Intrabody Tetrodotoxin Distribution and Possible Hypothesis for Its Migration in Ribbon Worms Cephalothrix Cf

Total Page:16

File Type:pdf, Size:1020Kb

Intrabody Tetrodotoxin Distribution and Possible Hypothesis for Its Migration in Ribbon Worms Cephalothrix Cf marine drugs Article Intrabody Tetrodotoxin Distribution and Possible Hypothesis for Its Migration in Ribbon Worms Cephalothrix cf. simula (Palaeonemertea, Nemertea) Grigorii V. Malykin, Alexei V. Chernyshev and Timur Yu. Magarlamov * A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; [email protected] (G.V.M.); [email protected] (A.V.C.) * Correspondence: [email protected]; Tel.: +7-914-661-7949 Abstract: Tetrodotoxin (TTX) is a potent neurotoxin found in many marine and terrestrial animals, but only a few species, such as the ribbon worms of the genus Cephalothrix, accumulate it in extremely high concentrations. The intrabody distribution of TTX in highly toxic organisms is of great interest because it helps researchers to understand the pathways by which the toxin migrates, accumulates, and functions in tissues. Using immunohistochemistry with anti-TTX antibodies, the authors of this study investigated the toxin’s distribution inside the organs, tissues, and cells of Cephalothrix cf. simula. The cell types of TTX-positive tissues were identified by light microscopy. The main sites of TTX accumulation occurred in the secretory cells of the integuments, the microvilli of the epidermal ciliary cells, cephalic glands, the glandular epithelia of the proboscises, the enterocytes of the digestive systems, and nephridia. Obtained data suggest the toxin migrates from the digestive Citation: Malykin, G.V.; system through blood vessels to target organs. TTX is excreted from the body through the nephridia Chernyshev, A.V.; Magarlamov, T.Y. and mucus of epidermal cells. Intrabody Tetrodotoxin Distribution and Possible Hypothesis for Its Keywords: tetrodotoxin; TTX; TTX distribution; CLSM; LC–MC/MC; ribbon worm; Nemertea; Migration in Ribbon Worms Cephalothrix Cephalothrix cf. simula ; toxin migration (Palaeonemertea, Nemertea). Mar. Drugs 2021, 19, 494. https:// doi.org/10.3390/md19090494 1. Introduction Academic Editors: Andrew Turner Nemertea (ribbon worms) comprise a phylum of invertebrates, mainly marine an- and Tim Harwood imals, that are currently divided into three classes: Palaeonemertea, Pilidiophora, and Hoplonemertea [1]. Most nemerteans are active predators but also feed on carrion [2–4]. Received: 26 July 2021 Small crustaceans, polychaetes, and mollusks are high on the list of food priorities. Even Accepted: 26 August 2021 though all the members of the phylum are soft-bodied (i.e., have no external mechanically Published: 29 August 2021 protective structures), they do not usually have natural predators. For hunting and protec- tion, nemerteans secrete a poison containing a wide range of toxins [5,6]. The only toxin Publisher’s Note: MDPI stays neutral found in representatives of all three classes is tetrodotoxin (TTX), which was discovered with regard to jurisdictional claims in more than 30 years ago [7]. In subsequent years, the presence of TTX and its analogues published maps and institutional affil- (TTXs) in nemerteans was reported by various scientific groups [8–11], but the genus iations. Cephalothrix was found to have a toxin concentration comparable to that of the pufferfish and blue-ringed octopuses [8,10–15], making it the only nemertean species to be classified as “extremely toxic” (toxicity higher than 1000 MU/g (178 µg/g)), according to the toxicity classification established by Japan’s Ministry of Health, Labor and Social Security [10]. Copyright: © 2021 by the authors. In 2004, Tanu et al. [16] were the first to investigate the intrabody distribution of TTX Licensee MDPI, Basel, Switzerland. in an unidentified species of the genus Cephalothrix, but they only studied the intrabody This article is an open access article distribution in the foregut region and only described TTX-positive cells, not all the cell types distributed under the terms and in TTX-positive tissues and organs. In the current work, four regions of toxic Cephalothrix cf. conditions of the Creative Commons simula were studied: the precerebral, the foregut, and the anterior and posterior regions of Attribution (CC BY) license (https:// the intestine. At the light-optical level, all the cell types of TTX-positive tissues (the cephalic creativecommons.org/licenses/by/ 4.0/). gland, the integument, the epithelium of digestive system, the glandular epithelium of Mar. Drugs 2021, 19, 494. https://doi.org/10.3390/md19090494 https://www.mdpi.com/journal/marinedrugs Mar. Drugs 2021, 19, 494 2 of 18 Mar. Drugs 2021, 19, 494 2 of 17 (the cephalic gland, the integument, the epithelium of digestive system, the glandular ep- ithelium of the proboscis, and the blood vascular and excretory systems) were character- izedthe proboscis,. Using confocal and the laser blood-scanning vascular microscopy and excretory (CLSM) systems) with anti were-TTX characterized. antibodies and Using cry- osections,confocal laser-scanning the types of cell microscopy accumulating (CLSM) the toxins with anti-TTX were identified antibodies, thereby and cryosections, providing new the datatypes on of toxin cell accumulating localization. I thessues toxins regarding were identified, toxin intake thereby and migration providing with newin data the on nemer- toxin teanlocalization.’s body, as Issues well regardingas TTX functions, toxin intake are discussed. and migration within the nemertean’s body, as well as TTX functions, are discussed. 2. Results 2. Results 2.1. TTX Measurement by LC–MS/MS 2.1. TTX Measurement by LC–MS/MS High-performance liquid chromatography–tandem mass spectrometry (HPLC– MS/MSHigh-performance) analysis revealed liquid TTX chromatography–tandem in whole-body extracts mass of two spectrometry specimens (HPLC–MS/MS) of Cephalothrix analysis revealed TTX in whole-body extracts of two specimens of Cephalothrix cf. simula: cf. simula: in Worm 1, the TTX concentration was 13,478.26 ng/g of body weight, and in in Worm 1, the TTX concentration was 13,478.26 ng/g of body weight, and in Worm 2, it Worm 2, it was 9685 ng/g of body weight (Figure 1). was 9685 ng/g of body weight (Figure1). FigureFigure 1. 1. HighHigh-performance-performance liquid liquid chromatography chromatography–tandem–tandem mass mass spectrometry spectrometry (HPLC (HPLC–MS/MS)–MS/MS) chromatogramschromatograms of of standard standard tetrodotoxin tetrodotoxin (TTX) (TTX) and and TTX TTX obtained obtained from from whole whole-body-body extracts extracts of of twotwo worms worms of of CephalothrixCephalothrix cf.cf. simulasimula.. 2.2.2.2. TTX TTX D Distributionistribution by by CLSM CLSM CLSMCLSM with with the the anti anti-TTX-TTX antibodies antibodies revealed revealed the the toxin toxin in inall all four four regions regions (the (the prece- pre- rebralcerebral region region,, the the foregut, foregut, and and the theanterior anterior and andposterior posterior regions regions of the of intestine) the intestine) of two of wormstwo worms (Figure (Figure 2). An2 ).intense An intense label was label found was in found the glandular in the glandular epithelium epithelium of the proboscis, of the nephridia,proboscis, epidermis, nephridia, foregut epidermis,, and foregut, intestinal and epitheli intestinala (Table epithelia 1 and (TableFigure1 3).and A Figuremedium3).- intensityA medium-intensity label was detected label was in detectedthe cephalic in the gland, cephalic lateral gland, nerve laterals, and nerves, oocytes and (T oocytesable 1). Weak(Table TTX1). Weak-like immunoreactivity TTX-like immunoreactivity was observed was observedin the musculature in the musculature of the body of thewall body and proboscis,wall and proboscis, as well asas in wellthe endothelium as in the endothelium of blood vessels of blood (Table vessels 1). (Table1). Mar. Drugs 2021, 19, 494 3 of 17 Mar. Drugs 2021, 19, 494 3 of 18 Mar. Drugs 2021, 19, 494 3 of 18 FigureFigure 2.2. TetrodotoxinTetrodotoxin (TTX)-like(TTX)-like immunoreactivityimmunoreactivity in different body regions of Cephalothrix cf. simula.. The The c confocal onfocal laser laser scanning micrographs show substacks of transverse sections. Red, TTX-like immunoreactivity; green, -acetylated tubulin scanningFigure 2. micrographs Tetrodotoxin show (TTX) substacks-like immunoreactivity of transverse sections.in different Red, body TTX-like regions immunoreactivity; of Cephalothrix cf. simula green,. Theα-acetylated confocal laser tubulin immunoreactivity; blue, nuclei, (4′,6-diamidino-2-phenylindole (DAPI) stain; yellow, musculature, phalloidin-positive. (А) immunoreactivity;scanning micrographs blue, show nuclei, substacks (40,6-diamidino-2-phenylindole of transverse sections. Red, (DAPI)TTX-like stain; immunoreactivity; yellow, musculature, green, - phalloidin-positive.acetylated tubulin Precerebral region. (В) Foregut region. (C) Anterior intestine region. (D) Posterior intestine region. bv, blood vessel; cg, ce- (Aimmunoreactivity;) Precerebral region. blue (B, nuclei,) Foregut (4′,6 region.-diamidino (C)- Anterior2-phenylindole intestine (DAPI region.) stain (D; yellow) Posterior, musculature, intestine phalloidin region. bv,-positive. blood vessel; (А) phalic gland; ds, dorsal side; ep, epidermis; fg, foregut; in, intestine; ln, lateral nerve; mw, musculature of body wall; pr, pro- cg,Precerebral cephalic gland; region. ds, (В dorsal) Foregut side; region. ep, epidermis; (C) Anterior fg, intestine foregut; region in, intestine;. (D) Posterior ln, lateral intestine nerve; region mw, musculature. bv, blood vessel; of body cg, ce- wall; boscis;phalic rc,
Recommended publications
  • Tetrodotoxin
    Niharika Mandal et al. / Journal of Pharmacy Research 2012,5(7),3567-3570 Review Article Available online through ISSN: 0974-6943 http://jprsolutions.info Tetrodotoxin: An intriguing molecule Niharika Mandal*, Samanta Sekhar Khora, Kanagaraj Mohanapriya, and Soumya Jal School of Biosciences and Technology, VIT University, Vellore-632013 Tamil Nadu, India Received on:07-04-2012; Revised on: 12-05-2012; Accepted on:16-06-2012 ABSTRACT Tetrodotoxin (TTX) is one of the most potent neurotoxin of biological origin. It was first isolated from puffer fish and it has been discovered in various arrays of organism since then. Its origin is still unclear though some reports indicate towards microbial origin. TTX selectively blocks the sodium channel, inhibiting action potential thereby, leading to respiratory paralysis. TTX toxicity is mainly caused due to consumption of puffer fish. No Known antidote for TTX exists. Treatment is symptomatic. The present review is therefore, an effort to give an idea about the distribution, origin, structure, pharmacol- ogy, toxicity, symptoms, treatment, resistance and application of TTX. Key words: Tetrodotoxin, Neurotoxin, Puffer fish. INTRODUCTION One of the most intriguing biotoxins isolated and described in the twentieth cantly more toxic than TTX. Palytoxin and maitotoxin have potencies nearly century is the neurotoxin, Tetrodotoxin (TTX, CAS Number [4368-28-9]). 100 times that of TTX and Saxitoxin, and all four toxins are unusual in being A neurotoxin is a toxin that acts specifically on neurons usually by interact- non-proteins. Interestingly, there is also some evidence for a bacterial bio- ing with membrane proteins and ion channels mostly resulting in paralysis.
    [Show full text]
  • A New Species of Bathyal Nemertean, Proamphiporus Kaimeiae Sp
    Species Diversity 25: 183–188 Published online 8 August 2020 DOI: 10.12782/specdiv.25.183 A New Species of Bathyal Nemertean, Proamphiporus kaimeiae sp. nov., off Tohoku, Japan, and Molecular Systematics of the Genus (Nemertea: Monostilifera) Natsumi Hookabe1,2,5, Shinji Tsuchida3, Yoshihiro Fujiwara3, and Hiroshi Kajihara4 1 Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan E-mail: [email protected] 2 Present address: Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa 238-0225, Japan E-mail: [email protected] 3 Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan 4 Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan 5 Corresponding author (Received 21 October 2019; Accepted 15 April 2020) http://zoobank.org/71D0D145-2CE7-4592-BD82-C67EAA0A41E5 The monostiliferous hoplonemertean Proamphiporus kaimeiae sp. nov. is described based on a single specimen collect- ed from the bottom of the Northwest Pacific, 262 m deep, off Tohoku in Japan, by use of a remotely operated vehicle during a cruise organized by Tohoku Ecosystem-Associated Marine Sciences (TEAMS) research project in 2019. The position of the cerebral organs in the new species, being posterior to the proboscis insertion, is unusual for Eumonostilifera, which is one of the diagnostic traits of the so-far monospecific Proamphiporus Chernyshev and Polyakova, 2019, and Amphiporus rectangulus Strand, Herrera-Bachiller, Nygren, and Kånneby, 2014. The latter is herein transferred to Proamphiporus to yield a new combination, Proamphiporus rectangulus comb. nov., based on the reported internal morphology. Molecular phylo- genetic analyses based on 16S rRNA, cytochrome c oxidase subunit I, 18S rRNA, 28S rRNA, and histone H3 genes placed P.
    [Show full text]
  • Suppression of Potassium Conductance by Droperidol Has
    Anesthesiology 2001; 94:280–9 © 2001 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Suppression of Potassium Conductance by Droperidol Has Influence on Excitability of Spinal Sensory Neurons Andrea Olschewski, Dr.med.,* Gunter Hempelmann, Prof., Dr.med., Dr.h.c.,† Werner Vogel, Prof., Dr.rer.nat.,‡ Boris V. Safronov, P.D., Ph.D.§ Background: During spinal and epidural anesthesia with opi- Naϩ conductance.5–8 The sensitivity of different compo- oids, droperidol is added to prevent nausea and vomiting. The nents of Naϩ current to droperidol has further been mechanisms of its action on spinal sensory neurons are not studied in spinal dorsal horn neurons9 by means of the well understood. It was previously shown that droperidol se- 10,11 lectively blocks a fast component of the Na؉ current. The au- “entire soma isolation” (ESI) method. The ESI Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/94/2/280/403011/0000542-200102000-00018.pdf by guest on 25 September 2021 thors studied the action of droperidol on voltage-gated K؉ chan- method allowed a visual identification of the sensory nels and its effect on membrane excitability in spinal dorsal neurons within the spinal cord slice and further pharma- horn neurons of the rat. cologic study of ionic channels in their isolated somata Methods: Using a combination of the patch-clamp technique and the “entire soma isolation” method, the action of droperi- under conditions in which diffusion of the drug mole- -dol on fast-inactivating A-type and delayed-rectifier K؉ chan- cules is not impeded by the connective tissue surround nels was investigated.
    [Show full text]
  • Biological Toxins Fact Sheet
    Work with FACT SHEET Biological Toxins The University of Utah Institutional Biosafety Committee (IBC) reviews registrations for work with, possession of, use of, and transfer of acute biological toxins (mammalian LD50 <100 µg/kg body weight) or toxins that fall under the Federal Select Agent Guidelines, as well as the organisms, both natural and recombinant, which produce these toxins Toxins Requiring IBC Registration Laboratory Practices Guidelines for working with biological toxins can be found The following toxins require registration with the IBC. The list in Appendix I of the Biosafety in Microbiological and is not comprehensive. Any toxin with an LD50 greater than 100 µg/kg body weight, or on the select agent list requires Biomedical Laboratories registration. Principal investigators should confirm whether or (http://www.cdc.gov/biosafety/publications/bmbl5/i not the toxins they propose to work with require IBC ndex.htm). These are summarized below. registration by contacting the OEHS Biosafety Officer at [email protected] or 801-581-6590. Routine operations with dilute toxin solutions are Abrin conducted using Biosafety Level 2 (BSL2) practices and Aflatoxin these must be detailed in the IBC protocol and will be Bacillus anthracis edema factor verified during the inspection by OEHS staff prior to IBC Bacillus anthracis lethal toxin Botulinum neurotoxins approval. BSL2 Inspection checklists can be found here Brevetoxin (http://oehs.utah.edu/research-safety/biosafety/ Cholera toxin biosafety-laboratory-audits). All personnel working with Clostridium difficile toxin biological toxins or accessing a toxin laboratory must be Clostridium perfringens toxins Conotoxins trained in the theory and practice of the toxins to be used, Dendrotoxin (DTX) with special emphasis on the nature of the hazards Diacetoxyscirpenol (DAS) associated with laboratory operations and should be Diphtheria toxin familiar with the signs and symptoms of toxin exposure.
    [Show full text]
  • Animal Venom Derived Toxins Are Novel Analgesics for Treatment Of
    Short Communication iMedPub Journals 2018 www.imedpub.com Journal of Molecular Sciences Vol.2 No.1:6 Animal Venom Derived Toxins are Novel Upadhyay RK* Analgesics for Treatment of Arthritis Department of Zoology, DDU Gorakhpur University, Gorakhpur, UP, India Abstract *Corresponding authors: Ravi Kant Upadhyay Present review article explains use of animal venom derived toxins as analgesics of the treatment of chronic pain and inflammation occurs in arthritis. It is a [email protected] progressive degenerative joint disease that put major impact on joint function and quality of life. Patients face prolonged inappropriate inflammatory responses and bone erosion. Longer persistent chronic pain is a complex and debilitating Department of Zoology, DDU Gorakhpur condition associated with a large personal, mental, physical and socioeconomic University, Gorakhpur, UttarPradesh, India. burden. However, for mitigation of inflammation and sever pain in joints synthetic analgesics are used to provide quick relief from pain but they impose many long Tel: 9838448495 term side effects. Venom toxins showed high affinity to voltage gated channels, and pain receptors. These are strong inhibitors of ion channels which enable them as potential therapeutic agents for the treatment of pain. Present article Citation: Upadhyay RK (2018) Animal Venom emphasizes development of a new class of analgesic agents in form of venom Derived Toxins are Novel Analgesics for derived toxins for the treatment of arthritis. Treatment of Arthritis. J Mol Sci. Vol.2 No.1:6 Keywords: Analgesics; Venom toxins; Ion channels; Channel inhibitors; Pain; Inflammation Received: February 04, 2018; Accepted: March 12, 2018; Published: March 19, 2018 Introduction such as the back, spine, and pelvis.
    [Show full text]
  • Phylum Nemertea)
    THE BIOLOGY AND SYSTEMATICS OF A NEW SPECIES OF RIBBON WORM, GENUS TUBULANUS (PHYLUM NEMERTEA) By Rebecca Kirk Ritger Submitted to the Faculty of the College of Arts and Sciences of American University in Partial Fulfillment of the Requirements for the Degree of Master of Science In Biology Chair: Dr. Qiristopher'Tudge m Dr.David C r. Jon L. Norenburg Dean of the College of Arts and Sciences JuK4£ __________ Date 2004 American University Washington, D.C. 20016 AMERICAN UNIVERSITY LIBRARY 1 1 0 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1421360 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 1421360 Copyright 2004 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE BIOLOGY AND SYSTEMATICS OF A NEW SPECIES OF RIBBON WORM, GENUS TUBULANUS (PHYLUM NEMERTEA) By Rebecca Kirk Ritger ABSTRACT Most nemerteans are studied from poorly preserved museum specimens.
    [Show full text]
  • Detailed Reconstruction of the Nervous and Muscular System Of
    Kerbl et al. BMC Evolutionary Biology (2015) 15:277 DOI 10.1186/s12862-015-0531-x RESEARCH ARTICLE Open Access Detailed reconstruction of the nervous and muscular system of Lobatocerebridae with an evaluation of its annelid affinity Alexandra Kerbl1, Nicolas Bekkouche1, Wolfgang Sterrer2 and Katrine Worsaae1* Abstract Background: The microscopic worm group Lobatocerebridae has been regarded a ‘problematicum’, with the systematic relationship being highly debated until a recent phylogenomic study placed them within annelids (Curr Biol 25: 2000-2006, 2015). To date, a morphological comparison with other spiralian taxa lacks detailed information on the nervous and muscular system, which is here presented for Lobatocerebrum riegeri n. sp. based on immunohistochemistry and confocal laser scanning microscopy, supported by TEM and live observations. Results: The musculature is organized as a grid of longitudinal muscles and transverse muscular ring complexes in the trunk. The rostrum is supplied by longitudinal muscles and only a few transverse muscles. The intraepidermal central nervous system consists of a big, multi-lobed brain, nine major nerve bundles extending anteriorly into the rostrum and two lateral and one median cord extending posteriorly to the anus, connected by five commissures. The glandular epidermis has at least three types of mucus secreting glands and one type of adhesive unicellular glands. Conclusions: No exclusive “annelid characters” could be found in the neuromuscular system of Lobatocerebridae, except for perhaps the mid-ventral nerve. However, none of the observed structures disputes its position within this group. The neuromuscular and glandular system of L. riegeri n. sp. shows similarities to those of meiofaunal annelids such as Dinophilidae and Protodrilidae, yet likewise to Gnathostomulida and catenulid Platyhelminthes, all living in the restrictive interstitial environment among sand grains.
    [Show full text]
  • A Phylum-Wide Survey Reveals Multiple Independent Gains of Head Regeneration Ability in Nemertea
    bioRxiv preprint doi: https://doi.org/10.1101/439497; this version posted October 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A phylum-wide survey reveals multiple independent gains of head regeneration ability in Nemertea Eduardo E. Zattara1,2,5, Fernando A. Fernández-Álvarez3, Terra C. Hiebert4, Alexandra E. Bely2 and Jon L. Norenburg1 1 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA 2 Department of Biology, University of Maryland, College Park, MD, USA 3 Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain 4 Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 5 INIBIOMA, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Bariloche, RN, Argentina Corresponding author: E.E. Zattara, [email protected] Abstract Animals vary widely in their ability to regenerate, suggesting that regenerative abilities have a rich evolutionary history. However, our understanding of this history remains limited because regeneration ability has only been evaluated in a tiny fraction of species. Available comparative regeneration studies have identified losses of regenerative ability, yet clear documentation of gains is lacking. We surveyed regenerative ability in 34 species spanning the phylum Nemertea, assessing the ability to regenerate heads and tails either through our own experiments or from literature reports. Our sampling included representatives of the 10 most diverse families and all three orders comprising this phylum.
    [Show full text]
  • Saxitoxin and ,U-Conotoxins (Brain/Electric Organ/Heart/Tetrodotoxin) EDWARD MOCZYDLOWSKI*, BALDOMERO M
    Proc. Nati. Acad. Sci. USA Vol. 83, pp. 5321-5325, July 1986 Neurobiology Discrimination of muscle and neuronal Na-channel subtypes by binding competition between [3H]saxitoxin and ,u-conotoxins (brain/electric organ/heart/tetrodotoxin) EDWARD MOCZYDLOWSKI*, BALDOMERO M. OLIVERAt, WILLIAM R. GRAYt, AND GARY R. STRICHARTZt *Department of Physiology and Biophysics, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH 45267-0576; tDepartment of Biology, University of Utah, Salt Lake City, UT 84112; and tAnesthesia Research Laboratories and the Department of Pharmacology, Harvard Medical School, Boston, MA 02115 Communicated by Norman Davidson, March 17, 1986 ABSTRACT The effect oftwo pL-conotoxin peptides on the 22 amino acids with amidated carboxyl termini (18). One of specific binding of [3H]saxitoxin was examined in isolated these toxins, GIIIA, has recently been shown to block muscle plasma membranes of various excitable tissues. pt-Conotoxins action potentials (18) and macroscopic Na current in a GITIA and GIHIB inhibit [3H]saxitoxin binding inlEkctrophorus voltage-clamped frog muscle fiber (19). At the single channel electric organ membranes with similar Kds of %50 x 10-9 M level, the kinetics of GIIIA block have been shown to in a manner consistent with direct competition for a common conform to a single-site binding model (Kd, 110 x 10-9 M at binding site. GITIA and GIIIB similarly compete with the 0 mV), from analysis of the statistics of discrete blocking majority (80-95%) of [3Hlsaxitoxin binding sites in rat skeletal events induced in batrachotoxin-activated Na channels from muscle with Kds of -25 and "140 x 10-9 M, respectively.
    [Show full text]
  • Tubulanus Polymorphus Class: Anopla Order: Paleonemertea an Orange Ribbon Worm Family: Tubulanidae
    Phylum: Nemertea Tubulanus polymorphus Class: Anopla Order: Paleonemertea An orange ribbon worm Family: Tubulanidae “Such a worm when seen crawling in long and Palaeonemertea) but with lateral graceful curves over the bottom in clear water transverse grooves (Fig. 2a, b, c). earns for itself a place among the most Head cannot completely withdraw into body (Kozloff 1974). beautiful of all marine invertebrates” (Coe Posterior: No caudal cirrus. 1905) Eyes/Eyespots: None. Mouth: A long slit-like opening (Fig. 2c) Taxonomy: Tubulanus polymorphous was a posterior to the brain, separate from name assigned in unpublished work by proboscis pore (Fig. 2c) and positioned just Renier (1804). The genera Tubulanus and behind transverse furrows (Coe 1901). Carinella were described by Renier (1804) Proboscis: Eversible (phylum Nemertea) and Johnston (1833), respectively, and were and, when not everted, coiled inside synonymized by Bürger in 1904 (Gibson rhynchocoel (cavity). The proboscis in 1995). Melville (1986) and the International Tubulanus polymorphus is short with the Code of Zoological Nomenclature (ICZN) rhynchocoel reaching one third total worm determined that the family name Tubulanidae body length. Proboscis bears no stylets and take precedence over its senior subjective the proboscis pore almost terminal (Fig. 2c). synonym Carinellidae (Ritger and Norenburg Tube/Burrow: As is true for most Tubulanus 2006) and the name Tubulanus polymorphus species, T. polymorphus individuals live in was deemed published and available (ICZN thin parchment tubes that are attached to 1988). Previous names for T. polymorphus rocks or shells and made of hardened include C. polymorpha, C. rubra and C. mucous secretions (Coe 1943). speciosa. Possible Misidentifications Description The genus Tubulanus is slender, soft, Size: A large nemertean, up to three meters extensible without ocelli or cephalic grooves when extended.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Morphological and Molecular Study on Yininemertes Pratensis
    A peer-reviewed open-access journal ZooKeys 852: 31–51 Morphological(2019) and molecular study on Yininemertes pratensis from... 31 doi: 10.3897/zookeys.852.32602 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Morphological and molecular study on Yininemertes pratensis (Nemertea, Pilidiophora, Heteronemertea) from the Han River Estuary, South Korea, and its phylogenetic position within the family Lineidae Taeseo Park1, Sang-Hwa Lee2, Shi-Chun Sun3, Hiroshi Kajihara4 1 National Institute of Biological Resources, Incheon, South Korea 2 National Marine Biodiversity Institute of Korea, Secheon, South Korea 3 Institute of Evolution and Marine Biodiversity, Ocean University of China, Yushan Road 5, Qingdao 266003, China 4 Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan Corresponding author: Hiroshi Kajihara ([email protected]) Academic editor: Y. Mutafchiev | Received 21 December 2018 | Accepted 5 May 2019 | Published 5 June 2019 http://zoobank.org/542BA27C-9EDC-4A15-9C72-5D84DDFEEF6A Citation: Park T, Lee S-H, Sun S-C, Kajihara H (2019) Morphological and molecular study on Yininemertes pratensis (Nemertea, Pilidiophora, Heteronemertea) from the Han River Estuary, South Korea, and its phylogenetic position within the family Lineidae. ZooKeys 852: 31–51. https://doi.org/10.3897/zookeys.852.32602 Abstract Outbreaks of ribbon worms observed in 2013, 2015, and 2017–2019 in the Han River Estuary, South Korea, have caused damage to local glass-eel fisheries. The Han River ribbon worms have been identified as Yininemertes pratensis (Sun & Lu, 1998) based on not only morphological characteristics compared with the holotype and paratype specimens, but also DNA sequence comparison with topotypes freshly collected near the Yangtze River mouth, China.
    [Show full text]