Dissecting Dinosaurs: an Exercise in Bird Anatomy and Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tiny Fossil Sheds Light on Miniaturization of Birds
Retraction Tiny fossil sheds light on miniaturization of birds Roger B. J. Benson Nature 579, 199–200 (2020) In view of the fact that the authors of ‘Hummingbird-sized dinosaur from the Cretaceous period of Myanmar‘ (L. Xing et al. Nature 579, 245–249; 2020) are retracting their report, I wish to retract this News & Views article, which dealt with this study and was based on the accuracy and reproducibility of their data. Nature | 22 July 2020 ©2020 Spri nger Nature Li mited. All rights reserved. drives the assembly of DNA-PK and stimulates regulation of protein synthesis. And, although 3. Dragon, F. et al. Nature 417, 967–970 (2002). its catalytic activity in vitro, although does so further studies are required, we might have 4. Adelmant, G. et al. Mol. Cell. Proteom. 11, 411–421 (2012). much less efficiently than can DNA. taken a step closer to deciphering the 5. Britton, S., Coates, J. & Jackson, S. P. J. Cell Biol. 202, Taken together, these observations suggest mysterious ribosomopathies. 579–595 (2013). a model in which KU recruits DNA-PKcs to the 6. Barandun, J. et al. Nature Struct. Mol. Biol. 24, 944–953 (2017). small-subunit processome. In the case of Alan J. Warren is at the Cambridge Institute 7. Ma, Y. et al. Cell 108, 781–794 (2002). kinase-defective DNA-PK, the mutant enzyme’s for Medical Research, Hills Road, Cambridge 8. Yin, X. et al. Cell Res. 27, 1341–1350 (2017). inability to regulate its own activity gives the CB2 OXY, UK. 9. Sharif, H. et al. -
Fuzzy Simplicial Networks: a Topology-Inspired Model to Improve Task Generalization in Few-Shot Learning
Fuzzy Simplicial Networks: A Topology-Inspired Model to Improve Task Generalization in Few-shot Learning Henry Kvinge∗, Zachary New∗, Nico Courts∗y, Jung H. Lee∗, Lauren A. Phillipsz, Courtney D. Corleyz, Aaron Tuor∗, Andrew Avilaz, Nathan O. Hodasz September 24, 2020 Abstract Deep learning has shown great success in settings with massive amounts of data but has struggled when data is limited. Few-shot learning algorithms, which seek to address this limitation, are designed to generalize well to new tasks with limited data. Typically, models are evaluated on unseen classes and datasets that are defined by the same fundamental task as they are trained for (e.g. category membership). One can also ask how well a model can generalize to fundamentally different tasks within a fixed dataset (for example: moving from category membership to tasks that involve detecting object orientation or quantity). To formalize this kind of shift we define a notion of independence of tasks and identify three new sets of labels for established computer vision datasets that test a model's ability to generalize to tasks which draw on orthogonal attributes in the data. We use these datasets to investigate the failure modes of metric-based few-shot models. Based on our findings, we introduce a new few-shot model called Fuzzy Simplicial Networks (FSN) which leverages a construction from topology to more flexibly represent each class from limited data. In particular, FSN models can not only form multiple representations for a given class but can also begin to capture the low-dimensional structure which characterizes class manifolds in the encoded space of deep networks. -
A New Raptorial Dinosaur with Exceptionally Long Feathering Provides Insights Into Dromaeosaurid flight Performance
ARTICLE Received 11 Apr 2014 | Accepted 11 Jun 2014 | Published 15 Jul 2014 DOI: 10.1038/ncomms5382 A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance Gang Han1, Luis M. Chiappe2, Shu-An Ji1,3, Michael Habib4, Alan H. Turner5, Anusuya Chinsamy6, Xueling Liu1 & Lizhuo Han1 Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aero- dynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new ‘four-winged’ microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, ‘hindwings’). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. 1 Paleontological Center, Bohai University, 19 Keji Road, New Shongshan District, Jinzhou, Liaoning Province 121013, China. 2 Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. 3 Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China. 4 University of Southern California, Health Sciences Campus, BMT 403, Mail Code 9112, Los Angeles, California 90089, USA. -
Ghost of the Forest: the Tangible and Intangible in Natural and Cultural Heritage
Ghost of the Forest: the Tangible and Intangible in Natural and Cultural Heritage Marcel Robischon Ghost of the Forest Ghost of the Forest: the Tangible and Intangible in Natural and Cultural Heritage Marcel Robischon Junior Professor, Department of Life Sciences, Humboldt Universität zu Berlin, Germany ABSTRACT Understanding the close interconnectedness of cultural and natural, tangible and intangible heritage is central to conservation efforts. This point is illustrated by examples in which works of culture have lost their original cultural or natural context – and this includes intangible natural phenomena. Further examples are given in which biological species survived as a genetic continuum but were changed in terms of their intangibles, i.e. their behaviour, in ways that can be perceived by human observers. In this article it is argued that the addition of a fourth category of ‘intangible natural heritage’ to the existing categories of World Heritage would strengthen conservation efforts and bring forward the discussion with an integrated understanding of natural and cultural heritage. Keywords Intangible Natural Heritage, co-extinction of cultural and biological phenomena, conservation, artistic inspiration, bio- diversity, bio-cultural interaction, ephemerality, World Heritage. The interdependence and the fragility of phrased by Singer (2006), Tangible heritage is expressed tangible and intangible heritage in objects, concrete matter, enduring years and Ultimately, buildings, human-made structures and sometimes centuries, carrying with it some of the artwork would be merely near-surface biogenic substance of human life, feeling, and thought. sediments resulting from highly complex processes of bio-turbation if it were not for the cultural motivation The cultural significance of ancient tangible heritage behind their creation and the meanings attached to them. -
Beaks at the Bird Buffet
Beaks at the Bird Buffet Introduction A bird’s beak is a bony elongation of its skull that is covered in keratin, the same material that makes up your hair and fingernails. Birds use their beaks as tools. Beaks help birds gather food, groom their feathers, defend themselves, and build their nests. The shape of a bird’s beak gives us clues to figuring out its main source of food, as a bird’s beak is designed for eating a particular type of food. Raptors like owls, hawks, and vultures have grasping beaks. These beaks are hooked shaped which allows for tearing apart prey or carrion. Similar to a raptor’s beak, a cardinal’s beaks is a heavy thick beak that they use to crack seeds. Birds like a spoonbill have a long, flat, scooping beak that scoops up food like fish or insects in the water. Ducks also get their food from the water. Their flat shovel beaks allow them to scoop up fish or plants and then drain out water before swallowing. A hummingbird’s beak is long and thin, which allows it to reach into tight places for its food-like getting nectar out of a flower. For this activity, you will need a clothes pin, a spoon, chopsticks, and a craft stick - these are your beaks. A cup or bowl will serve as your bird’s stomach. Lay your “food” out on a table and select your first beak. See how much food you are able to pick up with your beak and move to your stomach in 30 seconds. -
Dinosaur Footprints
DINOSAUR FOOTPRINTS ACTIVITY SHEET YOU WILL NEED: Measuring tape and chalk DINOSAUR BODY SIZE Playground Calculator/paper for calculations Dinosaur footprint length: measure in a straight line from the back of the foot to the tip of the longest toe. Dinosaur leg length = footprint length × 4 Dinosaur stride length: Distance between footprints Dinosaur body length = from the same foot footprint length × 10 1. Use a measuring tape, chalk and the information below to draw out your dinosaur footprints in the playground. Tip - measure the footprint length first and then draw your footprint shape. If students are working in groups, each group could choose a different footprint. Footprint length - from back Dinosaur Footprint shape of foot to tip of longest toe Stride length (cm) (cm) Allosaurus 85 340 Triceratops 90 360 Compsognathus 7.5 90 Brachiosaurus 260 1040 DINOSAUR FOOTPRINTS ACTIVITY SHEET Stride length 2. Use your measuring tape to measure the dinosaur’s stride length. Use chalk to mark where the second dinosaur footprint would go. Footprint 2 Footprint 1 3. Using the calculations on page 1 work out the leg lengths and body lengths of each dinosaur. If you have space use a measuring tape and chalk to measure out the dinosaur body lengths in the playground (some of them will be very long!). Dinosaur Footprint length (cm) Leg length (cm) Body length (cm) Allosaurus 85 Triceratops 90 Compsognathus 7.5 Brachiosaurus 260 DINOSAUR SPEED We can now work out the relative speed of the dinosaur – whether it was walking, trotting or running, by looking at its leg length and stride length. -
A Fast-Growing Basal Troodontid (Dinosauria: Theropoda) from The
www.nature.com/scientificreports OPEN A fast‑growing basal troodontid (Dinosauria: Theropoda) from the latest Cretaceous of Europe Albert G. Sellés1,2*, Bernat Vila1,2, Stephen L. Brusatte3, Philip J. Currie4 & Àngel Galobart1,2 A characteristic fauna of dinosaurs and other vertebrates inhabited the end‑Cretaceous European archipelago, some of which were dwarves or had other unusual features likely related to their insular habitats. Little is known, however, about the contemporary theropod dinosaurs, as they are represented mostly by teeth or other fragmentary fossils. A new isolated theropod metatarsal II, from the latest Maastrichtian of Spain (within 200,000 years of the mass extinction) may represent a jinfengopterygine troodontid, the frst reported from Europe. Comparisons with other theropods and phylogenetic analyses reveal an autapomorphic foramen that distinguishes it from all other troodontids, supporting its identifcation as a new genus and species, Tamarro insperatus. Bone histology shows that it was an actively growing subadult when it died but may have had a growth pattern in which it grew rapidly in early ontogeny and attained a subadult size quickly. We hypothesize that it could have migrated from Asia to reach the Ibero‑Armorican island no later than Cenomanian or during the Maastrichtian dispersal events. During the latest Cretaceous (ca. 77–66 million years ago) in the run-up to the end-Cretaceous mass extinc- tion, Europe was a series of islands populated by diverse and distinctive communities of dinosaurs and other vertebrates. Many of these animals exhibited peculiar features that may have been generated by lack of space and resources in their insular habitats. -
Anatomy of the Early Cretaceous Enantiornithine Bird Rapaxavis Pani
Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani JINGMAI K. O’CONNOR, LUIS M. CHIAPPE, CHUNLING GAO, and BO ZHAO O’Connor, J.K., Chiappe, L.M., Gao, C., and Zhao, B. 2011. Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani. Acta Palaeontologica Polonica 56 (3): 463–475. The exquisitely preserved longipterygid enantiornithine Rapaxavis pani is redescribed here after more extensive prepara− tion. A complete review of its morphology is presented based on information gathered before and after preparation. Among other features, Rapaxavis pani is characterized by having an elongate rostrum (close to 60% of the skull length), rostrally restricted dentition, and schizorhinal external nares. Yet, the most puzzling feature of this bird is the presence of a pair of pectoral bones (here termed paracoracoidal ossifications) that, with the exception of the enantiornithine Concornis lacustris, are unknown within Aves. Particularly notable is the presence of a distal tarsal cap, formed by the fu− sion of distal tarsal elements, a feature that is controversial in non−ornithuromorph birds. The holotype and only known specimen of Rapaxavis pani thus reveals important information for better understanding the anatomy and phylogenetic relationships of longipterygids, in particular, as well as basal birds as a whole. Key words: Aves, Enantiornithes, Longipterygidae, Rapaxavis, Jiufotang Formation, Early Cretaceous, China. Jingmai K. O’Connor [[email protected]], Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwaidajie, Beijing, China, 100044; The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007 USA; Luis M. Chiappe [[email protected]], The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Ex− position Boulevard, Los Angeles, CA 90007 USA; Chunling Gao [[email protected]] and Bo Zhao [[email protected]], Dalian Natural History Museum, No. -
Cleveland Lloyd Dinosaur Quarry
of a drought or other natural disaster. Quarry visi- tors can view these fossils and explore some of the explanations that have been proposed by scientists. Allosaurus The allosaur was the most common predator during the Late Jurassic period, 155 to 145 million years ago. Allosaurs are thought to have had savvy hunting skills and it is suggested that they may have hunted in packs. One of their distinguishing charac- teristics is the presence of a small bony crest just above and forward of each massive eye. Many of the specimens from Cleveland-Lloyd dinosaur quarry are from juvenile and adolescent allosaurs. The pre- dominance of Allosaurus fragilis fossils at the quarry has given researchers an unprecedented opportunity to do an in-depth study of the species. That gives paleontologists the opportunity to study the species as a whole rather than just an individual dinosaur. The Quarry BLM’s first visitor center. It was originally dedicated Exhibits The Cleveland-Lloyd Dinosaur Quarry is home to in 1968 and was renovated and expanded in 2006. The Cleveland-Lloyd Dinosaur Quarry Na- one of the most impressive collections of dinosaur tional Natural Landmark has over 2000 square feet fossils worldwide. The quarry’s unique concentration Scientific Explanations of interactive displays and exhibits. An updated and of the meat eating Allosaurus and the enormity of One of the puzzles that have intrigued scientists colorized bone bed map shows the scattering of the deposit has fascinated both visitors and scien- is the predominance of meat eating Allosaurus (the various types of dinosaurs across the site. -
Testing the Neoflightless Hypothesis: Propatagium Reveals Flying Ancestry
J Ornithol DOI 10.1007/s10336-015-1190-9 ORIGINAL ARTICLE Testing the neoflightless hypothesis: propatagium reveals flying ancestry of oviraptorosaurs 1 2 Alan Feduccia • Stephen A. Czerkas Received: 4 September 2014 / Revised: 31 December 2014 / Accepted: 23 February 2015 Ó Dt. Ornithologen-Gesellschaft e.V. 2015 Abstract Considerable debate surrounds the numerous Zusammenfassung avian-like traits in core maniraptorans (ovirap- torosaurs, troodontids, and dromaeosaurs), especially in the Die ,,Neoflightless‘‘-Hypothese im Test: Halsflughaut Chinese Early Cretaceous oviraptorosaur Caudipteryx, (Propatagium) offenbart flugfa¨hige Vorfahren der which preserves modern avian pennaceous primary remi- Oviraptorosauria ges attached to the manus, as is the case in modern birds. Was Caudipteryx derived from earth-bound theropod di- Es gibt eine ausgiebige Debatte u¨ber die zahlreichen vo- nosaurs, which is the predominant view among palaeon- gela¨hnlichen Eigenheiten der Maniraptora (Oviraptosaurus, tologists, or was it secondarily flightless, with volant avians Troodontidae, Dromaeosaurus), vor allem des (gefiederten) or theropods as ancestors (the neoflightless hypothesis), Oviraptorosauria Caudipteryx aus der fru¨hen chinesischen which is another popular, but minority view. The discovery Kreidezeit, der genau wie rezente Vo¨gel Handschwingen here of an aerodynamic propatagium in several specimens hatte, die an den Handknochen ansetzen. Stammt Cau- provides new evidence that Caudipteryx (and hence ovi- dipteryx von den nur am Erdboden lebenden Theropoda ab - raptorosaurs) represent secondarily derived flightless die unter den Pala¨ontologen vorherrschende Meinung -, oder ground dwellers, whether of theropod or avian affinity, and war er sekunda¨r flugunfa¨hig und stammte von flugfa¨higen that their presence and radiation during the Cretaceous may Theropoden ab - die ,,Neoflightless‘‘-Hypothese, eine alter- have been a factor in the apparent scarcity of many other native, wenn auch nur von Wenigen unterstu¨tzte These. -
Nā Māhele O Ka Manu Bird Anatomy
distance learning guides Nā Māhele o ka Manu Bird Anatomy guiding How can you use the parts of a bird to help you identify different question bird species? what we’ll There are over 10,000 species of birds worldwide! They play important roles in our environment like pollinating plants as well as helping to disperse their learn seeds. Identifying birds can be tricky, but it’s rewarding to know who is helping to shape the environment around you. Learning a little about the parts of a bird, or bird anatomy, can help us identify different bird species. For example, a field guide says the ʻUlili, or Wandering Tattler, has a “light superciliary.” If you know that the superciliary is the “eyebrow” or feathers right above the eye of the bird, you can double check this to make sure you have correctly identified the bird you are seeing. We’ll also explore nā māhele o ka manu, the parts of the bird, in ʻŌlelo Hawaiʻi! time 1 hour materials • Smartphone, tablet or desktop computer connected to the internet (to access the Cornell Bird Academy website) • “Nā Māhele o ka Manu” diagram and terms on pages 3 & 4 of this guide • Learning journal or blank pieces of paper get started Think about birds that you have seen before, or better yet, head outside and look at some birds! Answer the following questions in your learning journal or on a piece of paper. These are to get our thoughts going and see what we already know, so there are no right or wrong answers! • What are some parts of birds that stand out to you? • Compare the parts of a bird to the parts of a human. -
Trails Tracks
vol 25 no. 4 TRACKS AND TRAILS a publication of the Friends of Dinosaur Park and Arboretum, Inc. October - November- December 2009 Donated Rock and Minerals Cataloged for Park’s Collection This summer, two undergraduate geology students from Central Con- mineralogy course this semester, putting her necticut State University began sorting, identifying, and labeling collec- summer experience to good use. Ken, as tions of rocks and minerals that had been donated to the Park in recent president of CCSU’s “Friends of Earth” club, years. Ken Boling and Ali Steullet came in every week to work on two plans geology field trips around Connecticut large collections containing Connecticut rocks and minerals. with his fellow students. He indicated that he really likes studying rocks and has enjoyed One collection was donated by Phyllis Chester, a long-time collector, the element of surprise when poking through hiker, and environmental advocate, who, upon moving to smaller ac- old boxes full of specimens. commodations, wanted the specimens put to good use. She is a member of the Salem Land Trust and now lives in Uncasville. Another collec- tion was donated by Virgil M. Horn, who collected rocks and minerals while on vacations throughout the Northeast and during many trips as a troop leader with the Boy Scouts of America. After Mr. Horn passed away in 1998, his son Howard Horn, of Rocky Hill, CT, wanted the collection used for educational purposes. Thanks to the generosity of Mr. Horn and Ms. Chester, and the assis- tance of Ken and Ali, the park now has an extensive variety of speci- mens.