alps sandbox simulations. These, however, either have only poor resolution, or are A detailed discussion about the working strongly dependent on a number of poorly area in the European Alps, comprising constrained assumptions. In consequence, their geological, structural, metamorphical direct investigations of exhumed ancient and geochronological framework, as well convergent plate boundaries are requested as the general Alpine evolution as far as to achieve insights into deformation interesting for our purpose, can be found in processes, which occurred along the plate Chapters 4, 5 and 6. Here, we only present interface despite multiple overprinting a brief overview about the location of the during exhumation. No continuous 2 Chapter 1: Introduction Figure 1.1: Satellite image of the European Alps. The shown section is comparable to the geological maps presented in Chapters 4 and 6. Red rectangle outlines the working area, yellow line represents the trace of the cross section of Figure 1.2. Source: www.worldwind.arc.nasa.gov. study area, the main geological units, and by an east to southeast dipping subduction their evolution in time and space. zone related with the closure of the Meliata ocean leaving signatures of subduction- The working area for the main part of this related deformation within the study is located in the central part of the Austroalpine nappes (Adriatic plate, e.g. European Alps along the transition from Schmid et al. 2004). Stacking within the the Western to the Eastern Alps (Fig. 1.1). Austroalpine is associated with top-W, It extends from the Swiss-Austrian border locally top-SW and top-NW thrusting in the north to the Swiss-Italian border in (Froitzheim et al. 1994, Handy 1996). The the south. direction of convergence changed to north – south during the Tertiary orogenic cycle The European Alps are the result of (referred to as Mesoalpine to Neoalpine, continent-continent collision between the e.g. Wagreich 1995) with top-N thrusting European plate and the Adriatic plate and closure of the Alpine Tethys in- following the subduction and accretion of between the European and Adriatic plate intervening oceanic domains (Penninic (Froitzheim et al. 1994, Handy 1996, units) during the Mesozoic and Tertiary Schmid et al. 2004). According to times. Most models differentiate two Froitzheim et al. (1994) the transition orogenic cycles during Alpine evolution: A between top-W thrusting and top-N Cretaceous orogenic cycle (referred to as thrusting is marked by a Late Cretaceous Eoalpine, e.g. Wagreich 1995) is defined extensional phase with top-SE directed 3 Chapter 1: Introduction Figure 1.2: a) Schematic profile from NW towards SE illustrates the relationship between the different tectonic units. Note the subdivision of the Penninic domain into the North Penninic ocean, the Middle Penninic micro- continent, and the South Penninic ocean. The South Penninic ocean was subducted beneath parts of the African plate during Mesozoic and Tertiary times. b) N-S section of the present day situation of the tilted and exhumed South Penninic-Austroalpine plate interface zone, based on Schmid et al. (1996). The positions of the analyzed profiles are also indicated (in addition, see Chapter 4). Trace of cross section is shown in Figure 1.1. normal faulting, which partly reactivated to the Alpine Tethys, and a micro- deformation features of the former continent separating the oceanic
Recommended publications
  • Kinematics and Extent of the Piemont-Liguria Basin
    https://doi.org/10.5194/se-2020-161 Preprint. Discussion started: 8 October 2020 c Author(s) 2020. CC BY 4.0 License. Kinematics and extent of the Piemont-Liguria Basin – implications for subduction processes in the Alps Eline Le Breton1, Sascha Brune2,3, Kamil Ustaszewski4, Sabin Zahirovic5, Maria Seton5, R. Dietmar Müller5 5 1Department of Earth Sciences, Freie Universität Berlin, Germany 2Geodynamic Modelling Section, German Research Centre for Geosciences, GFZ Potsdam, Germany 3Institute of Geosciences, University of Potsdam, Potsdam, Germany 4Institute for Geological Sciences, Friedrich-Schiller-Universität Jena, Germany 10 5EarthByte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia Correspondence to: Eline Le Breton ([email protected]) Abstract. Assessing the size of a former ocean, of which only remnants are found in mountain belts, is challenging but crucial to understand subduction and exhumation processes. Here we present new constraints on the opening and width of the Piemont- Liguria (PL) Ocean, known as the Alpine Tethys together with the Valais Basin. We use a regional tectonic reconstruction of 15 the Western Mediterranean-Alpine area, implemented into a global plate motion model with lithospheric deformation, and 2D thermo-mechanical modelling of the rifting phase to test our kinematic reconstructions for geodynamic consistency. Our model fits well with independent datasets (i.e. ages of syn-rift sediments, rift-related fault activity and mafic rocks) and shows that the PL Basin opened in four stages: (1) Rifting of the proximal continental margin in Early Jurassic (200-180 Ma), (2) Hyper- extension of the distal margin in Early-Middle Jurassic (180-165 Ma), (3) Ocean-Continent Transition (OCT) formation with 20 mantle exhumation and MORB-type magmatism in Middle-Late Jurassic (165-154 Ma), (4) Break-up and “mature” oceanic spreading mostly in Late Jurassic (154-145 Ma).
    [Show full text]
  • Field Trip - Alps 2013
    Student paper Field trip - Alps 2013 Evolution of the Penninic nappes - geometry & P-T-t history Kevin Urhahn Abstract Continental collision during alpine orogeny entailed a thrust and fold belt system. The Penninic nappes are one of the major thrust sheet systems in the internal Alps. Extensive seismic researches (NFP20,...) and geological windows (Tauern-window, Engadin-window, Rechnitz-window), as well as a range of outcrops lead to an improved understanding about the nappe architecture of the Penninic system. This paper deals with the shape, structure and composition of the Penninic nappes. Furthermore, the P-T-t history1 of the Penninic nappes during the alpine orogeny, from the Cretaceous until the Oligocene, will be discussed. 1 The P-T-t history of the Penninic nappes is not completely covered in this paper. The second part, of the last evolution of the Alpine orogeny, from Oligocene until today is covered by Daniel Finken. 1. Introduction The Penninic can be subdivided into three partitions which are distinguishable by their depositional environment (PFIFFNER 2010). The depositional environments are situated between the continental margin of Europe and the Adriatic continent (MAXELON et al. 2005). The Sediments of the Valais-trough (mostly Bündnerschists) where deposited onto a thin continental crust and are summarized to the Lower Penninic nappes (PFIFFNER 2010). The Middle Penninic nappes are comprised of sediments of the Briançon-micro-continent. The rock compositions of the Lower- (Simano-, Adula- and Antigori-nappe) and Middle- Penninic nappes (Klippen-nappe) encompass Mesozoic to Cenozoic sediments, which are sheared off from their crystalline basement. Additionally crystalline basement form separate nappe stacks (PFIFFNER 2010).
    [Show full text]
  • Paleotectonic Evolution of the Central and Western Alps
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 71, PP. 843-908, 14 FIGS.. 2 PLS. JUNE 1960 PALEOTECTONIC EVOLUTION OF THE CENTRAL AND WESTERN ALPS BY RUDOLF TRUMPY ABSTRACT This paper deals with the general features of Mesozoic and Tertiary rock sequences and paleogeography in the Alps. It seeks to outline the paleotectonic significance of the rocks and to discuss the structural evolution of the Alpine geosyncline up to the main deformation, with special reference to the sector between the rivers Rhine and Durance. Accent is placed on the relative independence of Alpine structures involving the pre-Triassic basement rocks and of cover nappes consisting only of Mesozoic and Tertiary formations. Normal shallow-water deposits of platform or miogeosynclinal type were laid down over the whole area before eugeosynclinal conditions set in. The typical eugeosynclinal sediments in the central, Penninic belt of the Alps are the Schistes lustres and Bundner- schiefer, with sills and submarine lava flows of basic volcanic rocks (ophiolites). Before metamorphism they consisted mainly of shales and of impure arenaceous and argillaceous limestones. The bathymetric environment of radiolarian cherts and associated rocks is examined, and their deep-water origin is upheld for the Alpine occurrences. Marine polygenic breccias are characteristic of geosynclinal slopes (commonly fault scarps) and not of a particular depth zone. The Alpine Flysch is a particularly significant sediment. Flysch is a thick marine deposit of predominantly detrital rocks, in part turbidites, generally without volcanic rocks, and laid down during compressional deformation of the geosyncline. Of the many different kinds of Flysch some represent transitions to either Bundnerschiefer or Molasse.
    [Show full text]
  • New Aspects on the Timing of Deformation Along the South
    Originally published as: Bachmann, R., Glodny, J., Oncken, O., Seifert, W. (2009): Abandonment of the South Penninic-Austroalpine palaeosubduction zone, Central Alps, and shift from subduction erosion to accretion: constraints from Rb/Sr geochronology. - Journal of the Geological Society London, 166, 2, 217-231 DOI: 10.1144/0016-76492008-024. Abandonment of the South Penninic-Austroalpine palaeo-subduction zone, Central Alps, and shift from subduction erosion to accretion: constraints from Rb/Sr geochronology Raik Bachmann Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany. [email protected] Present address: Horizon Energy Partners, Prinses Margrietplantsoen 81, 2595 BR The Hague, The Netherlands [email protected] Johannes Glodny Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany, [email protected] Onno Oncken Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany, [email protected] Wolfgang Seifert Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany, [email protected] Corresponding author: Raik Bachmann 1 Abstract We present new age data for the evolution of the suture zone between lower-plate South Penninic and upper-plate Austroalpine units in the Central European Alps. Rb/Sr deformation ages for mylonitized rocks of the South Penninic palaeo-subduction mélange and for deformed Austroalpine basement (Eastern Switzerland) shed light on the pre-Alpine and Alpine deformation history along the suture, as well as on syn-subduction interplate mass transfer. Rb/Sr age data define two age groups. The first group reflects pre-Alpine events within the upper plate basement, with varying degree of resetting by subsequent Alpine overprints. The second group marks the waning of subduction-related deformation along the South Penninic-Austroalpine suture zone, at around 50 Ma, and termination at ~47 Ma.
    [Show full text]
  • Dating the Tethyan Ocean in the Western Alps with Radiolarite
    Dating the Tethyan Ocean in the Western Alps with radiolarite pebbles from synorogenic Oligocene molasse basins (southeast France) Fabrice Cordey, Pierre Tricart, Stéphane Guillot, Stéphane Schwartz To cite this version: Fabrice Cordey, Pierre Tricart, Stéphane Guillot, Stéphane Schwartz. Dating the Tethyan Ocean in the Western Alps with radiolarite pebbles from synorogenic Oligocene molasse basins (southeast France). Swiss Journal of Geosciences, Springer, 2012, 105 (1), pp.39-48. 10.1007/s00015-012-0090-8. hal-02178343 HAL Id: hal-02178343 https://hal.archives-ouvertes.fr/hal-02178343 Submitted on 30 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Dating the Tethyan ocean in the Western Alps with radiolarite pebbles from 2 synorogenic Oligocene molasse basins (southeast France) 3 4 5 Running title: Radiolarite pebbles from Alpine Oligocene molasses 6 7 8 Fabrice Cordey1*, Pierre Tricart2, Stéphane Guillot2, Stéphane Schwartz2 9 10 11 12 1Département des Sciences de la Terre, CNRS UMR 5276 Laboratoire de Géologie de Lyon, 13 Université Lyon 1, 69622 Villeurbanne, France 14 2IsTerre, CNRS, Université de Grenoble I, 38041 Grenoble, cedex 9, France 15 16 *corresponding author: [email protected] 17 18 19 20 21 22 23 Keywords: Western Alps, radiolarite, Jurassic, molasse, Oligocene, subduction wedge.
    [Show full text]
  • Engadin Window) Near Ischgl/Tyrol
    MITT. ÖSTERR. MINER. GES. 163 (2017) WALKING ON JURASSIC OCEAN FLOOR AT THE IDALPE (ENGADIN WINDOW) NEAR ISCHGL/TYROL Karl Krainer1 & Peter Tropper2 1Institute of Geology, University of Innsbruck, Innrain 52f, A-6020 Innsbruck 2Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52f, A-6020 Innsbruck Introduction In the Lower Engadine Window rocks of the Penninic Unit are exposed which originally were formed in the Piemont-Ligurian Ocean, the Iberian-Brianconnais microcontinent and the Valais Ocean. The Penninic rocks of the Lower Engadi- ne Window are overlain by Austrolpine nappes: the Silvretta Metamorphic Com- plex (Silvretta-Seckau Nappe System sensu SCHmiD et al. 2004) in the north, the Stubai-Ötztal Metamorphic Complex (Ötztal-Bundschuh Nappe System sensu SCHmiD et al. 2004) in the southeast and east, and the Engadine Dolomites. The Penninic rocks of the Lower Engadine Window are characterized by a com- plex tectonic structure and can be divided into three nappe systems (SCHmiD et al., 2004; GRubeR et al., 2010; see also Tollmann, 1977; ObeRHauseR, 1980): a.) Lower Penninic Nappes including rocks of the former Valais Ocean (Cre- taceous – Paleogene) b.) Middle Penninic Nappes composed of rocks of the Iberia-Brianconnais microcontinent, and c.) Upper Penninic Nappe, composed of rocks oft he former Piemont-Ligu- rian Ocean. Lower Penninic Nappes include the Zone of Pfunds and Zone of Roz – Cham- patsch – Pezid. The dominant rocks are different types of calcareous mica schists and „Bündnerschiefer“. Locally fragments of the oceanic crust and upper mantle (ophiolites) are intecalated. The Middle Penninic Nappes include the Fimber-Zone and Zone of Prutz – Ramosch.
    [Show full text]
  • Kinematics and Extent of the Piemont–Liguria Basin – Implications for Subduction Processes in the Alps
    Solid Earth, 12, 885–913, 2021 https://doi.org/10.5194/se-12-885-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps Eline Le Breton1, Sascha Brune2,3, Kamil Ustaszewski4, Sabin Zahirovic5, Maria Seton5, and R. Dietmar Müller5 1Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany 2Geodynamic Modelling Section, German Research Centre for Geosciences, GFZ Potsdam, Potsdam, Germany 3Institute of Geosciences, University of Potsdam, Potsdam, Germany 4Institute for Geological Sciences, Friedrich-Schiller-Universität Jena, Jena, Germany 5EarthByte Group, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia Correspondence: Eline Le Breton ([email protected]) Received: 18 September 2020 – Discussion started: 8 October 2020 Revised: 3 March 2021 – Accepted: 5 March 2021 – Published: 21 April 2021 Abstract. Assessing the size of a former ocean of which only 84–35 Ma, 260 km between 35–0 Ma), which greatly exceeds remnants are found in mountain belts is challenging but cru- the width of the ocean. We suggest that at least 63 % of the cial to understanding subduction and exhumation processes. subducted and accreted material was highly thinned conti- Here we present new constraints on the opening and width nental lithosphere and most of the Alpine Tethys units ex- of the Piemont–Liguria (PL) Ocean, known as the Alpine humed today derived from OCT zones. Our work highlights Tethys together with the Valais Basin. We use a regional tec- the significant proportion of distal rifted continental margins tonic reconstruction of the Western Mediterranean–Alpine involved in subduction and exhumation processes and pro- area, implemented into a global plate motion model with vides quantitative estimates for future geodynamic modeling lithospheric deformation, and 2D thermo-mechanical mod- and a better understanding of the Alpine Orogeny.
    [Show full text]
  • Late Jurassic to Eocene Palaeogeography and Geodynamic Evolution of the Eastern Alps
    © Österreichische Geologische Gesellschaft/Austria; download unter www.geol-ges.at/ und www.biologiezentrum.at Mi-: ür-ile-r. Gfi'.ü. Os. ISSN 02hl 7-li\s 92i;!jW; /:) 04 W^r J'i 2000 Late Jurassic to Eocene Palaeogeography and Geodynamic Evolution of the Eastern Alps PETER FAUPL1 & MICHAEL WAGREICH1 4 Figures and 1 Table Abstract The Mesozoic orogeny of the Eastern Alps is controlled by subduction, collision and closure of two oceanic domains of the Western Tethyan realm: The Late Jurassic to Early Cretaceous closure of a Triassic Tethys Ocean, probably connected to the Vardar Ocean in the Hellenides, and the Mid-Cretaceous to Early Tertiary closure of the Penninic Ocean to the north of the Austroalpine unit. Based on facies analysis and provenance studies, the evolution of the major palaeogeographic domains is discussed. Ophiolitic detritus gives insights into the history of active margins and collisional events. Synorogenic sediments within the Northern Calcaerous Alps from the Late Jurassic and Early Cretaceous onwards record shortening within the Austroalpine domain, due to suturing in the south and the onset of subduction of the Penninic Ocean in the north. Transtension following Mid-Cretaceous compression led to the subsidence of Late Cretaceous Gosau Basins. Tectonic erosion of the accretionary structure at the leading margin of the Austroalpine plate resulted in deformation and deepening within the Northern Calcareous Alps. Cretaceous to Early Tertiary deep-water deposition ended in a final stage of compression, a consequence of the closure of the Penninic Ocean. Introduction troalpine zone is subdivided into a Lower, Middle and Upper Austroalpine nappe complex.
    [Show full text]
  • Opening and Closure of the Penninic Ocean Basin at the Alpine-Carpathian Transition: New Structural Data and U-Pb Zircon Ages
    Geophysical Research Abstracts Vol. 21, EGU2019-3175, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license. Opening and closure of the Penninic ocean basin at the Alpine-Carpathian transition: new structural data and U-Pb zircon ages Franz Neubauer (1), Xiaoming Liu (2), Shuyun Cao (1,3), Yunpemg Dong (2), and Isabella Merschdorf (1) (1) University of Salzburg, Dept. Geography and Geology, Salzburg, Austria ([email protected]), (2) State Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an, China, (3) State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan, China In Alps, ophiolite formation has been poorly correlated with formation of adjacent passive margins, and uncertain- ties in mode of symmetric vs. asymmetric rifting and timing of passive margin formation and oceanic spreading exist. The Rechnitz window group of the Eastern Alps exposes Penninic Mesozoic oceanic and metasedimentary syn- and postrift continental margin successions along the South Burgenland basement High/Bohemian Spur, an inherited crustal-scale structure at the Alpine-Carpathian-Pannonian transition. In the Rechnitz window group, two tectonic units are distinguished, the Schlaining unit with ophiolites, which show a Paleogene history of subduction, and the structurally underlying Kösczeg unit with distal passive continen- tal margin successions indicated by their richness of continent-derived siliciclastic material. A blueschist with a plagiogranite protolith of the Schlaining yields a weighted mean zircon 206Pb/238U age of 142.5±2.8 Ma (earliest Cretaceous) interpreted to represent the age of oceanic spreading . The age is younger than the 166 to 148 Ma-ages of the ophiolites in the main Piemontais-Ligurian oceanic basin and older than the ca.
    [Show full text]
  • GEOLOGICAL EXCURSION the WESTERN ALPS Field Guidebook
    Orléans University-Institute of Geology and Geophysics Cooperation program GEOLOGICAL EXCURSION IN THE WESTERN ALPS June 22 -July 2, 2018 Field guidebook excursion leaders: M. Faure & Y. Chen Monviso from Agnel Pass Orléans University-Peking University Cooperation program 1 A GEOLOGICAL EXCURSION IN THE WESTERN ALPS Field guide book 2018 M. Faure, Y. Chen PART I: GEOLOGICAL OUTLINE OF THE FRENCH-ITALIAN ALPS INTRODUCTION 1. The Alpine system in Europe. The European continent was progressively edificated by several orogenic events since the Archean (Fig. 1). Paleoproterozoic belts are restricted to Scandinavia. A Neoproterozoic orogen, called the Cadomian Belt, from the name of the Caen city in Normandy, and formed around 600 Ma, is observed in the northern part of the Massif Armoricain and also in Great Britain, in Spain, and East Europe. During the Paleozoic, three collisional belts are recognized, namely i) in western Scandinavia, Scotland, Ireland, Wales and Britain, the Caledonian Belt results of the collision between North America (or Laurentia) and Scandinavia (or Baltica) that gave rise to the Laurussia continent in Silurian; ii) the Variscan (or Hercynian) Belt that develops in Middle Europe from SW Iberia to Poland, results of the collision between Laurussia and Gondwana in Devonian and Carboniferous; iii) the Urals formed by the collision between Laurussia and Siberia in Carboniferous. As the result of the Paleozoic orogenies, in Permian, Europe and Africa belonged to the Pangea megacontinent. Fig. 1: Tectonic map of Europe During the Cenozoic, several orogenic belts are recognized in southern Europe (Fig. 1). The Pyrénées are due to the Eocene closure of a continental rift opened in Mesozoic between France and Iberia (= Spain and Portugal).
    [Show full text]
  • Structure and Tectonic Evolution Penninic Cover
    001,2-94021 0I I020231 -16 $ 1.50 + 0.2010 Eclogaegeol. Helv.94 (2001)237-252 EirkhäuserVerlag, Basel, 2001 Penniniccover nappesin the Prättigauhalf-window (EasternSwitzerland):Structure and tectonicevolution Manrus Wenl'2 & Nrr<olaus FRorrzi{ErM1'3 Key words: Alps, Penninic, Bündnerschiefer,Falknis nappe,Prättigau half-window, structural geology,Alpine tectonics ZUSAMMENFASSUNG ABSTRACT Die Sedimentabfolgeder zum Valaisan gehörenden Grava-Decke im Prätti- The sedimentary sequence of the Grava nappe (Valaisan) in the Prättigau gau-Halbfensterder Ostschweizbesteht aus kretazischenSchiefern (Bündner- half-window of easternSwitzerland consistsof Cretaceouscalcschists (,,8ünd- schiefer) und spätkretazisch/alttertiärem Flysch. Diese Gesteine wurden durch nerschiefer") and Late CretaceouslEarly Tertiary flysch. It records the follow- die folgenden alpinen Deformationsvorgänge überprägt: (D1a) Abscherung ing stagesof Alpine deformation: (D1a) d6collement of the sediment cover of der Sedimentbedeckungeiner südwärts abtauchendenLithosphärenplatte und a southward-subductedlithospheric slab and accretion of this cover as a hin- Akkretion der abgeschertenSerien als Duplex an der Basis des Orogenkeils, terland-dippingduplex at the baseof the orogenic wedge,beginning around 50 etrva 50 Ma; (D1b) lokale Verfaltung der D1a-Strukturen; (D2) top-SE- Ma; (D1b) local refolding of D1a structures; (D2) rop-SE shearing and Scherung und "Rückfaltung" in einem extensionalenRegime, zwischen35 und "backfolding" in an exlensionalregime, between 35 and 30 Ma; (D3)
    [Show full text]
  • The Italian Alps: a Journey Across Two Centuries of Alpine Geology
    The Italian Alps: a journey across two centuries of Alpine geology Giorgio Vittorio Dal Piaz Journal of the Virtual Explorer, Electronic Edition, ISSN 1441-8142, volume 36, paper 8 In: (Eds.) Marco Beltrando, Angelo Peccerillo, Massimo Mattei, Sandro Conticelli, and Carlo Doglioni, The Geology of Italy: tectonics and life along plate margins, 2010. Download from: http://virtualexplorer.com.au/article/2010/234/a-journey-across-two-centuries-of-alpine- geology Click http://virtualexplorer.com.au/subscribe/ to subscribe to the Journal of the Virtual Explorer. Email [email protected] to contact a member of the Virtual Explorer team. Copyright is shared by The Virtual Explorer Pty Ltd with authors of individual contributions. Individual authors may use a single figure and/or a table and/or a brief paragraph or two of text in a subsequent work, provided this work is of a scientific nature, and intended for use in a learned journal, book or other peer reviewed publication. Copies of this article may be made in unlimited numbers for use in a classroom, to further education and science. The Virtual Explorer Pty Ltd is a scientific publisher and intends that appropriate professional standards be met in any of its publications. Journal of the Virtual Explorer, 2010 Volume 36 Paper 8 http://virtualexplorer.com.au/ The Italian Alps: a journey across two centuries of Alpine geology Giorgio Vittorio Dal Piaz University of Padua, Via Meneghini 10, 35122 Padova, Italy. Email: [email protected] Abstract: This review is first and mainly an historical journey across two centuries of Alpine geology, from the early fixist views to the mobilist revolutions produced by the nappe theory and, later, by the global theory of plate tectonics, including the important developments of the last decade.
    [Show full text]