Correlation Between Cytotoxic Activity on MCF-7 Cell and Total Steroid Level on Trigonella Foenum-Graecum L

Total Page:16

File Type:pdf, Size:1020Kb

Correlation Between Cytotoxic Activity on MCF-7 Cell and Total Steroid Level on Trigonella Foenum-Graecum L CoRRelAtioN BetWeeN CytotoxiC ACtiVity oN MCF-7 Cell ANd Total Steroid LEVEL ON Trigonella foenum-graecum L. Korelasi aktivitas sitotoksik pada sel MCF-7 dan kadar steroid total Trigonella foenum-graecum L. Kurnia Agustini*, Wahono Sumaryono*, Azri Fitria** *Center for Pharmaceuticals and Medical Technology Laboratory for Development of Industrial Agro and Biomedical Technology Agency for the Assessment and Application of Technology ( BPPT), Jakarta **Departement of Pharmacy, Faculty of Medicine and Health Science State Islamic University Syarif Hidayatullah Jakarta e-mail: [email protected] ABSTRAK Trigonella foenum-graecum L. (TFG) adalah salah satu tumbuhan obat yang mengandung beberapa steroid sapogenin seperti diosgenin, yamogenin, gitogenin, tigogenin, dan trigoneosid, serta alkaloid trigonellin. TFG memiliki aktivitas antidiabetik, estrogenik, dan antikanker. Penelitian ini bertujuan untuk menguji korelasi ak- tivitas sitotoksik TGF pada sel kanker payudara MCF-7 serta kadar steroid total. Ekstrak metanol TGF difraksi- sitotoksik pada sel MCF-7 diuji dengan uji MTT [3-(4,5-dimetiltiazol-2-il)2,5-difeniltetrazolium]. Kadar ste- roidnasi dengantotal ditetapkan etil asetat, dengan n-heksan, metode dan spektrofotometri.n-butanol. Tiap fraksi Hasil dipisahkan penelitian denganmenunjukkan kromatografi tidak terdapat kolom. Aktivitas korelasi antara aktivitas sitotoksik dengan kadar steroid total. Sehingga dapat disimpulkan bahwa efek sitotoksik TFG bukan merupakan kontribusi dari komponen steroid. Kata kunci: Trigonella foenum-graecum L., MTT, MCF-7, kadar steroid total ABSTRACT Trigonella foenum-graecum (TFG) is one of medicinal plants containing some steroidal sapogenins such as diosgenin, yamogenin, gitogenin, tigogenin and trigoneoside, also alkaloid trigonellin, which has many activity as antidiabetic, estrogenic and also as anti cancer. The aim of this research is to investigate the correlation of its cytotoxic activity on breast cancer cell line, MCF-7, with its total steroid level. Samples was prepared by fractioned the methanolic TFG with ethylacetate, n-hexane and n-buthanol. Each fraction then was separated by chromatographic coloumn. Cytotoxic activity was investigated using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5- Diphenyltetrazolium) assay on MCF-7 cell, while total steroid level was done using spectrophotometric methods. Results showed that there was no correlation between cytotoxic activity and total steroid level. Thus we can conclude that the cytotoxic effect from TFG is not caused by its steroid compounds. Key words: Trigonella foenum graecum L., MTT, MCF-7, total steroid level. 26 Volume 4, No. 1, Agustus 2011 CORRELATION BETWEEN CYTOTOXIC ACTIVITY ON MCF-7 CELL AND TOTAL STEROID LEVEL ON Trigonella foenum-graecum L. Korelasi aktivitas sitotoksik pada sel MCF-7 dan kadar steroid total Trigonella foenum-graecum L. INTRODUCTION Fenugreek seed or Foenigraeci semen is dried seed from Trigonella foenum-graecum L. (TFG), Leguminosae, (MMI, 1979). Geographical distribution of TFG is indigenous to the Mediter- ranean region, China, India and Indonesia (WHO, 2007). TFG contains some sapogenin steroid ingredients, e.g. diosgenin, precursor for sexual hormone (Evans, 2002), its isomer Yamogenin (Dewick, 1997), gitogenin, tigogenin, and trigo- neoside (saponine like estrogen) which have ef- fect as phytoestrogen for menopause symptoms therapy. Sapogenins are the aglycones or non- Protodioscin saccharide of saponins, one of phytochemical compound family. Sapogenins contain steroid or other triterpene frameworks as their key organic feature. Some steroidal sapogenins can serve as a practical starting point for semisynthesis of par- ticular steroid hormones. Tigogenin TFG contains diosgenin in base free form 0.8-2.2 % (Wiryowidagdo, 2000). TFG also con- Figure 1. Some sapogenine steroids of Trigonella tains alkaloids (trigonelline, an alkaloid pyridine, foenum-graecum L. - coside or ester form, isovitexin, orientin, vicenin, Empirically TFG was use as aphrodisiac, gentianin and karpain), flavonoids (vitexin in gly quercetin and luteolin), fatty oil 20-30%, essen- carminative, diuretic, emmenagogue, emollient, tial oil, saponine, nicotinamide, choline, bitter galactogogue and tonic (WHO, 2007). Many re- compound and mucilage (Evans, 2002). searches, preclinical and clinical, showed that TFG have activity for diabetic disease (Annida, 2004). TFG also predicted as Phytoestrogen cause have and immature female rat (Agustini, 2007). It can estrogenic effect on ovariectomized female rat induce uterine contraction, so it should be avoid- ed during pregnancy. Phytoestrogen is used as alternative for Hormone Replacement Therapy (HRT) to help reducing menopause symptoms. It can be used for long term until the body can make Volume 4, No. 1, Agustus 2011 27 Kurnia Agustini*, Wahono Sumaryono*, Azri Fitria** adaptation on the new level hormone (Badziad, MATERIALS AND METHODS 2003). Samples Preparation Extracts of TFG seeds and some of their sa- TFG seeds were obtained from Tawang- ponine constituents also have been found to have mangu, Central Java, Indonesia. Seeds were dried and grind, then were extracted with methanol. has been evaluated in the Ehrlich ascites carci- The methanolic extract was fractioned with n- anticarcinogenic activity in different setting. It hexane, ethylacetic (EtOAc) and n-buthanol. Fu- 70% inhibition of tumor cell growth compared ther, each fraction then separated by vacuum liq- noma model in BALB/c mice, where it affected with controls (Sur, 2001). Hibasami et al., (2003) uid chromatography using various eluens. Every suggest that growth inhibition of human leuke- extract and fraction was dried with vacuum ro- mia HL-60 cells by protodioscin, isolated from tary evaporator. TFG seeds, results from the induction of apopto- Total Steroid Analysis (Chapagin et al., 2005) sis. Moalic et al., (2001) reported that diosgenin 1 mg dried extract/ fraction diluted in 2 inhibits cell proliferation in the human osteosar- mL ethylacetate in a tube, then 1 ml reagent A coma 1547 cell line by induction of apoptosis and (contains p-anysaldehyde and ethylacetate (0.5 G1 phase cell cycle arrest. : 99.5)) and 1 ml reagent B (contains sulfuric Refer to data that showed TFG having es- acid glacial and ethyl acetate (1:1)) were added. trogenic activity as phytoestrogen, inspiring to Tube was put in water bath 600C for 10 minutes study its possibility as Selective Estrogen Recep- till color was occurred and then cooled in an- tor Modulators (SERMs) candidate. SERMs such other water bath 250C for 10 minutes. Color was as tamoxifen, which are used clinically for the measured by Spectrophotometer UV Vis 423nm, treatment of breast cancer, act as estrogen ago- against ethyl acetate solution as reagent blank. nists in certain tissues but exhibit antiestrogenic Results were compared with curve standard of Diosgenin (Sigma). several researches about SERMs candidates for Cell Culture effects in others (Rosenbaum, 2000). There are post tumor surgery therapy from phytoestrogen The cell lines MCF-7 (Human Breast Ad- pure compounds, such as dammarane, a sapoge- enocarcinoma) was obtained from Laboratory nine steroid from ginseng (Oh, 1999), Genistein for Development of Industrial Agro and Biomedi- cal Technology (LAPTIAB-BPPT) Indonesia. Cells stilbene from grape (Baht, 2001). were routinely maintained and grown in 75 cm2 (an isoflavone from soybean) and resveratrol, a 0 This research was done to investigate the C, 5% CO2 correlation between TFG’s cytotoxicity on hu- atmosphere. The growth medium was prepared flasks at 37 and in a 95% humidified man breast cancer cell line MCF7 and its total as following: RPMI 1640, Gibco life Technolo- steroids level in methanolic extract and its frac- gies with phenol red and 2 mM glutamine, 100 tioned (hexane, buthanol and ethylacetate). U/ml penicillin, 0.1 mg/ml Streptomycin, 1 mM sodium pyruvate and supplemented with 10% 28 Volume 4, No. 1, Agustus 2011 CORRELATION BETWEEN CYTOTOXIC ACTIVITY ON MCF-7 CELL AND TOTAL STEROID LEVEL ON Trigonella foenum-graecum L. Korelasi aktivitas sitotoksik pada sel MCF-7 dan kadar steroid total Trigonella foenum-graecum L. Foetal Bovine Serum (FBS, Gibco Life Technolo- RESULTS AND DISCUSSION gies) which already heat inactivated at 560C for TFG was extracted with methanol to 30 min. Passaging of cells was carried out using obtain more chemical phyto compound in it. 4 ml of trypsin-EDTA at room temperature for 75 After that, methanolic extract was fractioned cm2 by vacuum liquid chromatography and divided ml media with 10% FBS were used to reduce the into three fractions based on its polarity, they flask, respectively for 3 min. After that, 10 action of trypsin on cells. After centrifugation, are non-polar fraction (n-hexane fraction), semi- the obtained cells were platted. polar fraction (ethyl acetic fraction) and polar Cytotoxicity test with MTT method fraction (Buthanolic fraction). Methanolic extract Cells were platted into 96-well plates and other three fractions then were analyzed for (10,000 cells/well) in medium RPMI with phenol cytotoxicity activity on human breast cancer cell- red containing 10%Fetal Bovine Serum (FBS), line, MCF-7, and its total steroidal level. Result of 100U/ml penicillin, 0.1 mg/ml streptomycin these analyze are shown by Figure 2. Ethylacetic and 1 mM sodium pyruvate, then incubated for fraction gives the lowest IC50 (41.48 ppm) and 0 24 hours at 37 C, 5% CO2 and in a 95% humidi- the highest level of total steroid (20.033ppm) was
Recommended publications
  • Steroidal Glycoside Compounds As Core 2 Glcnac-T Inhibitors
    (19) TZZ_ZZ _T (11) EP 1 909 802 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/704 (2006.01) A61K 31/7048 (2006.01) 21.05.2014 Bulletin 2014/21 A61K 31/706 (2006.01) A61P 1/04 (2006.01) A61P 1/06 (2006.01) A61P 1/16 (2006.01) (2006.01) (2006.01) (21) Application number: 06755733.0 A61P 3/10 A61P 7/02 A61P 9/10 (2006.01) A61P 11/00 (2006.01) A61P 11/06 (2006.01) A61P 13/12 (2006.01) (22) Date of filing: 06.07.2006 A61P 17/06 (2006.01) A61P 31/18 (2006.01) A61P 19/02 (2006.01) (86) International application number: PCT/GB2006/002518 (87) International publication number: WO 2007/003957 (11.01.2007 Gazette 2007/02) (54) Steroidal glycoside compounds as core 2 GlcNAc-T inhibitors Steroidale Glycosid-Verbindungen als core 2 GlcNAc-T-Hemmer Glycosides steroïdiens en tant qu’inhibiteurs du core 2 GlcNAc-T (84) Designated Contracting States: WO-A-2004/062675 WO-A-2005/060977 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR WO-A-2005/120535 WO-A2-01/32679 HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI WO-A2-02/069980 CN-A- 1 415 625 SK TR US-A- 4 602 003 US-A- 5 104 856 US-A1- 2003 148 962 (30) Priority: 06.07.2005 GB 0513881 • DATABASE WPI 7 January 2004 (2004-01-07), (43) Date of publication of application: Derwent Publications Ltd., London, GB; Class 16.04.2008 Bulletin 2008/16 042,page 3, AN 2004-239758 XP002409228 HUANG H, LIU Z: "Medicine composition for (60) Divisional application: treating myocardial ischemia, angina pectoris 11163561.1 / 2 382 979 and cardiac infarction"
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0202238 A1 YANNIOS (43) Pub
    US 20170202238A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0202238 A1 YANNIOS (43) Pub. Date: Jul. 20, 2017 (54) DIETARY SUPPLEMENT COMPOSITIONS (52) U.S. Cl. WITH ENHANCED DELIVERY MATRIX, CPC ............... A23G 3/368 (2013.01); A23G 3/36 GUMMIES, CHOCOLATES, ATOMIZERS (2013.01); A23G 3/48 (2013.01); A23 V AND POWDERS CONTAINING SAME, AND 2002/00 (2013.01) METHODS OF MAKING SAME (71) Applicant: James John YLANNIOS, (57) ABSTRACT PLACENTIA, CA (US) (72) Inventor: James John YLANNIOS, A method of making dietary Supplement compositions PLACENTIA, CA (US) includes generating an aqueous phase (A1) having one or (21) Appl. No.: 15/475,636 more dietary Supplement nutrients (DSN1), generating an oil phase (O1), performing a first homogenizing step by mixing (22) Filed: Mar. 31, 2017 A1 and O1 thereby forming A1/O1 composition, performing a second homogenizing step by mixing the A1/O1 compo Related U.S. Application Data sition and the further added DSN2, performing a third (63) Continuation of application No. 15/414,877, filed on homogenizing step by mixing the A1/O1/DSN2 composition Jan. 25, 2017, which is a continuation-in-part of and a first flavor (F1), performing a fourth homogenizing application No. 14/132,486, filed on Dec. 18, 2013, step by mixing the A1/O1/DSN2/F1 composition and a gum now Pat. No. 9,585,417. dispersed with glycerin (GG), and performing a fifth homog enizing step by mixing the A1/O1/DSN2/F1/GG composi (60) Provisional application No. 61/837.414, filed on Jun.
    [Show full text]
  • Print This Article
    PEER-REVIEWED ARTICLE bioresources.com GC-MS Characterisation of Sapogenins from Sisal Waste and a Method to Isolate Pure Hecogenin Jener David G. Santos * and Alexsandro Branco ** Five steroidal sapogenins (tigogenin, neotigogenina, hecogenin, gloriogenin, and dehydrohecogenin) were characterised by gas chromatography coupled with mass spectrometry (GC-MS) from a hydrolysed extract of sisal waste. In addition, pure hecogenin, an important raw material for the pharmaceutical industry, was obtained from this waste by selective liquid-liquid extraction of saponins with only hecogenin as aglycone, followed by acid hydrolysis. The yield of pure hecogenin was 460 mg.Kg-1 of sisal waste. Keywords: Agave sisalana; Sisal waste; Extraction; Steroids; Hecogenin Contact information: Laboratory of Phytochemistry, State University of Feira de Santana, 44.036-900 Feira de Santana, Bahia, Brazil; Corresponding authors: *[email protected], **[email protected] INTRODUCTION Steroidal sapogenins are a glycone non-sugar portion of the saponin molecule used for the semi-synthesis of bioactive compounds. Example compounds used in this application include the following: smilagenin, sarsasapogenin, diosgenin, yamogenin, tigogenin, neotigogenin, gloriogenin, gentrogenin, hecogenin, sisalagenin, 9-dehydro- hecogenin, and gitogenin (Agrawal et al. 1985). Among these steroidal sapogenins, diosgenin, sarsasapogenin, and hecogenin are particularly important. The usefulness of hecogenin (Fig. 1) as a synthetic starting material is due to the presence of an oxygen atom in the C-12 position that can be moved to the C-11 position. This makes it possible to introduce the 9-11 double bond required for the syntheses of corticosteroids (Beauvoir 1976). Fig. 1. Chemical structural of hecogenin In the 1940s, steroidal sapogenins achieved great economic importance because of their transformation into pharmaceutically valuable derivatives such as corticosteroids (prednisone, dexamethasone, betamethasone, triamcinolone, and others), sexual hormones, and steroid diuretics (Fernández-Herrera et al.
    [Show full text]
  • Naturally Occurring Saponins: Chemistry and Biology
    Journal of Poisonous and Medicinal Plant Research Vol. 1(1), pp. 001-006, May, 2013 Available online at http://www.apexjournal.org ISSN 2315-8834© 2013 Apex Journal International Review Naturally occurring saponins: Chemistry and biology J. S. Negi 1*, P. S. Negi 2, G. J. Pant 2, M. S. M. Rawat 2, S. K. Negi 3 1Herbal Research and Development Institute, Mandal, Gopeshwar (Chamoli) - 246 401, Uttarakhand, India. 2Department of Chemistry, HNB Garhwal University, Srinagar (Garhwal)- 246 174, Uttarakhand, India. 3Department of Botany, HNB Garhwal University, Srinagar (Garhwal) - 246 174, Uttarakhand, India. Accepted 2 April, 2013 Naturally occurring saponins are glycosides of steroids, alkaloids and triterpenoids. They are widely distributed in nature and reported to be present in 500 genera of plants. A wide variety of plants belonging to family Liliaceae, Dioscoreaceae, Solanaceae, Sapindaceae and Agavaceae are the major source of saponins. They are amorphous substances having high molecular weight and are soluble in water and alcohol to produce foam but organic solvents inhibit their foaming property. Plants saponins are generally extracted into butanol through liquid-liquid partition and separated through column chromatography using silica gel as adsorbent and chloroform: methanol as mobile phase. HPLC, GC, Sephadex LH-20 Chromatography, DCCC, preparative paper chromatography and TLC were also used for the separation and isolation of saponins. The structures of saponins were determined by several spectroscopic techniques, viz., UV, IR, 1H NMR, 13 C NMR and Mass spectroscopy. Saponins possess several biological activities such as antioxidant, immunostimulant, antihepatotoxic, antibacterial, anticarcinogenic, antidiarrheal, antiulcerogenic, antioxytoxic, antihypoglycemic, anticytotoxic and antimolluscicidal. Saponins are biologically synthesized by C5 isoprene units through cytosolic mevalonate pathway.
    [Show full text]
  • Phytochemical and Biological Investigations of Asparagus Adscendens and Trillium Govanianum
    Phytochemical and Biological Investigations of Asparagus adscendens and Trillium govanianum By Kashif Maqbool Khan CIIT/FA12-R60-004/ATD PhD Thesis In Pharmacy COMSATS University Islamabad, Abbottabad Campus - Pakistan Fall, 2018 COMSATS University Islamabad Phytochemical and Biological Investigations of Asparagus adscendens and Trillium govanianum A Thesis Presented to COMSATS University Islamabad, Abbottabad Campus In partial fulfillment of the requirement for the degree of PhD (Pharmacy) By Kashif Maqbool Khan CIIT/FA12-R60-004/ATD Fall, 2018 ii Phytochemical and Biological Investigations of Asparagus adscendens and Trillium govanianum A Post Graduate Thesis submitted to the Department of Pharmacy as partial fulfillment of the requirement for the award of Degree of Ph.D in Pharmacy. Name Registration Number Kashif Maqbool Khan CIIT/FA12-R60-004/ATD Supervisor Dr. Abdul Manann Associate Professor Department of Pharmacy COMSATS University Islamabad, Abbottabad Campus Co-Supervisor Dr. Muhammad Arfan Associate Professor Department of Chemistry, School of Natural Sciences (SNS) National University of Sciences & Technology (NUST), Islamabad iii iv v vi vii DEDICATION Dedicated to my family and friends who were the pillars of support during my PhD study viii ACKNOWLEDGEMENTS I bow my head before Almighty Allah, The omnipotent, The omnipresent, The merciful, The most gracious, The compassionate, The beneficent, who is the entire and only source of every knowledge and wisdom endowed to mankind and who blessed me with the ability to do this work. It is the blessing of Almighty Allah and His Prophet Hazrat Muhammad (Sallallaho Alaihe Wasallam) which enabled me to achieve this goal. I would like to take this opportunity to convey my cordial gratitude and appreciation to my worthy, reverently and zealot supervisor Dr.
    [Show full text]
  • Yamogenin 3-O-β- <Emphasis Type="Smallcaps">D
    J. Chem. Sci., Vol. 116, No. 2, March 2004, pp. 79–82. © Indian Academy of Sciences. Yamogenin 3–O–b–D-glucopyranosyl (1 ® 4)–O–a–D-xylopyranoside from the seeds of Trigonella foenum-graecum V K SAXENA* and ALBERT SHALEM Department of Chemistry, Dr H S Gour University, Sagar 470 003, India e-mail: [email protected] MS received 17 March 2003; revised 10 June 2003 Abstract. Trigonella foenum-graecum (NO – Leguminosae) is cultivated in many parts of India. It has been found to possess significant medicinal value. Its leaves are used both internally and externally to re- duce swelling, prevent falling of hair and in treating burns. Its seeds are carminative, antipyretic, anthelmintic and diuretic, and are also useful in treatment of dropsy, chronic cough, heart diseases, bron- chitis, piles and small pox. This plant also possesses antidiabetic property. The present communication deals with the isolation and identification of steroidal saponin SA-III, characterised as yamogenin 3–O–b–D-glucopyranosyl (1 ® 4)–O–a–D-xylopyranoside, which was iso- lated from the seeds of Trigonella foenum-graecum. Keywords. Trigonella foenum-graecum; Leguminosae; steroidal saponin; yamogenin 3–O–b–D-gluco- pyranosyl (1 ® 4)–O–a–D-xylopyranoside. 1. Introduction trum of SA-III shows the spiroketal nature of SA- III. It shows all characteristic colour reactions of Trigonella foenum–graecum1–3 (NO – Leguminosae) steroidal saponin9,10 and also gives positive Molisch and is cultivated in many parts of India. It has been test for glycoside. found to possess significant medicinal value. Its Compound SA-III on acid hydrolysis yielded SA- leaves are used both internally and externally to re- III (A), C27H42O3, m.pt.
    [Show full text]
  • Sample Title
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Indonesian Journal of Cancer Chemoprevention Indonesian Journal of Cancer Chemoprevention, June 2011 ISSN: 2088–0197 e-ISSN: 2355-8989 Activity of Trigonella foenum-graecum on Some Cell Lines Kurnia Agustini*, Wahono Sumaryono, and R. Micho Widyanto Center for Pharmaceuticals and Medical Technology Laboratory for Development of Industrial Agro and Biomedical Technology Agency for the Assessment and Application of Technology (BPPT) Kawasan PUSPIPTEK, Serpong – Indonesia Abstract Trigonella foenum-graecum (TFG) is one of medicinal plants contains some steroidal sapogenin such as diosgenin, yamogenin, gitogenin, tigogenin and trigoneoside, also alkaloid trigonellin, which is have many activity as antidiabetic, estrogenic and also as anti cancer. This experiment was done to explore the activity of some extract of TFG on some cell lines such as MCF7 (Human Breast Cancer Cell-line), T47D (Human Breast Cancer Cell-line), PC3 (Human Prostate Cell-line) and SKOV (Human Ovarian Carcinoma Cell-line). This assay was done using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium) methods. Results showed that ethyl acetate fraction gives the lowest IC50 than another extracts. IC50 for PC3 is 66.24 ppm, IC50 for MCF7 is 41.81 ppm, IC50 for T47D is 58.63 ppm. These datas can be used for further research to isolate the active compound from TFG. Keywords: Trigonella foenum-graecum, MCF-7, T47D, SKOV, PC3. INTRODUCTION Empirically fenugreek was use as aphrodisiac, carminative, diuretic, emmenagogue, emollient, Fenugreek seed or Foenigraeci semen is galactogogue and tonic. Many researches, dried seed from Trigonella foenum-graecum L., preclinically and clinically, showed that fenugreek Leguminosae, (Anonim, 1979).Geographical have activity for diabetic disease (Annida and distribution of Fenugreek is indigenous to the Stanley 2004).Fenugreek also have estrogenic Mediterranean region, China, India and Indonesia.
    [Show full text]
  • ICP TRM 002 E Eng.Pdf (6.079Mb)
    ICP /TFYJ 002-E 10 Oc tober 1986 ENGLl SH ONLY REPORT ~IENTIFIC GROUP ON HERBAL MEDICINE RESEARCH ~ Convened by the REGIONAL OFFICE FOR THE WESTERN PACIFIC OF THE WORLD HEALTH ORGANIZATION Tokyo, Japan, 10-12 March 1986 Not for sale Printed and Distributed by the Regional Office for the Western Pacific of the World Health Organization Manila, Philippines October 1986 'Wh0/ A4aoila, l)jJiLij.);)L.... ..; "OtE The vie~. expressed in thi. repott are those of the participants in the meeting of the Scientific Gtoup ott Herbal Medicine Research and do not necessarily teflect the policit. of the organization. This report has been prep"rteo ty the Regional Ottice for the liestern Pacific of the World Health organization for the governn,ents of ~len.ber States in the Region and for the participants in the meeting of the Scientific Group on Herbal Meaicine Research which was held in Tokyo, Japan, fron, 10 to 12 March 1980. - ii - CONTENTS 1. INTRODUCTION . ,. .. ,. ............................... ,. ...... 1 1.1 Background ... ..•.. .•...... ••. ..•. .... ..•. .••..•••..• 1 1.2 Objectives of the Scientific Group •••••••••••••••••• 1 2. ORGANIZATION OF THE SCIENTIFIC GROUP •••••••••••••••••••• 2 2.1 Participants .......•....•.• ,........................ 2 2.2 Opening address ...................................... 2 2.3 Selection of officers ••••••••••••••••••••••••••.•..• 2 2.4 Agenda •••...••.....•...••.•....•...•..••...•.••..... 2 2.5 Working documents ..•....••••...••.•••.•.•..•••••.••. 2 2.6 Closing session.....................................
    [Show full text]
  • "Saponins," In: Ullmann's Encyclopedia of Industrial Chemistry
    Article No : a23_485 Saponins MICHAEL W. SCHWARZ, E. Merck OHG, Darmstadt, Federal Republic of Germany 1. Introduction......................... 177 3.2. Glycoalkaloids ...................... 183 1.1. General Properties.................... 178 3.3. Triterpene Saponins................... 184 1.2. Distribution ......................... 178 4. Animal Saponins ..................... 188 1.3. Isolation ............................ 178 4.1. Asterosaponins....................... 188 1.4. Structure Elucidation.................. 179 4.2. Holothurins ......................... 189 1.5. Analysis ............................ 179 References .......................... 189 2. Pharmacology ....................... 179 3. Plant Saponins ....................... 180 3.1. Steroid Saponins ..................... 180 Abbreviations galA: b-D-galacturonic acid glc: b-D-glucose api: b-D-apiose glcA: b-D-glucuronic acid ara: a-L-arabinose 0 qui: b-D-quinovose drib: b-D-2 -deoxyribose rha: a- -rhamnose f: furanoside L xyl: b-D-xylose fuc: b-D-fucose fru: b-D-fructose gal: b-D-galactose 1. Introduction Saponins are categorized according to the structure of the aglycone moiety (sapogenin) and Saponins are glycosides (see ! Carbohydrates: the number of linked sugar chains. Aglycones Occurrence, Structures and Chemistry) occur- can be divided into triterpenoid and steroid ring primarily in plants but also in starfish sapogenins. Steroid saponins with basic proper- (Asteroidea) and sea cucumbers (Holothuridea). ties are termed glycoalkaloids. Properties generally considered to be shared by Hexoses common in all saponins are b-D- this group of natural products are surfactant glucose (glc), b-D-galactose (gal), and a-L- activity, hemolytic action, steroid- complexing rhamnose (rha); pentoses are a-L-arabinose ability, and biocidal capability. (ara) and b-D-xylose (xyl). Pentoses occur The characteristic soapy lather formed when primarily as pyranosides, less frequently as saponin- containing plant extracts are agitated in furanosides (f).
    [Show full text]
  • WHO Monographs on Selected Medicinal Plants. Volume 3
    WHO monographs on WHO monographs WHO monographs on WHO published Volume 1 of the WHO monographs on selected medicinal plants, containing 28 monographs, in 1999, and Volume 2 including 30 monographs in 2002. This third volume contains selected an additional collection of 32 monographs describing the quality control and use of selected medicinal plants. medicinal Each monograph contains two parts, the first of which provides plants selected medicinal plants pharmacopoeial summaries for quality assurance purposes, including botanical features, identity tests, purity requirements, Volume 3 chemical assays and major chemical constituents. The second part, drawing on an extensive review of scientific research, describes the clinical applications of the plant material, with detailed pharmacological information and sections on contraindications, warnings, precautions, adverse reactions and dosage. Also included are two cumulative indexes to the three volumes. The WHO monographs on selected medicinal plants aim to provide scientific information on the safety, efficacy, and quality control of widely used medicinal plants; provide models to assist Member States in developing their own monographs or formularies for these and other herbal medicines; and facilitate information exchange among Member States. WHO monographs, however, are Volume 3 Volume not pharmacopoeial monographs, rather they are comprehensive scientific references for drug regulatory authorities, physicians, traditional health practitioners, pharmacists, manufacturers, research scientists
    [Show full text]
  • Saponins As Cytotoxic Agents: a Review
    Phytochem Rev (2010) 9:425–474 DOI 10.1007/s11101-010-9183-z Saponins as cytotoxic agents: a review Irma Podolak • Agnieszka Galanty • Danuta Sobolewska Received: 13 January 2010 / Accepted: 29 April 2010 / Published online: 25 June 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Saponins are natural glycosides which Con A Concanavalin A possess a wide range of pharmacological properties ER Endoplasmic reticulum including cytotoxic activity. In this review, the recent ERK Extracellular signal-regulated studies (2005–2009) concerning the cytotoxic activity kinase of saponins have been summarized. The correlations GADD Growth arrest and DNA damage- between the structure and the cytotoxicity of both inducible gene steroid and triterpenoid saponins have been described GRP Glucose regulated protein as well as the most common mechanisms of action. hTERT Telomerase reverse transcriptase JAK Janus kinase Keywords Cytotoxic mechanisms Á MEK = MAPK Mitogen-activated protein kinase Glycosides Á Sar Á Steroid Á Triterpenoid MMP Matrix metalloproteinase mTOR Mammalian target of rapamycin Abbreviations NFjB Nuclear factor kappa-light-chain- AMPK AMP activated protein kinase enhancer of activated B cells BiP Binding protein NO Nitric oxide BrDU Bromodeoxyuridine PARP Poly ADP ribose polymerase CCAAT Cytidine-cytidine-adenosine- PCNA Proliferating cell nuclear antigen adenosine-thymidine PI3K Phosphoinositide-3-kinase CD Cluster of differentiation molecule PP Protein phosphatase CDK Cyclin-dependent kinase PPAR-c Peroxisome proliferator-activated CEBP CCAAT-enhancer-binding protein receptor c CHOP CEPB homology protein Raf Serine/threonine specific kinase STAT Signal transducer and activator of transcription TIMP Tissue inhibitor of metallo- proteinase TSC Tuberous sclerosis complex VEGF Vascular endothelial growth factor & I.
    [Show full text]
  • Potent Antifungal Activity of Saponins from Medicinal
    POTENT ANTIFUNGAL ACTIVITY OF SAPONINS FROM MEDICINAL PLANTS AGAINST CANDIDA ALBICANS. _________________________________________________ A Thesis presented to the Faculty of Natural and Applied Sciences at Notre Dame University-Louaize _________________________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science _______________________________________________________________ by INGRID NADER JANUARY 2021 Notre Dame University - Louaize Faculty of Natural and Applied Sciences Department of Sciences We hereby approve the thesis of Ingrid Nader Candidate for the degree of Master of Science in Biology _____________________________________________________________________ Dr. Robert Dib Supervisor, Chair _____________________________________________________________________ Dr. Tanos Hage Committee Member _____________________________________________________________________ Dr. Elie Salem Committee Member i Acknowledgments First and foremost, I would like to give thanks to God the Almighty for giving me the strength, clarity and perseverance to carry out this research. His sustenance and benevolence brought out the best in me during my academic years. I would like to express my deepest appreciation to Dr. Robert Dib of the Faculty of Natural and Applied Sciences, Department of Sciences, at Notre Dame University-Louaize, my decent thesis advisor, who continually conveyed a spirit of excitement with regard to research. His prodigious proficiency and expertise were of immense help ever since I started my thesis work. Without his guidance, assistance and perpetual support, the present research would have never come to life. In addition, I would like to extend my most sincere gratitude to Dr. Tanos G. Hage of the Faculty of Natural and Applied Sciences, Department of Sciences, at Notre Dame University-Louaize, who is the true embodiment of what a genuine teacher should be, who has been my mentor throughout my college years.
    [Show full text]