Invertebrate Paleontology Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Macrofossil Evidence for an Early Onset of the Holocene Summer Thermal Maximum in Northernmost Europe
ARTICLE Received 19 Aug 2014 | Accepted 27 Feb 2015 | Published 10 Apr 2015 DOI: 10.1038/ncomms7809 OPEN Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe M. Va¨liranta1, J.S. Salonen2, M. Heikkila¨1, L. Amon3, K. Helmens4, A. Klimaschewski5, P. Kuhry4, S. Kultti2, A. Poska3,6, S. Shala4, S. Veski3 & H.H. Birks7 Holocene summer temperature reconstructions from northern Europe based on sedimentary pollen records suggest an onset of peak summer warmth around 9,000 years ago. However, pollen-based temperature reconstructions are largely driven by changes in the proportions of tree taxa, and thus the early-Holocene warming signal may be delayed due to the geographical disequilibrium between climate and tree populations. Here we show that quantitative summer-temperature estimates in northern Europe based on macrofossils of aquatic plants are in many cases ca.2°C warmer in the early Holocene (11,700–7,500 years ago) than reconstructions based on pollen data. When the lag in potential tree establishment becomes imperceptible in the mid-Holocene (7,500 years ago), the reconstructed temperatures converge at all study sites. We demonstrate that aquatic plant macrofossil records can provide additional and informative insights into early-Holocene temperature evolution in northernmost Europe and suggest further validation of early post-glacial climate development based on multi-proxy data syntheses. 1 Department of Environmental Sciences, ECRU, University of Helsinki, P.O. Box 65, Helsinki FI-00014, Finland. 2 Department of Geosciences and Geography, University of Helsinki, P.O. Box 65, Helsinki FI-00014, Finland. -
INFORMATION to USERS the Most Advanced Technology Has Been
INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University M'ProCms International A Ben & Howe'' Information Company 300 North Zeeb Road Ann Arbor Ml 40106-1346 USA 3-3 761-4 700 800 501 0600 Order Numb e r 9022566 S o m e aspects of the functional morphology of the shell of infaunal bivalves (Mollusca) Watters, George Thomas, Ph.D. -
Standard Procedures for the Assessment and Mitigation of Adverse Impacts to Paleontological Resources
Standard Procedures for the Assessment and Mitigation of Adverse Impacts to Paleontological Resources Society of Vertebrate Paleontology Impact Mitigation Guidelines Revision Committee Abstract Fossils are nonrenewable paleontological resources that are subject to impacts from land development. Procedures are presented for evaluating the potential for impacts of a proposed action on paleontological resources and for mitigating those impacts. Impact mitigation includes pre-project survey and salvage, monitoring and screen washing during excavation to salvage fossils, conservation and inventory, and final reports and specimen curation. The objective of these procedures is to offer standard methods for assessing potential impacts to fossils and mitigating these impacts. Introduction Fossils are nonrenewable paleontological resources that are afforded protection by federal, state, and local environmental laws and regulations. The Paleontological Resources Preservation Act (PRPA) of 2009 calls for uniform policies and standards that apply to fossils on all federal public lands. All federal land management agencies are required to develop regulations that satisfy the stipulations of the PRPA. Section 6302 of the PRPA mandates that federal agencies "shall manage and protect paleontological resources on Federal land using scientific principles and expertise." Thus, federal agencies need the help of the professional paleontological community in the formulation and implementation of these PRPA- mandated policies and regulations. The potential for destruction or degradation of paleontological resources on both public and private lands selected for development under the jurisdiction of various governmental planning agencies is recognized. The standard procedures below are intended to be applicable to both private and public lands under the jurisdiction of local, city, county, regional, state, and federal agencies. -
Introduction San Andreas Fault: an Overview
Introduction This volume is a general geology field guide to the San Andreas Fault in the San Francisco Bay Area. The first section provides a brief overview of the San Andreas Fault in context to regional California geology, the Bay Area, and earthquake history with emphasis of the section of the fault that ruptured in the Great San Francisco Earthquake of 1906. This first section also contains information useful for discussion and making field observations associated with fault- related landforms, landslides and mass-wasting features, and the plant ecology in the study region. The second section contains field trips and recommended hikes on public lands in the Santa Cruz Mountains, along the San Mateo Coast, and at Point Reyes National Seashore. These trips provide access to the San Andreas Fault and associated faults, and to significant rock exposures and landforms in the vicinity. Note that more stops are provided in each of the sections than might be possible to visit in a day. The extra material is intended to provide optional choices to visit in a region with a wealth of natural resources, and to support discussions and provide information about additional field exploration in the Santa Cruz Mountains region. An early version of the guidebook was used in conjunction with the Pacific SEPM 2004 Fall Field Trip. Selected references provide a more technical and exhaustive overview of the fault system and geology in this field area; for instance, see USGS Professional Paper 1550-E (Wells, 2004). San Andreas Fault: An Overview The catastrophe caused by the 1906 earthquake in the San Francisco region started the study of earthquakes and California geology in earnest. -
Download Full Article in PDF Format
A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans Robert W. BOESSENECKER Department of Geology, University of Otago, 360 Leith Walk, P.O. Box 56, Dunedin, 9054 (New Zealand) and Department of Earth Sciences, Montana State University 200 Traphagen Hall, Bozeman, MT, 59715 (USA) and University of California Museum of Paleontology 1101 Valley Life Sciences Building, Berkeley, CA, 94720 (USA) [email protected] Boessenecker R. W. 2013. — A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans. Geodiversitas 35 (4): 815-940. http://dx.doi.org/g2013n4a5 ABSTRACT e newly discovered Upper Miocene to Upper Pliocene San Gregorio assem- blage of the Purisima Formation in Central California has yielded a diverse collection of 34 marine vertebrate taxa, including eight sharks, two bony fish, three marine birds (described in a previous study), and 21 marine mammals. Pinnipeds include the walrus Dusignathus sp., cf. D. seftoni, the fur seal Cal- lorhinus sp., cf. C. gilmorei, and indeterminate otariid bones. Baleen whales include dwarf mysticetes (Herpetocetus bramblei Whitmore & Barnes, 2008, Herpetocetus sp.), two right whales (cf. Eubalaena sp. 1, cf. Eubalaena sp. 2), at least three balaenopterids (“Balaenoptera” cortesi “var.” portisi Sacco, 1890, cf. Balaenoptera, Balaenopteridae gen. et sp. indet.) and a new species of rorqual (Balaenoptera bertae n. sp.) that exhibits a number of derived features that place it within the genus Balaenoptera. is new species of Balaenoptera is relatively small (estimated 61 cm bizygomatic width) and exhibits a comparatively nar- row vertex, an obliquely (but precipitously) sloping frontal adjacent to vertex, anteriorly directed and short zygomatic processes, and squamosal creases. -
Appendix E Water Resources Technical Report
Appendix E Water Resources Technical Report 1330 West Pico Blvd Project Water Resources Technical Report July 17, 2018 Prepared by: David J. Curtis, P.E., ENV SP PSOMAS 555 South Flower Street, Suite 4300 Los Angeles, California 90071 (213) 223-1400 (213) 223-1444 Fax Prepared for: Sandstone Properties 1 TABLE OF CONTENTS 1.0 Introduction ............................................................................................................ 3 1.1 Project Description ........................................................................................ 3 1.2 Scope of Work ............................................................................................... 3 2.0 Surface Water Hydrology ...................................................................................... 3 2.1 General Approach ........................................................................................... 3 2.2 Data Sources .................................................................................................. 3 2.3 Existing Site Conditions .................................................................................. 4 2.4 Proposed Site Conditions ............................................................................... 4 2.5 Hydrology Results ........................................................................................... 4 3.0 Surface Water Quality ............................................................................................ 5 3.1 General Approach ........................................................................................ -
Bathymetry and Body Size in Marine Gastropods: a Shallow Water Perspective
MARINE ECOLOGY PROGRESS SERIES Vol. 237: 143–149, 2002 Published July 18 Mar Ecol Prog Ser Bathymetry and body size in marine gastropods: a shallow water perspective Kaustuv Roy* Section of Ecology, Behavior and Evolution, Division of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, USA ABSTRACT: Spatial patterns of species body size across major environmental gradients are being quantified for terrestrial organisms, but similar efforts are largely lacking for marine invertebrates. Bathymetry represents a major environmental gradient in the oceans, and existing theoretical mod- els predict that species body size should decrease with increasing depth, especially for deep-sea spe- cies. Previous analyses of body size in deep-sea gastropods have shown size to increase with depth and hence contradict model predictions. In this study, I use data for 636 species of gastropods (in 10 major groups) living on the NE Pacific continental shelf to test hypotheses about processes that determine size-depth trends in marine gastropods. Results show that the gastropod family Turridae, a major component of both shallow-water and deep-sea biotas, shows similar size-depth trends in both environments but that predominantly shallow water families may show different patterns. In addition, size-depth trends may differ between clades and between different trophic groups. The implications of these results for better understanding the processes that underlie bathymetric trends in body size are discussed. KEY WORDS: Body size · Bathymetry · Gastropoda Resale or republication not permitted without written consent of the publisher INTRODUCTION relationships in the deep sea suggest that such trends may differ among taxa (see Rex & Etter 1998 for a Body size is considered to be one of the most impor- review). -
Foregut Anatomy of the Cochlespirinae (Gastropoda, Conoidea, Turridae)
Foregut anatomy of the Cochlespirinae (Gastropoda, Conoidea, Turridae) Alexandra I. MEDINSKAYA A. N. Severtzov Institute of Problems of Evolution, Leninsky Prospect 33, Moscow 117071 (Russia) Medinskaya A. I. 1999. — Foregut anatomy of the Cochlespirinae (Gastropoda. Conoidea. Turridae). Zoosystema2\ (2): 171-198. ABSTRACT The foregut anatomy of 20 species, belonging to eight genera, of the sub family Cochlespirinae is described. A cladistic analysis based on several most important characters (morphology of proboscis, position of buccal sphinc ters, histology of venom gland, position of the venom gland opening, struc ture of muscular bulb, and morphology of radular teeth) revealed three more or less well-defined groups within the subfamily. The main feature characte rizing the subfamily as a whole and separating groups within it, appeared to be the structure of venom gland and its muscular bulb. The subgenus KEYWORDS Cochlespirinae, Sibogasyrinx of the genus Leucosyrinx was shown to deserve a genus status. Conoidea, Some genera appeared to be intermediate between Cochlespirinae and anatomy, foregut, Crassispirinae in some anatomical characters, and their taxonomic position histology. remains not completely clear. RESUME L'anatomie du système digestif des Cochlespirinae (Gastropoda, Conoidea, Turridae). L'anatomie du système digestif de 20 espèces, appartenant à huit genres de la sous-famille Cochlespirinae, est étudiée. Une analyse cladistique, fondée sur les plus importants caractères de ce groupe (la morphologie de la trompe, la disposition des sphincters, l'histologie de la glande à venin, la disposition de l'ouverture de la glande à venin, la structure de la poire musculaire et la mor phologie des dents de la radula) a permis de distinguet trois groupes plus ou moins homogènes. -
Siliqua Patula Class: Bivalvia; Heterodonta Order: Veneroida the Flat Razor Clam Family: Pharidae
Phylum: Mollusca Siliqua patula Class: Bivalvia; Heterodonta Order: Veneroida The flat razor clam Family: Pharidae Taxonomy: The familial designation of this (see Plate 397G, Coan and Valentich-Scott species has changed frequently over time. 2007). Previously in the Solenidae, current intertidal Body: (see Plate 29 Ricketts and Calvin guides include S. patula in the Pharidae (e.g., 1952; Fig 259 Kozloff 1993). Coan and Valentich-Scott 2007). The superfamily Solenacea includes infaunal soft Color: bottom dwelling bivalves and contains the two Interior: (see Fig 5, Pohlo 1963). families: Solenidae and Pharidae (= Exterior: Cultellidae, von Cosel 1993) (Remacha- Byssus: Trivino and Anadon 2006). In 1788, Dixon Gills: described S. patula from specimens collected Shell: The shell in S. patula is thin and with in Alaska (see Range) and Conrad described sharp (i.e., razor-like) edges and a thin profile the same species, under the name Solen (Fig. 4). Thin, long, fragile shell (Ricketts and nuttallii from specimens collected in the Calvin 1952), with gapes at both ends Columbia River in 1838 (Weymouth et al. (Haderlie and Abbott 1980). Shell smooth 1926). These names were later inside and out (Dixon 1789), elongate, rather synonymized, thus known synonyms for cylindrical and the length is about 2.5 times Siliqua patula include Solen nuttallii, the width. Solecurtus nuttallii. Occasionally, researchers Interior: Prominent internal vertical also indicate a subspecific epithet (e.g., rib extending from beak to margin (Haderlie Siliqua siliqua patula) or variations (e.g., and Abbott 1980). Siliqua patula var. nuttallii, based on rib Exterior: Both valves are similar and morphology, see Possible gape at both ends. -
Appendix C - Invertebrate Population Attributes
APPENDIX C - INVERTEBRATE POPULATION ATTRIBUTES C1. Taxonomic list of megabenthic invertebrate species collected C2. Percent area of megabenthic invertebrate species by subpopulation C3. Abundance of megabenthic invertebrate species by subpopulation C4. Biomass of megabenthic invertebrate species by subpopulation C- 1 C1. Taxonomic list of megabenthic invertebrate species collected on the southern California shelf and upper slope at depths of 2-476m, July-October 2003. Taxon/Species Author Common Name PORIFERA CALCEREA --SCYCETTIDA Amphoriscidae Leucilla nuttingi (Urban 1902) urn sponge HEXACTINELLIDA --HEXACTINOSA Aphrocallistidae Aphrocallistes vastus Schulze 1887 cloud sponge DEMOSPONGIAE Porifera sp SD2 "sponge" Porifera sp SD4 "sponge" Porifera sp SD5 "sponge" Porifera sp SD15 "sponge" Porifera sp SD16 "sponge" --SPIROPHORIDA Tetillidae Tetilla arb de Laubenfels 1930 gray puffball sponge --HADROMERIDA Suberitidae Suberites suberea (Johnson 1842) hermitcrab sponge Tethyidae Tethya californiana (= aurantium ) de Laubenfels 1932 orange ball sponge CNIDARIA HYDROZOA --ATHECATAE Tubulariidae Tubularia crocea (L. Agassiz 1862) pink-mouth hydroid --THECATAE Aglaopheniidae Aglaophenia sp "hydroid" Plumulariidae Plumularia sp "seabristle" Sertulariidae Abietinaria sp "hydroid" --SIPHONOPHORA Rhodaliidae Dromalia alexandri Bigelow 1911 sea dandelion ANTHOZOA --ALCYONACEA Clavulariidae Telesto californica Kükenthal 1913 "soft coral" Telesto nuttingi Kükenthal 1913 "anemone" Gorgoniidae Adelogorgia phyllosclera Bayer 1958 orange gorgonian Eugorgia -
Recovery Plan for the Santa Rosa Plain
U.S. Fish & Wildlife Service Recovery Plan for the Santa Rosa Plain Blennosperma bakeri (Sonoma sunshine) Lasthenia burkei (Burke’s goldfields) Limnanthes vinculans (Sebastopol meadowfoam) California tiger salamander Sonoma County Distinct Population Segment (Ambystoma californiense) Lasthenia burkei Blennosperma bakeri Limnanthes vinculans Jo-Ann Ordano J. E. (Jed) and Bonnie McClellan Jo-Ann Ordano © 2004 California Academy of Sciences © 1999 California Academy of Sciences © 2005 California Academy of Sciences Sonoma County California Tiger Salamander Gerald Corsi and Buff Corsi © 1999 California Academy of Sciences Disclaimer Recovery plans delineate reasonable actions that are believed to be required to recover and/or protect listed species. We, the U.S. Fish and Wildlife Service, publish recovery plans, sometimes preparing them with the assistance of recovery teams, contractors, state agencies, Tribal agencies, and other affected and interested parties. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Costs indicated for action implementation and time of recovery are estimates and subject to change. Recovery plans do not obligate other parties to undertake specific actions, and may not represent the views or the official positions of any individuals or agencies involved in recovery plan formulation, other than the Service. Recovery plans represent our official position only after they have been signed by the Director or Regional Director as approved. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery actions. LITERATURE CITATION SHOULD READ AS FOLLOWS: U.S. -
MARIN COUNTY LOCAL COASTAL PROGRAM Land Use Plan
MARIN COUNTY LOCAL COASTAL PROGRAM Land Use Plan Board of Supervisors Adopted August 25, 2015 & April 19, 2016 1. The changes approved by the California Coastal Commission on May 15, 2014 agreed to by the County have been “accepted” (i.e. not shown in track changes) 2. Modification to LUP text approved by the Marin County Board of Supervisor on August 25, 2015 and April 19, 206 are shown in blue text (double-underlined for additions and italized strike out for deletions). Marin County Board of Supervisors Judy Arnold, President, District #5 Kathrin Sears, Vice-President, District #3 Katie Rice, 2nd Vice President, District #2 Susan L. Adams, District #1 Steve Kinsey, District #4 Prepared by the Marin County Community Development Agency Brian C. Crawford, Director This report is funded in part with qualified outer continental shelf oil and gas revenues by the Coastal Impact Assistance Program, Bureau of Ocean Energy Management, Regulation, and Enforcement, U.S. Department of the Interior. Marin County Local Coastal Program Project Staff Tom Lai, Assistant Director Jack Liebster, Principal Planner Kristin Drumm, Senior Planner Christine Gimmler, Senior Planner Jeremy Tejirian, Principal Planner Alisa Stevenson, Assistant Planner Suzanne Thorsen, Planner Steve Scholl, Consulting Planner Copies of this report may be obtained by contacting the Marin County Community Development Agency 3501 Civic Center Drive, Room 308 San Rafael, CA 94903 Phone (415) 499-6269 [email protected] www.MarinLCP.org ii Land Use Plan Amendments Marin County Local Coastal Program Table of Contents Introduction ................................................................................................................................................. 1 Interpretation of the Land Use Plan ......................................................................................................... 5 Natural Systems and Agriculture Agriculture (AG) ..........................................................................................................................................