Utilization of Different Macroalgae by Sea Cucumber Apostichopus Japonicus Revealed by Carbon Stable Isotope Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Parameterisation and Application of Dynamic Energy Budget Model to Sea Cucumber Apostichopus Japonicus
Vol. 9: 1–8, 2017 AQUACULTURE ENVIRONMENT INTERACTIONS Published January 10 doi: 10.3354/aei00210 Aquacult Environ Interact OPENPEN ACCESSCCESS Parameterisation and application of dynamic energy budget model to sea cucumber Apostichopus japonicus Jeffrey S. Ren1, Jeanie Stenton-Dozey1, Jihong Zhang2,3,* 1National Institute of Water and Atmospheric Research, 10 Kyle Street, PO Box 8602, Christchurch 8440, New Zealand 2Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China 3Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266200, PR China ABSTRACT: The sea cucumber Apostichopus japonicus is an important aquaculture species in China. As global interest in sustainable aquaculture grows, the species has increasingly been used for co-culture in integrated multitrophic aquaculture (IMTA). To provide a basis for opti - mising stocking density in IMTA systems, we parameterised and validated a standard dynamic energy budget (DEB) model for the sea cucumber. The covariation method was used to estimate parameters of the model with the DEBtool package. The method is based on minimisation of the weighted sum of squared deviation for datasets and model predictions in one single-step pro- cedure. Implementation of the package requires meaningful initial values of parameters, which were estimated using non-linear regression. Parameterisation of the model suggested that the accuracy of the lower (TL) and upper (TH) boundaries of tolerance temperatures are particularly important, as these would trigger the unique behaviour of the sea cucumber for hibernation and aestivation. After parameterisation, the model was validated with datasets from a shellfish aqua- culture environment in which sea cucumbers were co-cultured with the scallop Chlamys farreri and Pacific oyster Crassostrea gigas at various combinations of density. -
Genomic Insights of Body Plan Transitions from Bilateral to Pentameral Symmetry in Echinoderms
ARTICLE https://doi.org/10.1038/s42003-020-1091-1 OPEN Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms Yongxin Li1, Akihito Omori 2, Rachel L. Flores3, Sheri Satterfield3, Christine Nguyen3, Tatsuya Ota 4, Toko Tsurugaya5, Tetsuro Ikuta6,7, Kazuho Ikeo4, Mani Kikuchi8, Jason C. K. Leong9, Adrian Reich 10, Meng Hao1, Wenting Wan1, Yang Dong 11, Yaondong Ren1, Si Zhang12, Tao Zeng 12, Masahiro Uesaka13, 1234567890():,; Yui Uchida9,14, Xueyan Li 1, Tomoko F. Shibata9, Takahiro Bino15, Kota Ogawa16, Shuji Shigenobu 15, Mariko Kondo 9, Fayou Wang12, Luonan Chen 12,17, Gary Wessel10, Hidetoshi Saiga7,9,18, ✉ ✉ R. Andrew Cameron 19, Brian Livingston3, Cynthia Bradham20, Wen Wang 1,21,22 & Naoki Irie 9,14,22 Echinoderms are an exceptional group of bilaterians that develop pentameral adult symmetry from a bilaterally symmetric larva. However, the genetic basis in evolution and development of this unique transformation remains to be clarified. Here we report newly sequenced genomes, developmental transcriptomes, and proteomes of diverse echinoderms including the green sea urchin (L. variegatus), a sea cucumber (A. japonicus), and with particular emphasis on a sister group of the earliest-diverged echinoderms, the feather star (A. japo- nica). We learned that the last common ancestor of echinoderms retained a well-organized Hox cluster reminiscent of the hemichordate, and had gene sets involved in endoskeleton development. Further, unlike in other animal groups, the most conserved developmental stages were not at the body plan establishing phase, and genes normally involved in bila- terality appear to function in pentameric axis development. These results enhance our understanding of the divergence of protostomes and deuterostomes almost 500 Mya. -
SPC Beche-De-Mer Information Bulletin #39 – March 2019
ISSN 1025-4943 Issue 39 – March 2019 BECHE-DE-MER information bulletin v Inside this issue Editorial Towards producing a standard grade identification guide for bêche-de-mer in This issue of the Beche-de-mer Information Bulletin is well supplied with Solomon Islands 15 articles that address various aspects of the biology, fisheries and S. Lee et al. p. 3 aquaculture of sea cucumbers from three major oceans. An assessment of commercial sea cu- cumber populations in French Polynesia Lee and colleagues propose a procedure for writing guidelines for just after the 2012 moratorium the standard identification of beche-de-mer in Solomon Islands. S. Andréfouët et al. p. 8 Andréfouët and colleagues assess commercial sea cucumber Size at sexual maturity of the flower populations in French Polynesia and discuss several recommendations teatfish Holothuria (Microthele) sp. in the specific to the different archipelagos and islands, in the view of new Seychelles management decisions. Cahuzac and others studied the reproductive S. Cahuzac et al. p. 19 biology of Holothuria species on the Mahé and Amirantes plateaux Contribution to the knowledge of holo- in the Seychelles during the 2018 northwest monsoon season. thurian biodiversity at Reunion Island: Two previously unrecorded dendrochi- Bourjon and Quod provide a new contribution to the knowledge of rotid sea cucumbers species (Echinoder- holothurian biodiversity on La Réunion, with observations on two mata: Holothuroidea). species that are previously undescribed. Eeckhaut and colleagues P. Bourjon and J.-P. Quod p. 27 show that skin ulcerations of sea cucumbers in Madagascar are one Skin ulcerations in Holothuria scabra can symptom of different diseases induced by various abiotic or biotic be induced by various types of food agents. -
Seychelles: a Hotspot of Sea Cucumber Fisheries in Africa and the Indian Ocean Region
195 Seychelles: a hotspot of sea cucumber fisheries in Africa and the Indian Ocean region Riaz Aumeeruddy Island Conservation Society Victoria, Seychelles E-mail: [email protected] Chantal Conand Université de la Réunion Saint-Denis, France E-mail: [email protected] Aumeeruddy, R.; Conand, C. 2008. Seychelles: a hotspot of sea cucumber fisheries in Africa and the Indian Ocean region. In V. Toral-Granda, A. Lovatelli and M. Vasconcellos (eds). Sea cucumbers. A global review of fisheries and trade. FAO Fisheries and Aquaculture Technical Paper. No. 516. Rome, FAO. pp. 195–209. SUMMARY The Seychelles Archipelago, comprising 115 islands, is located in the middle of the Western Indian Ocean and has a large Exclusive Economic Zone (EEZ 1.4 millions km2). Sea cucumbers in Seychelles have been fished for more than a hundred years, but the fishery has recently seen a rapid development. Sea cucumbers are mostly collected by divers using SCUBA gear. They are processed for the export market. The population status is presented for the five main species caught (“pentard”, white teatfish, black teatfish, prickly redfish and sandfish) from the estimated stock and the overall density (ind./ha). Catch and effort data have been collected since 1999 by Seychelles Fishing Authority (SFA). The data are provided by the fishers as per the requirements of their fishing license conditions. The catch per unit effort (CPUE), expressed in numbers of sea cucumbers collected per diver per day, shows mostly a downward trend. The sea cucumber fishery in Seychelles was open-access until 1999. As part of a recent FAO- funded project, a management plan for the fishery has been prepared, based on the results of the resource assessment. -
Apostichopus Japonicus
Acta Oceanol. Sin., 2018, Vol. 37, No. 5, P. 54–66 DOI: 10.1007/s13131-017-1101-4 http://www.hyxb.org.cn E-mail: [email protected] Differential gene expression in the body wall of the sea cucumber (Apostichopus japonicus) under strong lighting and dark conditions ZHANG Libin1, 2, FENG Qiming1, 3, SUN Lina1, 2, FANG Yan4, XU Dongxue5, ZHANG Tao1, 2, YANG Hongsheng1, 2* 1 CAS Key laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China 2 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 School of Agriculture, Ludong University, Yantai 264025, China 5 College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China Received 25 January 2017; accepted 9 March 2017 © Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Sea cucumber, Apostichopus japonicus is very sensitive to light changes. It is important to study the influence of light on the molecular response of A. japonicus. In this study, RNA-seq provided a general overview of the gene expression profiles of the body walls of A. japonicus exposed to strong light (“light”), normal light (“control”) and fully dark (“dark”) environment. In the comparisons of “control” vs. “dark”, ”control” vs. “light” and “dark” vs. “light”, 1 161, 113 and 1 705 differentially expressed genes (DEGs) were identified following the criteria of |log2ratio|≥1 and FDR≤0.001, respectively. Gene ontology analysis showed that “cellular process” and “binding” enriched the most DEGs in the category of “biological process” and “molecular function”, while “cell” and “cell part” enriched the most DEGs in the category of “cellular component”. -
Stichopodidae 1185
click for previous page Order Aspidochirotida - Stichopodidae 1185 Order Aspidochirotida - Stichopodidae STICHOPODIDAE iagnostic characters: Body square-shaped or trapezoidal in cross-section. Cuvierian organs absent. DGonads forming 2 tufts appended on each side of the dorsal mesentery. Dominant spicules in form of branched rods and C-and S-shaped rods. Key to the genera of Stichopodidae occurring in the area (after Clark and Rowe, 1971) 1a. Bivium covered with large papillae, leaf-shaped, simple or branched, and without podia regularly arranged longitudinally; spicules never developod as tables, but numerous grains, dichotomously branched rods ............................Thelenota 1b. Bivium covered with tubercules and papillae, at least on sides; trivium more or less covered by podia; spicules developod as tables, branched rods, and C-and S-shaped rods ..............................................Stichopus List of species of interest to fisheries occurring in the area The symbol * is given when species accounts are included. * Stichopus chloronotus Brandt, 1835 * Stichopus horrens Selenka, 1867 * Stichopus variegatus Semper, 1868 * Thelenota ananas (Jaeger, 1833) * Thelenota anax Clark, 1921 1186 Holothurians Stichopus chloronotus Brandt, 1835 Frequent synonyms / misidentifications: None / None. FAO names: En - Greenfish; Fr - Trépang vert. row of large papillae anus terminal calcareous ring mouth ventral, with papillae and 20 tentacles spicules of podia spicules of tentacles spicules of tegument (after Féral and Cherbonnier, 1986) Diagnostic characters: Body firm, rigid with quadrangular section, flattened ventrally (trivium); body wall easily disintegrates outside sea water. Radii of bivium with characteristic double row of large papillae, each radius ending in a small red or orange papilla. Trivium delimited by characteristic double row of large papillae; stout podia arranged regularly on 3 radial bands, with 10 rows in the medio-ventral band and 5 in the lateral. -
A Review of Sea Cucumber Aquaculture, Ranching, and Stock Enhancement in China
Reviews in Fisheries Science & Aquaculture ISSN: 2330-8249 (Print) 2330-8257 (Online) Journal homepage: http://www.tandfonline.com/loi/brfs21 A Review of Sea Cucumber Aquaculture, Ranching, and Stock Enhancement in China Qingxi Han, John K. Keesing & Dongyan Liu To cite this article: Qingxi Han, John K. Keesing & Dongyan Liu (2016) A Review of Sea Cucumber Aquaculture, Ranching, and Stock Enhancement in China, Reviews in Fisheries Science & Aquaculture, 24:4, 326-341, DOI: 10.1080/23308249.2016.1193472 To link to this article: http://dx.doi.org/10.1080/23308249.2016.1193472 Published online: 21 Jun 2016. Submit your article to this journal Article views: 115 View related articles View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=brfs21 Download by: [National Science Library] Date: 19 December 2016, At: 03:07 REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2016, VOL. 24, NO. 4, 326–341 http://dx.doi.org/10.1080/23308249.2016.1193472 A Review of Sea Cucumber Aquaculture, Ranching, and Stock Enhancement in China Qingxi Hana,b, John K. Keesingc, and Dongyan Liub aSchool of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, P. R. China; bYantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, P. R. China; cCSIRO Oceans and Atmosphere Research, Wembley, Australia ABSTRACT KEYWORDS Sea cucumber aquaculture has flourished as a result of increasing demand coupled with declining Sea cucumber; Apostichopus wild fisheries and has been facilitated by technical progress in the production and grow-out phase japonicas; stock of larvae and small juvenile sea cucumbers. -
Vii Fishery-At-A-Glance: Warty Sea Cucumber Scientific Name: Apostichopus Parvimensis Range: Warty Sea Cucumber Range from Puert
Fishery-at-a-Glance: Warty Sea Cucumber Scientific Name: Apostichopus parvimensis Range: Warty Sea Cucumber range from Puerto San Bartolome in Baja California, Mexico to Fort Bragg, California, US, but are uncommon north of Point Conception, California. Habitat: Warty Sea Cucumber occupy waters from the subtidal zone to 180 feet (55 meters) depth. They are commonly found to inhabit both rocky reef and sand/mud substrate. Size (length and weight): Warty Sea Cucumber can reach 12-16 inches (30.5-40.6 c centimeters) when encountered in their natural state (in-situ) on the seafloor; however, this size measurement is not an accurate measure of body size due to the ability of sea cucumber to extend and contract their bodies. Constricted length and width provide a more accurate estimate of body size. The maximum reported length for Warty Sea Cucumber in a constricted state is 9.5 inches (24.1 centimeters) and a maximum width (excluding soft spines) of 3.5 inches (8.9 centimeters). The maximum individual weight recorded for a Warty Sea Cucumber in a whole or live state is 1.64 lb (743.9 grams), with the maximum weight of individuals in a cut eviscerated state (the predominant commercial landing condition) of .82 lb (371.9 grams). Life span: The life span of Warty Sea Cucumber is currently unknown. There is currently no way to directly age Warty Sea Cucumber. Reproduction: Warty Sea Cucumber have separate male and female sexes that reproduce via aggregate broadcast spawning. Spawning occurs from March to July in depths less than 100 feet (30.5 meters), with most spawning occurring less than 60 feet (18.3 meters) depth. -
Extremely Low Genetic Variability Within and Among Locations of the Greenfish Holothurian Stichopus Chloronotus Brandt, 1835 in Okinawa, Japan
Extremely low genetic variability within and among locations of the greenfish holothurian Stichopus chloronotus Brandt, 1835 in Okinawa, Japan Taha Soliman1,2,3, Okuto Takama1, Iria Fernandez-Silva1,4,5 and James D. Reimer1,6 1 Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan 2 National Institute of Oceanography and Fisheries, Alexandria, Egypt 3 Microbiology and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan 4 Section of Ichthyology, California Academy of Sciences, San Francisco, CA, USA 5 Department of Biochemistry, Genetics and Immunology, Campus Universitario, University of Vigo, Vigo, Spain 6 Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan ABSTRACT The greenfish sea cucumber Stichopus chloronotus is an economically and ecologically important sea cucumber species throughout its range. This species is widely distributed, inhabiting coral reefs of the Indo-Pacific Ocean. Our study evaluated population genetic structure and levels of genetic diversity in southern Japan. A total of 180 individuals were collected from eight locations from Okinawa and Okinoerabu Islands and sequenced using mitochondrial 16S ribosomal DNA (16S) and nuclear histone H3 (H3) gene. Only three 16S haplotypes were detected (518 bp) with haplotype diversity ranging from 0 to 0.56 and nucleotide diversity from 0 to 0.1%. H3 showed no variation among the studied locations. It is plausible that such results could be due to a shift to asexual reproduction. Additionally, the presence of the species on the east coast of Okinawa could only be Submitted 17 March 2016 detected in one location and all individuals consisted of a single haplotype. -
Correspondencecorrespondencebeche-De-Merbeche-De-Mer
38 SPC Beche-de-mer Information Bulletin #17 – October 2002 CorrespondenceCorrespondencebeche-de-merbeche-de-mer From: Pr C. Conand (sea cucumber expert), Université de la Réunion, Faculté des Sciences, 15 Ave René Cassin, 97715-SAINT-DENIS Cedex, France To : A. Bruckner, CITES, NOAA, Silver Spring, Colorado, USA, and C. Shelley, Australia, for R. Gabel US DI Washington, USA. RE: CITES: sea cucumbers for Appendix II – Reply to request for information Dear colleagues I shall first introduce myself as sea cucumber expert following numerous studies in the tropical Pacific and Indian oceans. I am the scientific editor of the Beche-de-Mer Information Bulletin published by the Secretariat of the Pacific Community (SPC), the only publication devoted to world sea cucumber issues (bi- ology, fisheries, markets). It can be found on the web at http://www.spc.int/coastfish. Recent studies have shown the worldwide overexploitation of most collected species. I believe it is the right time to draw international attention to these resources, but it is important to look in detail at which actions to undertake. I will give here a few personal opinions to help the discussion. The exploited sea cucumbers are only a few species among the 1200 presently described. Their taxonomy is very difficult and only a few specialists are still working and describing new species even among the ex- ploited ones (see Madagascar and Kenya…) (see references). As they are often considered in developed countries as ‘ugly or exotic’, the scientific studies are, therefore, not as advanced as for other marine resources and there is an urgent need for integrated studies. -
Feeding Sea Cucumbers in Integrated Multitrophic Aquaculture
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center Reviews in Aquaculture (2016) 0, 1–18 doi: 10.1111/raq.12147 Role of deposit-feeding sea cucumbers in integrated multitrophic aquaculture: progress, problems, potential and future challenges Leonardo Nicolas Zamora1, Xiutang Yuan2, Alexander Guy Carton3 and Matthew James Slater4 1 Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth, New Zealand 2 State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian, China 3 Division of Tropical Environments and Societies, College of Marine and Environmental Sciences, Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Australia 4 Alfred-Wegener-Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany Correspondence Abstract Leonardo Nicolas Zamora, Leigh Marine Laboratory, Institute of Marine Science, There is significant commercial and research interest in the application of sea University of Auckland, PO Box 349, cucumbers as nutrient recyclers and processors of particulate waste in polyculture Warkworth, New Zealand. E-mail: or integrated multitrophic aquaculture (IMTA) systems. The following article [email protected] reviews examples of existing IMTA systems operating with sea cucumbers, and details the role and effect of several sea cucumber species in experimental and Received 12 August 2015; accepted 1 February pilot IMTA systems worldwide. Historical observations and quantification of 2016. impacts of sea cucumber deposit-feeding and locomotion are examined, as is the development and testing of concepts for the application of sea cucumbers in sedi- ment remediation and site recovery. The extension of applied IMTA systems is reported, from basic piloting through to economically viable farming systems operating at commercial scales. -
High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review
Mar. Drugs 2011, 9, 1761-1805; doi:10.3390/md9101761 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review Sara Bordbar 1, Farooq Anwar 1,2 and Nazamid Saari 1,* 1 Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mails: [email protected] (S.B.); [email protected] (F.A.) 2 Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-389-468-385; Fax: +60-389-423-552. Received: 3 August 2011; in revised form: 30 August 2011 / Accepted: 8 September 2011 / Published: 10 October 2011 Abstract: Sea cucumbers, belonging to the class Holothuroidea, are marine invertebrates, habitually found in the benthic areas and deep seas across the world. They have high commercial value coupled with increasing global production and trade. Sea cucumbers, informally named as bêche-de-mer, or gamat, have long been used for food and folk medicine in the communities of Asia and Middle East. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as Vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin), and minerals, especially calcium, magnesium, iron and zinc. A number of unique biological and pharmacological activities including anti-angiogenic, anticancer, anticoagulant, anti-hypertension, anti-inflammatory, antimicrobial, antioxidant, antithrombotic, antitumor and wound healing have been ascribed to various species of sea cucumbers. Therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives especially triterpene glycosides (saponins), chondroitin sulfates, glycosaminoglycan (GAGs), sulfated polysaccharides, sterols (glycosides and sulfates), phenolics, cerberosides, lectins, peptides, glycoprotein, glycosphingolipids and essential fatty acids.