Suppression of Potassium Conductance by Droperidol Has

Total Page:16

File Type:pdf, Size:1020Kb

Suppression of Potassium Conductance by Droperidol Has Anesthesiology 2001; 94:280–9 © 2001 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Suppression of Potassium Conductance by Droperidol Has Influence on Excitability of Spinal Sensory Neurons Andrea Olschewski, Dr.med.,* Gunter Hempelmann, Prof., Dr.med., Dr.h.c.,† Werner Vogel, Prof., Dr.rer.nat.,‡ Boris V. Safronov, P.D., Ph.D.§ Background: During spinal and epidural anesthesia with opi- Naϩ conductance.5–8 The sensitivity of different compo- oids, droperidol is added to prevent nausea and vomiting. The nents of Naϩ current to droperidol has further been mechanisms of its action on spinal sensory neurons are not studied in spinal dorsal horn neurons9 by means of the well understood. It was previously shown that droperidol se- 10,11 lectively blocks a fast component of the Na؉ current. The au- “entire soma isolation” (ESI) method. The ESI Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/94/2/280/403011/0000542-200102000-00018.pdf by guest on 25 September 2021 thors studied the action of droperidol on voltage-gated K؉ chan- method allowed a visual identification of the sensory nels and its effect on membrane excitability in spinal dorsal neurons within the spinal cord slice and further pharma- horn neurons of the rat. cologic study of ionic channels in their isolated somata Methods: Using a combination of the patch-clamp technique and the “entire soma isolation” method, the action of droperi- under conditions in which diffusion of the drug mole- -dol on fast-inactivating A-type and delayed-rectifier K؉ chan- cules is not impeded by the connective tissue surround nels was investigated. Current-clamp recordings from intact ing the neuron.9 It has been found that droperidol selec- sensory neurons in spinal cord slices were performed to study ϩ ؉ tively suppresses the fast inactivating component of Na the functional meaning of K channel block for neuronal current, while the slowly inactivating one remained re- excitability. 9 Results: Droperidol blocked delayed-rectifier K؉ currents in sistant to the drug. The effect of droperidol on spinal isolated somata of dorsal horn neurons with a half-maximum neurons may not only be restricted to the action on the ؉ ϩ inhibiting concentration of 20.6 ␮M. The A-type K current was fast inactivating Na current, because some blockers of insensitive to up to 100 ␮M droperidol. At droperidol concen- Naϩ channels were also shown to potently suppress trations insufficient for suppression of an action potential, the 12–14 -؉ different types of voltage-gated as well as back block of delayed-rectifier K channels led to an increase in ϩ 15–17 action potential duration and, as a consequence, to lowering of ground K channels. the discharge frequency in the neuron. In the present study, the action of the neuroleptic Conclusions: Droperidol blocks delayed-rectifier K؉ channels droperidol on voltage-gated Kϩ channels in spinal dorsal ؉ in a concentration range close to that for suppression of Na horn neurons as well as its functional meaning were channels. The block of delayed-rectifier K؉ channels by droperidol enhances the suppression of activity in spinal sen- studied. sory neurons at drug concentrations insufficient for complete conduction block. Materials and Methods DORSAL horn neurons located in laminae I–II of the spinal cord receive most of their primary sensory input Preparation from myelinated A␦-and nonmyelinated C-fibers and are Experiments were performed by means of the patch- 18 involved in nociception.1,2 During epidural and spinal clamp technique on 200-␮m thin slices cut from the anesthesia, these neurons are exposed to high concen- lumbar enlargement (L3–L6) of the spinal cord of 8–17- trations of local anesthetics or opioids.3 Application of day-old rats.14,19,20 Animals were rapidly decapitated, opioids is usually accompanied by side effects such as and the spinal cords were carefully removed in ice-cold nausea, emesis, and pruritus. To reduce nausea and eme- preparation solution bubbled with 95% O2–5% CO2. Af- sis and to prolong analgesia, the neuroleptic droperidol ter removal of the pial membrane with fine forceps, the is applied together with opioids.4 spinal cord was embedded in a preparation solution At the cellular level, droperidol was shown to act on containing 2% agar cooled down to 39°C. To accelerate dopaminergic receptors (D2) as well as voltage-gated solidification of the agar, the beaker with preparation was placed in ice-cold water. The agar block containing the lumbar enlargement of the spinal cord was cut out * Anesthesiologist, Departments of Anesthesiology and Intensive Care Medi- cine and Physiology, † Professor and Chair of Anesthesia, Department of Anes- and glued to a glass stage fixed in the chamber of the thesiology and Intensive Care Medicine, ‡ Professor, § Physiologist, Department tissue slicer. The spinal cord was sliced in ice-cold prep- of Physiology. aration solution under continuous bubbling. The slices Received from the Departments of Anesthesiology and Intensive Care Medi- cine and Physiology, Justus-Liebig-University, Giessen, Germany. Submitted for were thereafter incubated for1hat32°C. The standard publication January 10, 2000. Accepted for publication September 1, 2000. procedure of cell cleaning by repetitive blowing and Supported in part by Grant Vo. 188/16 from the Deutsche Forschungsgemein- schaft, Bonn, Germany. suction of the bath solution through a broken patch Address correspondence to Dr. Safronov: Physiologisches Institut, Justus-Liebig-Uni- pipette was not used because each slice contained nu- versität, Aulweg 129, D-35392 Giessen, Germany. Address electronic mail to: [email protected]. Reprints will not be available from the authors. Individual article merous dorsal horn neurons with clean surfaces. reprints may be purchased through the Journal Web site, www.anesthesiology.org. The procedures of animal decapitation were reported Anesthesiology, V 94, No 2, Feb 2001 280 DROPERIDOL BLOCKS DELAYED-RECTIFIER Kϩ CHANNELS 281 to the local veterinarian authority and are in accordance clamped potential evoked by the series resistance of the with German guidelines. electrode were not corrected. In experiments per- formed on the isolated somata, voltage errors caused by Solutions resistance in series did not exceed 4 mV in most cases. Preparation and experimental solution contained 115 mM All experiments were conducted at room temperature NaCl, 5.6 mM KCl, 2 mM CaCl2,1mM MgCl2,11mM glucose, (21–23°C). 1mM NaH2PO4, and 25 mM NaHCO3 (pH 7.4 when bubbled To make the action potentials or trains of action po- 2ϩ 2ϩ with 95% O2–5% CO2). Low-Ca –high-Mg solution con- tentials comparable, we kept the membrane potential at taining 100 nM charybdotoxin and 1 ␮M apamin used to pre- approximately Ϫ70 mV in current-clamp experiments by vent activation of Ca2ϩ and Ca2ϩ-dependent Kϩ currents was injecting sustained depolarizing or hyperpolarizing cur- obtained from the preparation solution by setting the concen- rents through the recording electrode. 2ϩ 2ϩ tration of Ca to 0.1 mM, increasing Mg to5mM, and Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/94/2/280/403011/0000542-200102000-00018.pdf by guest on 25 September 2021 addition of 100 nM charybdotoxin and 1 ␮M apamin. The study Identification of Dorsal Horn Neurons of Kϩ channels was conducted in Naϩ-free choline-Cl solution The dorsal horn neurons were identified in spinal cord ␮ containing 141 mM choline-Cl, 0.6 mM KCl, 0.1 mM CaCl2, slices as multipolar cells with a soma (8–12- m diame- 10 5mM MgCl2,11mM glucose, and 5 mM HEPES (pH 7.4 ad- ter) located in laminae I–III. Neurons were distin- justed with 5 mM KOH). Tetrodotoxin 0.2 ␮M was added to guished from glial cells in voltage-clamp mode on the this solution to block voltage-gated Naϩ channels. basis of a procedure described previously.10 All neurons ϩ Stock solution of droperidol (20 mM) was obtained by studied possessed a large Na current exceeding 1 nA, dissolving the drug in dimethyl-sulfoxide. It was added to were able to generate action potentials, and showed spon- bath solution to achieve the desired drug concentration. taneous synaptic activity. The resting potentials measured Tetrodotoxin and tetraethylammonium were directly in intact neurons were between Ϫ78 and Ϫ55 mV. added to the bath solution. Bovine serum albumin (0.05%) was added to charybdotoxin- and apamin-con- The Entire Soma Isolation Method taining solution to prevent an unspecific adhesion of A detailed description of the ESI method has been blocker molecules to the walls of the experimental given elsewhere.9–11 Briefly, in whole-cell recording chamber and the tubings. The experimental chamber mode, the entire soma of the neuron was isolated from with a volume of 0.4 ml was continuously perfused by the slice by slow withdrawal of the recording pipette. external solution at a rate of 2–3 ml/min. Droperidol and The isolated structure was classified as soma (“soma”) if apamin were purchased from Sigma (Deisenhofen, Ger- it had lost all of its processes during isolation and pre- many), tetrodotoxin and charybdotoxin from Latoxan served only 10–20% of original Naϩ current recorded (Rosans, France), and tetraethylammonium from Merck from the neuron in the slice before its isolation. The (Darmstadt, Germany). isolated structure was classified as “somaϩaxon” com- The pipette solution used in ESI experiments con- plex if it contained one process and preserved more than ϩ tained 5 mM NaCl, 144.4 mM KCl, 1 mM MgCl2,3mM 90% of the original Na current. The good physiologic EGTA, and 10 mM HEPES (pH 7.3 by 10 mM NaOH). The state of the isolated structures was confirmed by a con- pipette solution in all other experiments contained 5 mM siderable increase in their input resistances (reflecting a NaCl, 144.4 mM KCl, 1 mM MgCl2,3mM EGTA, and decrease in membrane leakage conductance), by stable 10 mM HEPES (pH 7.3 adjusted with 10.6 mM KOH).
Recommended publications
  • Tetrodotoxin
    Niharika Mandal et al. / Journal of Pharmacy Research 2012,5(7),3567-3570 Review Article Available online through ISSN: 0974-6943 http://jprsolutions.info Tetrodotoxin: An intriguing molecule Niharika Mandal*, Samanta Sekhar Khora, Kanagaraj Mohanapriya, and Soumya Jal School of Biosciences and Technology, VIT University, Vellore-632013 Tamil Nadu, India Received on:07-04-2012; Revised on: 12-05-2012; Accepted on:16-06-2012 ABSTRACT Tetrodotoxin (TTX) is one of the most potent neurotoxin of biological origin. It was first isolated from puffer fish and it has been discovered in various arrays of organism since then. Its origin is still unclear though some reports indicate towards microbial origin. TTX selectively blocks the sodium channel, inhibiting action potential thereby, leading to respiratory paralysis. TTX toxicity is mainly caused due to consumption of puffer fish. No Known antidote for TTX exists. Treatment is symptomatic. The present review is therefore, an effort to give an idea about the distribution, origin, structure, pharmacol- ogy, toxicity, symptoms, treatment, resistance and application of TTX. Key words: Tetrodotoxin, Neurotoxin, Puffer fish. INTRODUCTION One of the most intriguing biotoxins isolated and described in the twentieth cantly more toxic than TTX. Palytoxin and maitotoxin have potencies nearly century is the neurotoxin, Tetrodotoxin (TTX, CAS Number [4368-28-9]). 100 times that of TTX and Saxitoxin, and all four toxins are unusual in being A neurotoxin is a toxin that acts specifically on neurons usually by interact- non-proteins. Interestingly, there is also some evidence for a bacterial bio- ing with membrane proteins and ion channels mostly resulting in paralysis.
    [Show full text]
  • Biological Toxins Fact Sheet
    Work with FACT SHEET Biological Toxins The University of Utah Institutional Biosafety Committee (IBC) reviews registrations for work with, possession of, use of, and transfer of acute biological toxins (mammalian LD50 <100 µg/kg body weight) or toxins that fall under the Federal Select Agent Guidelines, as well as the organisms, both natural and recombinant, which produce these toxins Toxins Requiring IBC Registration Laboratory Practices Guidelines for working with biological toxins can be found The following toxins require registration with the IBC. The list in Appendix I of the Biosafety in Microbiological and is not comprehensive. Any toxin with an LD50 greater than 100 µg/kg body weight, or on the select agent list requires Biomedical Laboratories registration. Principal investigators should confirm whether or (http://www.cdc.gov/biosafety/publications/bmbl5/i not the toxins they propose to work with require IBC ndex.htm). These are summarized below. registration by contacting the OEHS Biosafety Officer at [email protected] or 801-581-6590. Routine operations with dilute toxin solutions are Abrin conducted using Biosafety Level 2 (BSL2) practices and Aflatoxin these must be detailed in the IBC protocol and will be Bacillus anthracis edema factor verified during the inspection by OEHS staff prior to IBC Bacillus anthracis lethal toxin Botulinum neurotoxins approval. BSL2 Inspection checklists can be found here Brevetoxin (http://oehs.utah.edu/research-safety/biosafety/ Cholera toxin biosafety-laboratory-audits). All personnel working with Clostridium difficile toxin biological toxins or accessing a toxin laboratory must be Clostridium perfringens toxins Conotoxins trained in the theory and practice of the toxins to be used, Dendrotoxin (DTX) with special emphasis on the nature of the hazards Diacetoxyscirpenol (DAS) associated with laboratory operations and should be Diphtheria toxin familiar with the signs and symptoms of toxin exposure.
    [Show full text]
  • Animal Venom Derived Toxins Are Novel Analgesics for Treatment Of
    Short Communication iMedPub Journals 2018 www.imedpub.com Journal of Molecular Sciences Vol.2 No.1:6 Animal Venom Derived Toxins are Novel Upadhyay RK* Analgesics for Treatment of Arthritis Department of Zoology, DDU Gorakhpur University, Gorakhpur, UP, India Abstract *Corresponding authors: Ravi Kant Upadhyay Present review article explains use of animal venom derived toxins as analgesics of the treatment of chronic pain and inflammation occurs in arthritis. It is a [email protected] progressive degenerative joint disease that put major impact on joint function and quality of life. Patients face prolonged inappropriate inflammatory responses and bone erosion. Longer persistent chronic pain is a complex and debilitating Department of Zoology, DDU Gorakhpur condition associated with a large personal, mental, physical and socioeconomic University, Gorakhpur, UttarPradesh, India. burden. However, for mitigation of inflammation and sever pain in joints synthetic analgesics are used to provide quick relief from pain but they impose many long Tel: 9838448495 term side effects. Venom toxins showed high affinity to voltage gated channels, and pain receptors. These are strong inhibitors of ion channels which enable them as potential therapeutic agents for the treatment of pain. Present article Citation: Upadhyay RK (2018) Animal Venom emphasizes development of a new class of analgesic agents in form of venom Derived Toxins are Novel Analgesics for derived toxins for the treatment of arthritis. Treatment of Arthritis. J Mol Sci. Vol.2 No.1:6 Keywords: Analgesics; Venom toxins; Ion channels; Channel inhibitors; Pain; Inflammation Received: February 04, 2018; Accepted: March 12, 2018; Published: March 19, 2018 Introduction such as the back, spine, and pelvis.
    [Show full text]
  • Saxitoxin and ,U-Conotoxins (Brain/Electric Organ/Heart/Tetrodotoxin) EDWARD MOCZYDLOWSKI*, BALDOMERO M
    Proc. Nati. Acad. Sci. USA Vol. 83, pp. 5321-5325, July 1986 Neurobiology Discrimination of muscle and neuronal Na-channel subtypes by binding competition between [3H]saxitoxin and ,u-conotoxins (brain/electric organ/heart/tetrodotoxin) EDWARD MOCZYDLOWSKI*, BALDOMERO M. OLIVERAt, WILLIAM R. GRAYt, AND GARY R. STRICHARTZt *Department of Physiology and Biophysics, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH 45267-0576; tDepartment of Biology, University of Utah, Salt Lake City, UT 84112; and tAnesthesia Research Laboratories and the Department of Pharmacology, Harvard Medical School, Boston, MA 02115 Communicated by Norman Davidson, March 17, 1986 ABSTRACT The effect oftwo pL-conotoxin peptides on the 22 amino acids with amidated carboxyl termini (18). One of specific binding of [3H]saxitoxin was examined in isolated these toxins, GIIIA, has recently been shown to block muscle plasma membranes of various excitable tissues. pt-Conotoxins action potentials (18) and macroscopic Na current in a GITIA and GIHIB inhibit [3H]saxitoxin binding inlEkctrophorus voltage-clamped frog muscle fiber (19). At the single channel electric organ membranes with similar Kds of %50 x 10-9 M level, the kinetics of GIIIA block have been shown to in a manner consistent with direct competition for a common conform to a single-site binding model (Kd, 110 x 10-9 M at binding site. GITIA and GIIIB similarly compete with the 0 mV), from analysis of the statistics of discrete blocking majority (80-95%) of [3Hlsaxitoxin binding sites in rat skeletal events induced in batrachotoxin-activated Na channels from muscle with Kds of -25 and "140 x 10-9 M, respectively.
    [Show full text]
  • Evidence That Tetrodotoxin and Saxitoxin Act at a Metal Cation Binding Site in the Sodium Channels of Nerve Membrane (Solubilized Membrane/Receptors/Surface Charge) R
    Proc. Nat. Acad. Sci. USA 71 Vol. 71, No. 10, pp. 3936-3940, October 1974 Evidence That Tetrodotoxin and Saxitoxin Act at a Metal Cation Binding Site in the Sodium Channels of Nerve Membrane (solubilized membrane/receptors/surface charge) R. HENDERSON*, J. M. RITCHIE, AND G. R. STRICHARTZt Departments of Molecular Biophysics and Biochemistry, and of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510 Communicated by Frederic M. Richards, June 17, 1974 ABSTRACT The effects of monovalent, divalent, and STX. These experiments suggest how the toxins exert their trivalent cations on the binding of tetrodotoxin and saxi- toxin to intact nerves and to a preparation of solubilized action, and provide a unifying explanation of how several nerve membranes have been examined. All eight divalent cations affect nerve membrane permeability. and trivalent cations tested, and the monovalent ions MATERIALS AND LiW, Tl+, and H+ appear to compete reversibly with the METHODS toxins for their binding site. The ability of lithium to Tritium-labeled TTX and STX were prepared and purified reduce toxin binding is paralleled by its ability to reduce (3, 5). Olfactory nerves from garfish, obtained from the Gulf tetrodotoxin-sensitive ion fluxes through the nerve mem- brane. We conclude that the toxins act at a metal cation Specimen Co., Florida, were dissected by the method of binding site in the sodium channel and suggest that this Easton (12). A detergent-solubilized extract of the nerves site is the principal coordination site for cations (normally was prepared by the method of Henderson and Wang (4). Na+ ions) as they pass through the membrane during an Binding experiments were also carried out on intact garfish action potential.
    [Show full text]
  • Alcohol Dependence and Withdrawal Impair Serotonergic Regulation Of
    Research Articles: Cellular/Molecular Alcohol dependence and withdrawal impair serotonergic regulation of GABA transmission in the rat central nucleus of the amygdala https://doi.org/10.1523/JNEUROSCI.0733-20.2020 Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.0733-20.2020 Received: 30 March 2020 Revised: 8 July 2020 Accepted: 14 July 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 the authors 1 Alcohol dependence and withdrawal impair serotonergic regulation of GABA 2 transmission in the rat central nucleus of the amygdala 3 Abbreviated title: Alcohol dependence impairs CeA regulation by 5-HT 4 Sophia Khom, Sarah A. Wolfe, Reesha R. Patel, Dean Kirson, David M. Hedges, Florence P. 5 Varodayan, Michal Bajo, and Marisa Roberto$ 6 The Scripps Research Institute, Department of Molecular Medicine, 10550 N. Torrey Pines 7 Road, La Jolla CA 92307 8 $To whom correspondence should be addressed: 9 Dr. Marisa Roberto 10 Department of Molecular Medicine 11 The Scripps Research Institute 12 10550 N. Torrey Pines Road, La Jolla, CA 92037 13 Tel: (858) 784-7262 Fax: (858) 784-7405 14 Email: [email protected] 15 16 Number of pages: 30 17 Number of figures: 7 18 Number of tables: 2 19 Number of words (Abstract): 250 20 Number of words (Introduction): 650 21 Number of words (Discussion): 1500 22 23 The authors declare no conflict of interest.
    [Show full text]
  • Dragon's Blood
    Available online at www.sciencedirect.com Journal of Ethnopharmacology 115 (2008) 361–380 Review Dragon’s blood: Botany, chemistry and therapeutic uses Deepika Gupta a, Bruce Bleakley b, Rajinder K. Gupta a,∗ a University School of Biotechnology, GGS Indraprastha University, K. Gate, Delhi 110006, India b Department of Biology & Microbiology, South Dakota State University, Brookings, South Dakota 57007, USA Received 25 May 2007; received in revised form 10 October 2007; accepted 11 October 2007 Available online 22 October 2007 Abstract Dragon’s blood is one of the renowned traditional medicines used in different cultures of world. It has got several therapeutic uses: haemostatic, antidiarrhetic, antiulcer, antimicrobial, antiviral, wound healing, antitumor, anti-inflammatory, antioxidant, etc. Besides these medicinal applica- tions, it is used as a coloring material, varnish and also has got applications in folk magic. These red saps and resins are derived from a number of disparate taxa. Despite its wide uses, little research has been done to know about its true source, quality control and clinical applications. In this review, we have tried to overview different sources of Dragon’s blood, its source wise chemical constituents and therapeutic uses. As well as, a little attempt has been done to review the techniques used for its quality control and safety. © 2007 Elsevier Ireland Ltd. All rights reserved. Keywords: Dragon’s blood; Croton; Dracaena; Daemonorops; Pterocarpus; Therapeutic uses Contents 1. Introduction ...........................................................................................................
    [Show full text]
  • Siteand Mechanism of Action of Resin Acids on Voltage-Gated Ion Channels
    Linköping University Medical Dissertation No. 1620 Site and Mechanism of Action of Resin Acids on Voltage-Gated Ion Channels Malin Silverå Ejneby Department of Clinical and Experimental Medicine Linköping University, Sweden Linköping 2018 © Malin Silverå Ejneby, 2018 Cover illustration: “The Charged Pine Tree Anchored to the Ground” was designed and painted by Daniel Silverå Ejneby. Printed in Sweden by LiU-Tryck, Linköping, Sweden, 2018 ISSN: 0345-0082 ISBN: 978-91-7685-318-4 TABLE OF CONTENTS ABSTRACT ............................................................................................................................... 1 POPULÄRVETENSKAPLIG SAMMANFATTNING ................................................................. 3 LIST OF ARTICLES .................................................................................................................. 5 INTRODUCTION ....................................................................................................................... 7 Ions underlie the electrical activity in the heart and brain .................................................. 7 A mathematical model for the nerve impulse - Hodgkin and Huxley ............................... 7 Cardiac action potentials – a great diversity of shapes ...................................................... 9 Voltage-gated ion channels ......................................................................................................... 9 General structure ....................................................................................................................
    [Show full text]
  • Tetrodotoxin
    TETRODOTOXIN O HO H O O N OH H2N H N HO OH OH Presentation by Neil Vasan Baran Lab Group Seminar August 13, 2003 TTX: Background • Toxic venom component of puffer fish or fugu (Spheroides rubripes), a Japanese delicacy (1 fish = ~$400) • First isolated in 1909 and named after puffer fish order Tetraodontidae • Structure first elucidated in 1964 by Woodward (confirmed by Kishi in 1965) • First synthesis by Kishi, et. al. in 1972 • Toxicity attributed to selective blockage of Na+ channels of skeletal muscles • Lethal dose for adult human = .001 mg • Upon ingestion, one feels tingling and lightheadedness but is lucid; paralysis and death ensue within 6-24 hours • 70-100 deaths each year, mostly in rural Japan • No known antidote exists 1 TTX: Structure O HO H O O N OH H2N H N HO OH OH O O O HO H O H OH O N N O H N OH 2 N H2N H HO H N HO OH OH OH OH Equilibrium mixture among ortho ester, anhydride, and lactone forms TTX: Kishi Synthesis Synthesis of Cyclohexane chiral core O O O H H Me , SnCl4 Me MsCl Me MeCN, rt Et N Me 3 (83%) (quant.) N O Me O Me O OH N OH N Ms H O OH H H H O o Me Me H Me H2O, 100 C NaBH4 m-CPBA Beckmann MeOH camphorsulfonic acidHO (96%) (75%) (61%) NH NH H NH O O O Ac Ac Ac 2 TTX: Kishi Synthesis Towards Tetrodamine H H H H H O O H O H Me H Me H Me 1) Al OCHMe2 3 HO (90% in 2 steps) O MPV-reduction O 2) H NH O NH O(COCH3)2, pyr.
    [Show full text]
  • The Pharmacology of Voltage-Gated Sodium Channel Activators
    Accepted Manuscript The pharmacology of voltage-gated sodium channel activators Jennifer R. Deuis, Alexander Mueller, Mathilde R. Israel, Irina Vetter PII: S0028-3908(17)30155-7 DOI: 10.1016/j.neuropharm.2017.04.014 Reference: NP 6670 To appear in: Neuropharmacology Received Date: 13 February 2017 Revised Date: 28 March 2017 Accepted Date: 10 April 2017 Please cite this article as: Deuis, J.R., Mueller, A., Israel, M.R., Vetter, I., The pharmacology of voltage- gated sodium channel activators, Neuropharmacology (2017), doi: 10.1016/j.neuropharm.2017.04.014. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT The Pharmacology of Voltage-gated Sodium channel Activators Jennifer R. Deuis 1,* , Alexander Mueller 1,* , Mathilde R. Israel 1, Irina Vetter 1,2,# 1 Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia 2 School of Pharmacy, The University of Queensland, Woolloongabba, Qld 4102, Australia * Contributed equally # Corresponding author: [email protected] MANUSCRIPT ACCEPTED ACCEPTED MANUSCRIPT Abstract Toxins and venom components that target voltage-gated sodium (Na V) channels have evolved numerous times due to the importance of this class of ion channels in the normal physiological function of peripheral and central neurons as well as cardiac and skeletal muscle.
    [Show full text]
  • Title of the Dissertation
    ECOLOGICAL AND EVOLUTIONARY IMPLICATIONS FOR THE CONSERVATION OF PANAMANIAN GOLDEN FROGS by Corinne L. Richards A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in the University of Michigan 2008 Doctoral Committee: Assistant Professor Laura Lacey Knowles, Co-Chair Professor Ronald A. Nussbaum, Co-Chair Associate Professor Mercedes Pascual Assistant Professor Johannes Foufopoulos Kevin C. Zippel, World Conservation Union Nature's first green is gold Her hardest hue to hold. Her early leaf's a flower; But only so an hour. Then leaf subsides to leaf. So Eden sank to grief, So dawn goes down to day. Nothing gold can stay. - Robert Frost © Corinne L. Richards All rights reserved 2008 To my Mom and Dad, who have always encouraged me following my dreams and to Geoff who is always game for an adventure. ii ACKNOWLEDGMENTS Many people helped bring this research to completion, both physically and intellectually, and I am grateful to them all. First, and foremost, I would like to thank my advisors and co-chairs, Lacey Knowles and Ron Nussbaum for their guidance, feedback, and constructive criticism. I am especially grateful to Lacey for her friendship and the time and effort she has invested in shaping me into an independent scientific investigator. I would also like to thank the remainder of my dissertation committee, Johannes Foufopoulos, Mercedes Pascual, and Kevin Zippel for their help and encouragement throughout. I am grateful to Amanda Zellmer, Tim Connallon, Elen Oneal, Huateng Huang, Bryan Carstens, Heather Adams, and Wendy Grus for their daily help, feedback, friendship and encouragement.
    [Show full text]
  • CSTX-1, a Toxin from the Venom of the Hunting Spider Cupiennius Salei, Is
    For submission to Neuropharmacology CSTX-1, a toxin from the venom of the hunting spider Cupiennius salei, is a selective blocker of L-type calcium channels in mammalian neurons *,1Helmut Kubista, 2Roberta A. Mafra, 3Youmie Chong, 3Graham M. Nicholson, 2Paulo S.L. Beirão, 2Jader S. Cruz, 4Stefan Boehm, 5Wolfgang Nentwig & 5Lucia Kuhn-Nentwig 1Center for Biomolecular Medicine and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, A-1090, Vienna, Austria 2Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil 3Neurotoxin Research Group, Department of Medical & Molecular Biosciences, University of Technology, Sydney, City Campus, Broadway, Sydney, NSW 2007, Australia 4Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria 5Zoological Institute, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland *Author for correspondence: Telephone: ++43 1 4277 64146 Fax: ++ 43 1 4277 9641 E-mail: [email protected] H. Kubista et al. CSTX-1, a selective Cav channel blocker 2 Abstract The inhibitor cystine-knot motif identified in the structure of CSTX-1 from Cupiennius salei venom suggests that this toxin may act as a blocker of ion channels. Whole-cell patch clamp experiments performed on cockroach neurons revealed that CSTX-1 produced a slow voltage- independent block of both mid/low- (M-LVA) and high-voltage-activated (HVA) insect Cav channels. Since Cupiennius salei venom affects both insect as well as rodent species, we investigated whether Cav channel currents of rat neurons are also inhibited by CSTX-1.
    [Show full text]