Evolution of the Penninic Distal Domain

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of the Penninic Distal Domain EVOLUTION OF THE PENNINIC DISTAL DOMAIN By Sebastian Thronberens (283135) INHALTSVERZEICHNIS 1. Introduction .................................................................................................................................................... 3 1.1. Penninic Distal Domain .......................................................................................................................... 3 1.2. Depositinal Evolution ............................................................................................................................. 4 2. Tectonic Evolution .......................................................................................................................................... 6 3. Stratigraphy .................................................................................................................................................... 9 3.1. Valais-Trough ......................................................................................................................................... 9 3.2. Brianҫonnais terrane ............................................................................................................................. 9 3.3. Piemont-Ocean .................................................................................................................................... 10 4. Conclusion .................................................................................................................................................... 11 References ............................................................................................................................................................ 12 1. INTRODUCTION The Penninics constitute the only alpine tectonic unit extending along the whole alpine mountain belt. In the eastern Alps the penninic Rhenodanubian Flysh strikes from E to W. Further to the south the Tauern Window and the further west located Engadiner Window expose penninic units through Austroalpine nappes. In the central Alps the Penninics generally strike from NE to SW and build up the Prealps, separated geographically from the central penninic units and are located between the Molasse Basin and the Helvetics. In the western Alps the Penninics extend with N to S striking. FIG 1 TECTONIC MAP OF THE ALPS (SCHMID, FÜGENSCHUH ET AL. 2004). The Penninic domains derive from their paleogeographic depositional environments (Fig 1) and are separated into the lower Penninic nappes of the Valais-Trough, the middle Penninic Nappes of the Brianҫonnais domain and the upper Penninic nappes comprising depositions of the former Piemont- Ocean (Pfiffner et al. 2010).The stratigraphic units of the distal domains of the Piemont-Ocean and the Valais-Trough imply a relatively similar lithological sequence, which will be clarified in the ongoing chapters. 1.1. PENNINIC DISTAL DOMAIN The whole orogeny of the Alps and therefore the evolution of the penninic distal domain are a product of a classical Wilson cycle that started with the opening of the alpine Tethys between Eurasia in the north of Africa and Adria in Mesozoic times (Kissling 2008). It began with the breakup of the Pangaea Supercontinent which last from Triassic to early Cretaceous times. At the border of Jurassic to Triassic time. The alpine Tethys is subdivided in three large ocean basins along a large spreading zone, which also contains oblique striking transform faulting. FIG 2 PALGEOGRAPHICAL RECONSTRUCTION FOR THE LATE CRETACEOUS (SCHMID, FÜGENSCHUH ET AL. 2004). One of those transform faults strikes NW to SE along the western border of the former European continent and separates the Brianҫonnais and Corsica-Sardinia domain from the Iberian microplate, situated in the west (after a model from Frisch 1993). The Ligurian-Piemont- Ocean opens in the western part of the ridge, while the eastern part consists of the Penninic-Ocean. But depending on the literature the Penninic and Piemont-Ocean are expressions for the same domain and will be called the Piemont-Ocean in this paper. The alpine Tethys Ocean separates the European and the Adriatic continents. The Corsica-Sardinia and the Brianҫonnais microcontinents are located at the southern end of the European continent. In the south-east the Austroalpine is separated from the Brianҫonnais terrane by the Penninic Ocean (Fig 2). In the north of the Brianҫonnais domain, at the distal area of the European margin, the Valais-Trough is located, which rifting phase started during the late Jurassic, followed by spreading which is suggested to have lasted from Barremo-Aptian to Albo-Cenomanian with an aperture of 200 km for each phase (Stampfli and Mosar 1998). The rotation of Iberia from Turono to Senonian time is thought to have leaded to the closure of the Valais Ocean. 1.2. DEPOSITIONAL EVOLUTION In the Turonian time the distal domains of the Penninicum were located in deep oceanic areas, such as the Valais-Trough and the Piemont-Ocean. Even the Brainconnais continent seemed to be flooded in a shallow marine (pelagic) environment. Subduction under the Adriatic plate was certainly taking place. Induced by the subduction process, first alpine nappes were uplifted. Even the southern parts of the Piemont-Ocean have been concerned by the subduction. The erosion of the uplifted alpine nappes caused embankments into the Piemont-Ocean from south eastern direction, leaded to the deposition of the Gets-, Simme- and Arblatsch-Flysch. Those deposition set up the southern Penninic Flysch basin. The Brianconnais domain had pelagic conditions at that time. This was proven by the deposition of pelagic marly limestones at that time (source). The Valais-Trough was already filled with the Jurassic and Cretaceous Bündnerschiefer. During the Turonian the Prättigau Flysch started to deposit. From the northeast the Rhenodanubian Flysch got embanked into the basin. FIG 3 CROSS-SECTION THROUGH THE PREALPINE KLIPPEN NAPPES (PFIFFNER ET AL. 2010). Until the Eocene the subduction under the Adriatic continent propagated northward. The first distal european margin was subducted in such depth that it metamorphism processes took place. The Penninic Valais-Trough was part of one large basin complex located between the northern alpine foreland and the central Alps at that time. The basin comprised also the Helvetics and the Dauphinois and was a typical foreland basin created by the crustal bent caused by the overthrustig Adriatic continent, which also uplifted the alpine foreland and induced its erosion. Basin infill was delivered from south-western Alps creating the Niesen Flysch, but also from the central part of the Alps, depositing the Prättigau Flysch. The foreland basin is defined as the North Penninic Flysch basin. FIG 4 CROSS-SECTION OF WESTERN ALPS AND A SIMPLIFIED PALINSPASTIC MODEL (STAMPFLI & MOSAR 1998). In the Oligocene the Penninic domains were subducted and developed as nappe stack when first back thrusting induced by the continent-continent collision of the European and the African continent caused uplift of the nappe stacks. One part of the Penninic domain, comprising the Gets-, Simme- and Arblatsch Flysch got detached on an Mesozoic detachment horizon and was shifted northwards generating the Klippen nappe (Fig 3), while the other Penninic units got deeply subducted and were highly metamorphic overprinted. 2. TECTONIC EVOLUTION The Penninic domains are results of rift tectonics in the Alpine Tethys which seem to be related to the Pangaea break-up and the opening of the central Atlantic and might have started in late Triassic age. (Schmid et al. 1987; Hunziker et al. 1992). During the Jurassic the Alpine Tethys developed into subsiding rim basins with thinned cold lithosphere. Rifting, like the one causing the Valais- and Piemont-Ocean, separated the rim basins. The absolute beginning of this rifting phase is suggested to have occurred during the Sinemurian, followed by a thermal uplift phase in the Toarcian (Favre and Stampfli, 1992). Then a phase of seafloor spreading succeeded in the early-middle Jurassic (Bill et al. 1997). Except from the mentioned rim basins, thermal subsidence during the Bajocian led to progradation of carbonate platforms (Stampfli, 1998). So the former rift shoulders, including even the Brianҫonnais domain got sinked submarine as a result. In the late Jurassic the Iberian plate got separated from Newfoundland due to Atlantic rifting, what caused a rifting between France and the Brianҫonnais domain, the Valais rift, which is thought to have opened 200-350 km from late Jurassic to the Aptian (Stampfli, 1998). Thermal subsidence is suggested to have started in the Valanginian by Gradstein et al (1995). Further spreading is thought to have occurred from Barremo-Aptian to the Albo-Cenomanian and a closure of the Valais-Ocean during the Albian. Stampfli (1998) suggests an opening of the Valais-Ocean of 200 km during rifting and the same amount during the spreading phase. The closure was induced by the rotation of Iberia from Turono-Senonian time might have last till Lutetian time, proofed by age dating of sediment influx (Homewood, 1983). The following subduction caused the Valais domain to become the lower Penninic suture zone which got underplated below the northern part of the Brianҫonnais domain probably during the middle Eocene. The Brianҫonnais domain contains a crystalline basin which is set up of the Suretta and the Tambo nappes (Fig 4). Whereas the Suretta nappe is of pre-Alpine age and derived from an early Permian subvolcanic intrusion
Recommended publications
  • Brooklyn College and Graduate School of the City University of NY, Brooklyn, NY 11210 and Northeastern Science Foundation Affiliated with Brooklyn College, CUNY, P.O
    FLYSCH AND MOLASSE OF THE CLASSICAL TACONIC AND ACADIAN OROGENIES: MODELS FOR SUBSURFACE RESERVOIR SETTINGS GERALD M. FRIEDMAN Brooklyn College and Graduate School of the City University of NY, Brooklyn, NY 11210 and Northeastern Science Foundation affiliated with Brooklyn College, CUNY, P.O. Box 746, Troy, NY 12181 ABSTRACT This field trip will examine classical sections of the Appalachians including Cambro-Ordovician basin-margin and basin-slope facies (flysch) of the Taconics and braided and meandering stteam deposits (molasse) of the Catskills. The deep­ water settings are part of the Taconic sequence. These rocks include massive sandstones of excellent reservoir quality that serve as models for oil and gas exploration. With their feet, participants may straddle the classical Logan's (or Emmon 's) line thrust plane. The stream deposits are :Middle to Upper Devonian rocks of the Catskill Mountains which resulted from the Acadian Orogeny, where the world's oldest and largest freshwater clams can be found in the world's oldest back-swamp fluvial facies. These fluvial deposits make excellent models for comparable subsurface reservoir settings. INTRODUCTION This trip will be in two parts: (1) a field study of deep-water facies (flysch) of the Taconics, and (2) a field study of braided- and meandering-stream deposits (molasse) of the Catskills. The rocks of the Taconics have been debated for more than 150 years and need to be explained in detail before the field stops make sense to the uninitiated. Therefore several pages of background on these deposits precede the itinera.ry. The Catskills, however, do not need this kind of orientation, hence after the Taconics (flysch) itinerary, the field stops for the Catskills follow immediately without an insertion of background informa­ tion.
    [Show full text]
  • Geological Excursion BASE-Line Earth
    Geological Excursion BASE-LiNE Earth (Graz Paleozoic, Geopark Karavanke, Austria) 7.6. – 9.6. 2016 Route: 1. Day: Graz Paleozoic in the vicinity of Graz. Devonian Limestone with brachiopods. Bus transfer to Bad Eisenkappel. 2. Day: Visit of Geopark Center in Bad Eisenkappel. Walk on Hochobir (2.139 m) – Triassic carbonates. 3. Day: Bus transfer to Mezica (Slo) – visit of lead and zinc mine (Triassic carbonates). Transfer back to Graz. CONTENT Route: ................................................................................................................................... 1 Graz Paleozoic ...................................................................................................................... 2 Mesozoic of Northern Karavanke .......................................................................................... 6 Linking geology between the Geoparks Carnic and Karavanke Alps across the Periadriatic Line ....................................................................................................................................... 9 I: Introduction ..................................................................................................................... 9 II. Tectonic subdivision and correlation .............................................................................10 Geodynamic evolution ...................................................................................................16 Alpine history in eight steps ...........................................................................................17
    [Show full text]
  • 1 Response to Review #1 by D. J. J. Van Hinsbergen We Thank Douwe
    Response to Review #1 by D. J. J. van Hinsbergen We thank Douwe J.J. van Hinsbergen for his review, which highlights the active debate on this topic, especially for the motion of Iberia. Their reconstruction published in 2020 is an amazing compilation of geological and kinematical data for the entire Mediterranean realm. It is not our aim to propose such a reconstruction again. Our aim is to study the detailed kinematics of opening of the Piemont-Liguria Ocean and to quantify precisely the former extent of the PL Ocean and its rifted margins between Europe and Northern Adria. We however disagree with their model for the motion of Iberia and Sardinia as it implies more than 500 km of convergence between Iberia and Sardinia. Instead, we present here an alternative scenario and show that this scenario is in good agreement with records of rifting and subduction in the Alps and that it is thermo-mechanically viable. We do believe that our work provides new quantitative estimates and alternative view that are useful for the scientific debate to better understand the geodynamic evolution of this area. I find it difficult, however, to see why this paper would be better than previous attempts to restore the Mediterranean region for the following reasons. 1. The authors provide no reason in their introduction why they found it necessary to make a new reconstruction and how their reconstruction systematically differs from previous attempts, or why they expect fundamentally different conclusions for the evolution of the Alpine Tethys with their approach. Our model brings new quantitative estimates on the kinematic of opening of the PL Ocean, its former spatial extent including the width of the hyper-extended margins, which is new and crucial to understand the geological and geodynamic processes of subduction and exhumation in the Alps, as well as for rifting processes along magma-poor rifted margins.
    [Show full text]
  • GSA Bulletin: Magnetostratigraphic Constraints on Relationships
    Magnetostratigraphic constraints on relationships between evolution of the central Swiss Molasse basin and Alpine orogenic events F. Schlunegger* Geologisches Institut, Universität Bern, Baltzerstrasse 1, CH-3012 Bern, Switzerland A. Matter } D. W. Burbank Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-0740 E. M. Klaper Geologisches Institut, Universität Bern, Baltzerstrasse 1, CH-3012 Bern, Switzerland ABSTRACT thrusting along the eastern Insubric Line, sedimentary basins than in the adjacent fold- where >10 km of vertical displacement is inter- and-thrust belt, abundant stratigraphic research Magnetostratigraphic chronologies, to- preted. During the same time span, the Alpine has been done in foreland basins to assess the gether with lithostratigraphic, sedimentologi- wedge propagated forward along the basal evolutionary processes of the orogenic thrust cal, and petrological data enable detailed re- Alpine thrust, as indicated by the coarsening- wedge (Jordan et al., 1988; Burbank et al., 1986; construction of the Oligocene to Miocene and thickening-upward megasequence and by Burbank et al., 1992; Colombo and Vergés, history of the North Alpine foreland basin in occurrence of bajada fans derived from the 1992). Despite a more complete and better dated relation to specific orogenic events and ex- Alpine border. The end of this tectonic event is record within a foreland, the correlation of sedi- humation of the Alps. The Molasse of the study marked by a basinwide unconformity, inter- mentary events recorded in the foreland with tec- area was deposited by three major dispersal preted to have resulted from crustal rebound tonic events in the adjacent hinterland is com- systems (Rigi, Höhronen, Napf).
    [Show full text]
  • Kinematics and Extent of the Piemont-Liguria Basin
    https://doi.org/10.5194/se-2020-161 Preprint. Discussion started: 8 October 2020 c Author(s) 2020. CC BY 4.0 License. Kinematics and extent of the Piemont-Liguria Basin – implications for subduction processes in the Alps Eline Le Breton1, Sascha Brune2,3, Kamil Ustaszewski4, Sabin Zahirovic5, Maria Seton5, R. Dietmar Müller5 5 1Department of Earth Sciences, Freie Universität Berlin, Germany 2Geodynamic Modelling Section, German Research Centre for Geosciences, GFZ Potsdam, Germany 3Institute of Geosciences, University of Potsdam, Potsdam, Germany 4Institute for Geological Sciences, Friedrich-Schiller-Universität Jena, Germany 10 5EarthByte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia Correspondence to: Eline Le Breton ([email protected]) Abstract. Assessing the size of a former ocean, of which only remnants are found in mountain belts, is challenging but crucial to understand subduction and exhumation processes. Here we present new constraints on the opening and width of the Piemont- Liguria (PL) Ocean, known as the Alpine Tethys together with the Valais Basin. We use a regional tectonic reconstruction of 15 the Western Mediterranean-Alpine area, implemented into a global plate motion model with lithospheric deformation, and 2D thermo-mechanical modelling of the rifting phase to test our kinematic reconstructions for geodynamic consistency. Our model fits well with independent datasets (i.e. ages of syn-rift sediments, rift-related fault activity and mafic rocks) and shows that the PL Basin opened in four stages: (1) Rifting of the proximal continental margin in Early Jurassic (200-180 Ma), (2) Hyper- extension of the distal margin in Early-Middle Jurassic (180-165 Ma), (3) Ocean-Continent Transition (OCT) formation with 20 mantle exhumation and MORB-type magmatism in Middle-Late Jurassic (165-154 Ma), (4) Break-up and “mature” oceanic spreading mostly in Late Jurassic (154-145 Ma).
    [Show full text]
  • Field Trip - Alps 2013
    Student paper Field trip - Alps 2013 Evolution of the Penninic nappes - geometry & P-T-t history Kevin Urhahn Abstract Continental collision during alpine orogeny entailed a thrust and fold belt system. The Penninic nappes are one of the major thrust sheet systems in the internal Alps. Extensive seismic researches (NFP20,...) and geological windows (Tauern-window, Engadin-window, Rechnitz-window), as well as a range of outcrops lead to an improved understanding about the nappe architecture of the Penninic system. This paper deals with the shape, structure and composition of the Penninic nappes. Furthermore, the P-T-t history1 of the Penninic nappes during the alpine orogeny, from the Cretaceous until the Oligocene, will be discussed. 1 The P-T-t history of the Penninic nappes is not completely covered in this paper. The second part, of the last evolution of the Alpine orogeny, from Oligocene until today is covered by Daniel Finken. 1. Introduction The Penninic can be subdivided into three partitions which are distinguishable by their depositional environment (PFIFFNER 2010). The depositional environments are situated between the continental margin of Europe and the Adriatic continent (MAXELON et al. 2005). The Sediments of the Valais-trough (mostly Bündnerschists) where deposited onto a thin continental crust and are summarized to the Lower Penninic nappes (PFIFFNER 2010). The Middle Penninic nappes are comprised of sediments of the Briançon-micro-continent. The rock compositions of the Lower- (Simano-, Adula- and Antigori-nappe) and Middle- Penninic nappes (Klippen-nappe) encompass Mesozoic to Cenozoic sediments, which are sheared off from their crystalline basement. Additionally crystalline basement form separate nappe stacks (PFIFFNER 2010).
    [Show full text]
  • Provenance of the Bosnian Flysch
    1661-8726/08/01S031-24 Swiss J. Geosci. 101 (2008) Supplement 1, S31–S54 DOI 10.1007/s00015-008-1291-z Birkhäuser Verlag, Basel, 2008 Provenance of the Bosnian Flysch TAMÁS MIKES 1, 7, *, DOMINIK CHRIST 1, 8, RÜDIGER PETRI 1, ISTVÁN DUNKL1, DIRK FREI 2, MÁRIA BÁLDI-BEKE 3, JOACHIM REITNER 4, KLAUS WEMMER 5, HAZIM HRVATOVIć 6 & HILMAR VON EYNAttEN 1 Key words: Dinarides, Adriatic plate, ophiolite, flysch, Cretaceous, provenance, geochronology, biostratigraphy, mineral chemistry ABSTRACT Sandwiched between the Adriatic Carbonate Platform and the Dinaride olitic thrust sheets and by redeposited elements of coeval Urgonian facies reefs Ophiolite Zone, the Bosnian Flysch forms a c. 3000 m thick, intensely folded grown on the thrust wedge complex. Following mid-Cretaceous deformation stack of Upper Jurassic to Cretaceous mixed carbonate and siliciclastic sedi- and thermal overprint of the Vranduk Formation, the depozone migrated fur- ments in the Dinarides. New petrographic, heavy mineral, zircon U/Pb and ther towards SW and received increasing amounts of redeposited carbonate fission-track data as well as biostratigraphic evidence allow us to reconstruct detritus released from the Adriatic Carbonate Platform margin (Ugar Forma- the palaeogeology of the source areas of the Bosnian Flysch basin in late Me- tion). Subordinate siliciclastic source components indicate changing source sozoic times. Middle Jurassic intraoceanic subduction of the Neotethys was rocks on the upper plate, with ophiolites becoming subordinate. The zone shortly followed by exhumation of the overriding oceanic plate. Trench sedi- of the continental basement previously affected by the Late Jurassic–Early mentation was controlled by a dual sediment supply from the sub-ophiolitic Cretaceous thermal imprint has been removed; instead, the basement mostly high-grade metamorphic soles and from the distal continental margin of the supplied detritus with a wide range of pre-Jurassic cooling ages.
    [Show full text]
  • Paleotectonic Evolution of the Central and Western Alps
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 71, PP. 843-908, 14 FIGS.. 2 PLS. JUNE 1960 PALEOTECTONIC EVOLUTION OF THE CENTRAL AND WESTERN ALPS BY RUDOLF TRUMPY ABSTRACT This paper deals with the general features of Mesozoic and Tertiary rock sequences and paleogeography in the Alps. It seeks to outline the paleotectonic significance of the rocks and to discuss the structural evolution of the Alpine geosyncline up to the main deformation, with special reference to the sector between the rivers Rhine and Durance. Accent is placed on the relative independence of Alpine structures involving the pre-Triassic basement rocks and of cover nappes consisting only of Mesozoic and Tertiary formations. Normal shallow-water deposits of platform or miogeosynclinal type were laid down over the whole area before eugeosynclinal conditions set in. The typical eugeosynclinal sediments in the central, Penninic belt of the Alps are the Schistes lustres and Bundner- schiefer, with sills and submarine lava flows of basic volcanic rocks (ophiolites). Before metamorphism they consisted mainly of shales and of impure arenaceous and argillaceous limestones. The bathymetric environment of radiolarian cherts and associated rocks is examined, and their deep-water origin is upheld for the Alpine occurrences. Marine polygenic breccias are characteristic of geosynclinal slopes (commonly fault scarps) and not of a particular depth zone. The Alpine Flysch is a particularly significant sediment. Flysch is a thick marine deposit of predominantly detrital rocks, in part turbidites, generally without volcanic rocks, and laid down during compressional deformation of the geosyncline. Of the many different kinds of Flysch some represent transitions to either Bundnerschiefer or Molasse.
    [Show full text]
  • New Aspects on the Timing of Deformation Along the South
    Originally published as: Bachmann, R., Glodny, J., Oncken, O., Seifert, W. (2009): Abandonment of the South Penninic-Austroalpine palaeosubduction zone, Central Alps, and shift from subduction erosion to accretion: constraints from Rb/Sr geochronology. - Journal of the Geological Society London, 166, 2, 217-231 DOI: 10.1144/0016-76492008-024. Abandonment of the South Penninic-Austroalpine palaeo-subduction zone, Central Alps, and shift from subduction erosion to accretion: constraints from Rb/Sr geochronology Raik Bachmann Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany. [email protected] Present address: Horizon Energy Partners, Prinses Margrietplantsoen 81, 2595 BR The Hague, The Netherlands [email protected] Johannes Glodny Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany, [email protected] Onno Oncken Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany, [email protected] Wolfgang Seifert Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany, [email protected] Corresponding author: Raik Bachmann 1 Abstract We present new age data for the evolution of the suture zone between lower-plate South Penninic and upper-plate Austroalpine units in the Central European Alps. Rb/Sr deformation ages for mylonitized rocks of the South Penninic palaeo-subduction mélange and for deformed Austroalpine basement (Eastern Switzerland) shed light on the pre-Alpine and Alpine deformation history along the suture, as well as on syn-subduction interplate mass transfer. Rb/Sr age data define two age groups. The first group reflects pre-Alpine events within the upper plate basement, with varying degree of resetting by subsequent Alpine overprints. The second group marks the waning of subduction-related deformation along the South Penninic-Austroalpine suture zone, at around 50 Ma, and termination at ~47 Ma.
    [Show full text]
  • Western Carpathians, Poland)
    Geological Quarterly, 2006, 50 (1): 169–194 Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland) Nestor OSZCZYPKO Oszczypko N. (2006) — Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geol. Quart., 50 (1): 169–194. Warszawa. The Outer Carpathian Basin domain developed in its initial stage as a Jurassic-Early Cretaceous rifted passive margin that faced the east- ern parts of the oceanic Alpine Tethys. Following closure of this oceanic basin during the Late Cretaceous and collision of the Inner Western Carpathian orogenic wedge with the Outer Carpathian passive margin at the Cretaceous-Paleocene transition, the Outer Carpathian Basin domain was transformed into a foreland basin that was progressively scooped out by nappes and thrust sheets. In the pre- and syn-orogenic evolution of the Outer Carpathian basins the following prominent periods can be distinguished: (1) Middle Juras- sic-Early Cretaceous syn-rift opening of basins followed by Early Cretaceous post-rift thermal subsidence, (2) latest Creta- ceous-Paleocene syn-collisional inversion, (3) Late Paleocene to Middle Eocene flexural subsidence and (4) Late Eocene-Early Miocene synorogenic closure of the basins. In the Outer Carpathian domain driving forces of tectonic subsidence were syn-rift and thermal post-rift processes, as well as tectonic loads related to the emplacement of nappes and slab-pull. Similar to other orogenic belts, folding of the Outer Carpathians commenced in their internal parts and progressed in time towards the continental foreland. This process was initi- ated at the end of the Paleocene at the Pieniny Klippen Belt/Magura Basin boundary and was completed during early Burdigalian in the northern part of the Krosno Flysch Basin.
    [Show full text]
  • Dating the Tethyan Ocean in the Western Alps with Radiolarite
    Dating the Tethyan Ocean in the Western Alps with radiolarite pebbles from synorogenic Oligocene molasse basins (southeast France) Fabrice Cordey, Pierre Tricart, Stéphane Guillot, Stéphane Schwartz To cite this version: Fabrice Cordey, Pierre Tricart, Stéphane Guillot, Stéphane Schwartz. Dating the Tethyan Ocean in the Western Alps with radiolarite pebbles from synorogenic Oligocene molasse basins (southeast France). Swiss Journal of Geosciences, Springer, 2012, 105 (1), pp.39-48. 10.1007/s00015-012-0090-8. hal-02178343 HAL Id: hal-02178343 https://hal.archives-ouvertes.fr/hal-02178343 Submitted on 30 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Dating the Tethyan ocean in the Western Alps with radiolarite pebbles from 2 synorogenic Oligocene molasse basins (southeast France) 3 4 5 Running title: Radiolarite pebbles from Alpine Oligocene molasses 6 7 8 Fabrice Cordey1*, Pierre Tricart2, Stéphane Guillot2, Stéphane Schwartz2 9 10 11 12 1Département des Sciences de la Terre, CNRS UMR 5276 Laboratoire de Géologie de Lyon, 13 Université Lyon 1, 69622 Villeurbanne, France 14 2IsTerre, CNRS, Université de Grenoble I, 38041 Grenoble, cedex 9, France 15 16 *corresponding author: [email protected] 17 18 19 20 21 22 23 Keywords: Western Alps, radiolarite, Jurassic, molasse, Oligocene, subduction wedge.
    [Show full text]
  • Kinematics and Extent of the Piemont-Liguria Basin – Implications for Subduction Processes in the Alps” by Eline Le Breton Et Al
    Solid Earth Discuss., https://doi.org/10.5194/se-2020-161-RC1, 2020 SED © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Interactive comment Interactive comment on “Kinematics and extent of the Piemont-Liguria Basin – implications for subduction processes in the Alps” by Eline Le Breton et al. Douwe J. J. van Hinsbergen (Referee) [email protected] Received and published: 3 November 2020 Dear editor, dear authors, Hereby I provide my review of the paper by Le Breton et al entitled ‘Kinematics and extentofthe Piemont-LiguriaBasin–implications for subduction processes in the Alps’. Le Breton and colleagues make a kinematic model for the western and northern, and Printer-friendly version a bit of the northeastern Mediterranean region and display it as GPlates files. The Mediterranean region is complex and therefore an interesting challenge to reconstruct, Discussion paper and many people have attempted this before, and I understand the desire of the authors C1 to also give it a shot. I have recently done this as well, using a reconstruction protocol to restore paleogeography from kinematic constraints from orogens, and I therefore read SED this paper with interest to see what this team of authors, with a strong track record in plate reconstructions, would make of it. Interactive I find it difficult, however, to see why this paper would be better than previous attempts comment to restore the Mediterranean region for the following reasons. 1. The authors pro- vide no reason in their introduction why they found it necessary to make a new recon- struction and how their reconstruction systematically differs from previous attempts, or why they expect fundamentally different conclusions for the evolution of the Alpine Tethys with their approach.
    [Show full text]