Antipsychotic Drugs Which Elicit Little Or No Parkinsonism Bind More Loosely

Total Page:16

File Type:pdf, Size:1020Kb

Antipsychotic Drugs Which Elicit Little Or No Parkinsonism Bind More Loosely Molecular Psychiatry (1998) 3, 123–134 1998 Stockton Press All rights reserved 1359–4184/98 $12.00 PERSPECTIVE Antipsychotic drugs which elicit little or no Parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors P Seeman1,2 and T Tallerico1 Departments of 1Pharmacology and 2Psychiatry, University of Toronto, Toronto, Canada M5S 1A8 This review addresses two questions. First, why does clozapine apparently occupy low levels of dopamine D2 receptors in patients, in contrast to all other antipsychotic drugs which occupy 70–80% of brain dopamine D2 receptors? Second, what is the receptor basis of action of antipsychotic drugs which elicit low levels of Parkinsonism? Antipsychotic doses of clozapine occupy between 0% and 50% of D2 receptors, as meas- ured in patients by a variety of radioligands. It has recently been found, however, that the percent occupancy of a receptor by a drug depends on the radioligand used to measure that receptor. Based on this new finding, this review concludes that clozapine clinically occupies high levels of D2 receptors in the absence of any radioligand. This occupancy is estimated to be of the order of 70–80% in the dopamine-rich region of the human striatum, and even higher in the limbic D2-containing regions which are low in endogenous synaptic dopamine. This conclusion arises from two different approaches. One approach is to relate the reported clozapine occupancies in the human striatum with the dissociation constants of the various radioligands at the D2 receptor. This relation extrapolates to approximately 70–80% occu- pancy by clozapine when clozapine competes with endogenous dopamine at the D2 receptor. The second approach is to calculate the D2 occupancy of each antipsychotic drug, using the average spinal fluid concentration and the correct dissociation constant of the antipsychotic, thereby revealing that all antipsychotic drugs, including clozapine, occupy approximately 70– 80% of dopamine D2 receptors in the human striatum, and possibly higher in the limbic regions. As determined by the new dissociation constants, antipsychotic drugs which elicit Parkin- sonism (trifluperazine, chlorpromazine, raclopride, haloperidol, fluphenazine, risperidone) bind more tightly than dopamine to D2, while those antipsychotic drugs which elicit little or no Parkinsonism (melperone, seroquel, perlapine, clozapine, remoxipride, molindone, sulpiride, olanzapine, sertindole) bind more loosely than dopamine to D2 receptors. Compared to the tightly bound antipsychotic drugs, the more loosely bound antipsychotics generally require higher clinical doses, require fewer days for clinical adjustment, but may dissociate from the D2 receptor more rapidly and could lead to clinical relapse somewhat earlier than that found with the traditional tightly bound antipsychotic drugs. Keywords: antipsychotics; clozapine; atypical neuroleptics; risperidone; D2 receptor occupancy 1. Apparent low occupancy of dopamine D2 0% and °50% of brain dopamine D2 receptors, as mea- receptors by clozapine sured by a variety of radioligands using either positron tomography1,2,8–13 or single photon tomography.14–19 Antipsychotic drugs, when given at clinically effective Although the apparently low occupancy of D2 by doses, generally occupy between 70% and 80% of clozapine might suggest that D2 may not be the major brain dopamine D2 receptors in patients,1–7 as meas- antipsychotic target for clozapine (because clozapine ured in the human striatum (ie the caudate nucleus binds to many other neurotransmitter receptors)20 it is and/or the putamen). Clozapine, however, has consist- necessary to analyse these low occupancy data in the ently been an apparent exception. For example, in light of recent evidence showing that the occupancy of patients taking therapeutically effective antipsychotic a receptor by a drug depends on the radioligand used doses of clozapine, this drug only occupies between to measure that receptor.21–26 This latter finding shows that the occupancy is higher when radioligands with higher dissociation constants are used. Correspondence: P Seeman, Pharmacology Department, Medical Using this latter finding, therefore, one objective in Science Building, 8 Taddle Creek Road, Toronto, Ontario, Canada M5S 1A8 this mini-review was to determine indirectly the occu- Received 23 April 1997; revised 15 and 21 July 1997; accepted pancy by clozapine of brain dopamine D2 receptors 26 August 1997 that must in fact be taking place in vivo in patients Atypical antipsychotics bind loosely to D2 receptors P Seeman and T Tallerico 124 being treated with clozapine in the absence of any pine, for example, has a K of 35–59 nM for D2 using radioligand. This analysis indicates that clozapine, at [3H]raclopride,22 compared to a value of 44 nM for the therapeutic doses, occupies high levels (of the order radioligand-independent dissociation constant (Table of 70–80%) of dopamine D2 receptors in the striatum, 1). Similarly, haloperidol has a K of 0.5–0.6 nM, using similar to the occupancies found with therapeutic the very large volumes,22 compared to the radioligand- doses of other antipsychotic drugs, and that clozapine independent dissociation constant of 0.4 nM in may possibly occupy even higher levels in the limbic Table 1. Hence, the large-volume method and the radi- regions where the endogenous synaptic dopamine is oligand-independent method provide data which con- lower than that in the striatum. firm one another. 2. Potencies of antipsychotic drugs at dopamine 3. Clinical antipsychotic potencies correlate with D2 receptors true dissociation constants at D2 The occupancy of receptors can be determined directly These antipsychotic drug dissociation constants, by radioligand tomography or indirectly by measuring which are independent of the radioligand used the concentration, C, of the antipsychotic drug in the (Table 1), correlate with the antipsychotic doses used spinal fluid. Using the latter method, the percent of clinically (Figure 1). This correlation agrees with pre- receptors occupied, f, is equal to C/(C + K), where K is vious work.29–32 the dissociation constant (or inhibition constant) of the Of the many antipsychotic drugs shown in Figure 1, antipsychotic drug at the D2 receptor. only chlorpromazine and thioridazine deviate signifi- The concentration method, therefore, provides an cantly from the overall correlation. The deviations for independent estimate of receptor occupancy by anti- these two drugs, however, disappear when the spinal psychotic drugs. The free concentrations of antipsy- fluid concentrations of the various antipsychotic drugs chotics in the cerebrospinal fluid and in the plasma are considered (next section). water (ie, not bound to plasma proteins) have pre- viously been reviewed,27 although an important 4. Therapeutic levels of antipsychotic drugs revision to the data for clozapine is added below. occupy high levels of brain dopamine D2 In order to derive the clinical receptor occupancies receptors from the antipsychotic concentrations, it is necessary to have accurate K values, as indicated in the above The occupancy of brain dopamine D2 receptors, under equation for the occupancy, f. These K values, how- clinically therapeutic conditions, can now be ever, differ considerably between laboratories for a var- indirectly determined from the antipsychotic drug iety of technical reasons.27,28 Hence, it is essential to average concentrations in the spinal fluid and using have K values for all antipsychotic drugs from a single the radioligand-independent dissociation constants in laboratory using standard conditions. Table 1. As noted above, recent evidence shows that the anti- The dissociation constant, K, in Table 1 is defined as psychotic occupancy or the antipsychotic K (which is the antipsychotic concentration required for 50% occu- the concentration for 50% occupancy of a receptor) pation of the receptor in the absence of dopamine or depends on the radioligand used to measure that recep- any other ligand. In reality, however, because the anti- tor.21–26 For example, antipsychotic drugs which bind psychotic drug must compete with dopamine within loosely (ie, with high K) to the receptor are less able the synaptic space, the antipsychotic concentration to to compete against tightly bound radioligands (ie, with block 50% of the receptors in the presence of dopa- low K). mine (C50%) will be higher than that in the absence of Hence, it has been necessary to obtain true dis- dopamine, in accordance with the equation = × + sociation constants which are independent of the radi- C50% K [1 D/D2High], where D is the effective dopa- oligand used. This has now been done for many anti- mine concentration in the synapse and where D2High is psychotic drugs at human cloned dopamine D2, D3, D4 the dissociation constant of dopamine at the high- and serotonin 2A receptors, and a list of these values affinity state of the dopamine D2 receptor. is given in Table 1 (summarized from Refs 21–26). Although the effective concentration of dopamine in Although the technical explanation for the apparent the synapse is not known, it is considered to be any- dependence of the antipsychotic dissociation constant where between 1 nM and 45 nM. The basal level of on the radioligand is not known, detailed experiments synaptic dopamine in the rat nucleus accumbens has have shown that it is not a result of radioligand been estimated to be 4 nM.35 At a firing frequency of depletion.21 Although most laboratories
Recommended publications
  • Aristada™ (Aripiprazole Lauroxil)
    Aristada™ (aripiprazole lauroxil) – New Drug Approval • On October 5, 2015, Alkermes’ announced the FDA approval of Aristada (aripiprazole lauroxil) extended-release injection, an atypical antipsychotic, for the treatment of schizophrenia. • Schizophrenia is a chronic, severe and disabling brain disorder affecting an estimated 2.4 million Americans. Typically, symptoms include hearing voices, believing other people are reading their minds or controlling their thoughts, and being suspicious or withdrawn. • Aristada’s approval was based on data from a double-blind, placebo-controlled 12-week trial involving 622 patients with schizophrenia. In addition, the efficacy of Aristada was established, in part, on the basis of efficacy data from trials with oral aripiprazole. — Aristada significantly improved symptoms of schizophrenia compared to placebo at day 85. • Similar to other atypical antipsychotics, Aristada carries a boxed warning for increased mortality in elderly patients with dementia-related psychosis. • Other warnings and precautions for Aristada include cerebrovascular adverse reactions, including stroke; neuroleptic malignant syndrome; tardive dyskinesia; metabolic changes; orthostatic hypotension; leukopenia, neutropenia, and agranulocytosis; seizures; potential for cognitive and motor impairment; body temperature regulation; and dysphagia. • The most common adverse reaction (≥ 5% and at least twice that for placebo) with Aristada use was akathisia. • Aristada is administered by intramuscular injection in the deltoid (441 mg dose only) or gluteal (441 mg, 662 mg, or 882 mg) muscle by a healthcare professional. — Aristada can be initiated at a monthly dose (441 mg, 662 mg or 882 mg) or every 6 week dose (882 mg). — For patients naïve to aripiprazole, tolerability should be established with oral aripiprazole prior to initiating treatment with Aristada.
    [Show full text]
  • Treatment of Psychosis: 30 Years of Progress
    Journal of Clinical Pharmacy and Therapeutics (2006) 31, 523–534 REVIEW ARTICLE Treatment of psychosis: 30 years of progress I. R. De Oliveira* MD PhD andM.F.Juruena MD *Department of Neuropsychiatry, School of Medicine, Federal University of Bahia, Salvador, BA, Brazil and Department of Psychological Medicine, Institute of Psychiatry, King’s College, University of London, London, UK phrenia. Thirty years ago, psychiatrists had few SUMMARY neuroleptics available to them. These were all Background: Thirty years ago, psychiatrists had compounds, today known as conventional anti- only a few choices of old neuroleptics available to psychotics, and all were liable to cause severe extra them, currently defined as conventional or typical pyramidal side-effects (EPS). Nowadays, new antipsychotics, as a result schizophrenics had to treatments are more ambitious, aiming not only to suffer the severe extra pyramidal side effects. improve psychotic symptoms, but also quality of Nowadays, new treatments are more ambitious, life and social reinsertion. We briefly but critically aiming not only to improve psychotic symptoms, outline the advances in diagnosis and treatment but also quality of life and social reinsertion. Our of schizophrenia, from the mid 1970s up to the objective is to briefly but critically review the present. advances in the treatment of schizophrenia with antipsychotics in the past 30 years. We conclude DIAGNOSIS OF SCHIZOPHRENIA that conventional antipsychotics still have a place when just the cost of treatment, a key factor in Up until the early 1970s, schizophrenia diagnoses poor regions, is considered. The atypical anti- remained debatable. The lack of uniform diagnostic psychotic drugs are a class of agents that have criteria led to relative rates of schizophrenia being become the most widely used to treat a variety of very different, for example, in New York and psychoses because of their superiority with London, as demonstrated in an important study regard to extra pyramidal symptoms.
    [Show full text]
  • Kinetic Modeling in Positron Emission Tomography
    Ch23.qxd 28/8/04 2:05 PM Page 499 CHAPTER 23 Kinetic Modeling in Positron Emission Tomography EVAN D. MORRIS,* CHRISTOPHER J. ENDRES,† KATHLEEN C. SCHMIDT,‡ BRADLEY T. CHRISTIAN,§ RAYMOND F. MUZIC JR.,¶ RONALD E. FISHER|| *Departments of Radiology and Biomedical Engineering, Indiana University School of Medicine, Indianapolis, Indiana †Department of Radiology, Johns Hopkins University, Baltimore, Maryland ‡Laboratory of Cerebral Metabolism, NIMH, Bethesda, Maryland §Wright State University, Kettering Medical Center, Dayton, Ohio ¶Departments of Radiology, Oncology and Biomedical Engineering, Case Western Reserve University, Nuclear Medicine, University Hospitals Cleveland, Cleveland, Ohio ||The Methodist Hospital and Department of Radiology and Neuroscience, Baylor College of Medicine, Houston, Texas I. Introduction used in the two most ubiquitous applications of PET: imag- II. The One-Compartment Model: Blood Flow ing of blood flow and glucose metabolism. We also examine III. Positron Emission Tomography Measurements of the use of PET to image specific receptor molecules, which Regional Cerebral Glucose Use capitalizes on the unique specificity of PET. IV. Receptor–Ligand Models Supplied with single (static) PET images and no kinetic V. Model Simplifications model to aid in their interpretation, one is confined to asking VI. Limitations to Absolute Quantification questions that can be answered only on the basis of spatial VII. Functional Imaging of Neurochemistry—Future Uses information such as: Where is glucose being used? Where VIII. A Generalized Implementation of the Model are particular receptor molecules located within the brain or Equations the heart? With the acquisition of dynamic (time-sequence) imaging data and the application of kinetic models, one can pose many additional quantitative questions based on temporal I.
    [Show full text]
  • Product Monograph
    PRODUCT MONOGRAPH PrFLUANXOL® Flupentixol Tablets (as flupentixol dihydrochloride) 0.5 mg, 3 mg, and 5 mg PrFLUANXOL® DEPOT Flupentixol Decanoate Intramuscular Injection 2% and 10% flupentixol decanoate Antipsychotic Agent Lundbeck Canada Inc. Date of Revision: 2600 Alfred-Nobel December 12th, 2017 Suite 400 St-Laurent, QC H4S 0A9 Submission Control No : 209135 Page 1 of 35 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION .........................................................3 SUMMARY PRODUCT INFORMATION ........................................................................3 INDICATIONS AND CLINICAL USE ..............................................................................3 CONTRAINDICATIONS ...................................................................................................4 WARNINGS AND PRECAUTIONS ..................................................................................4 ADVERSE REACTIONS ..................................................................................................10 DRUG INTERACTIONS ..................................................................................................13 DOSAGE AND ADMINISTRATION ..............................................................................15 OVERDOSAGE ................................................................................................................18 ACTION AND CLINICAL PHARMACOLOGY ............................................................19 STORAGE AND STABILITY ..........................................................................................21
    [Show full text]
  • 2D6 Substrates 2D6 Inhibitors 2D6 Inducers
    Physician Guidelines: Drugs Metabolized by Cytochrome P450’s 1 2D6 Substrates Acetaminophen Captopril Dextroamphetamine Fluphenazine Methoxyphenamine Paroxetine Tacrine Ajmaline Carteolol Dextromethorphan Fluvoxamine Metoclopramide Perhexiline Tamoxifen Alprenolol Carvedilol Diazinon Galantamine Metoprolol Perphenazine Tamsulosin Amiflamine Cevimeline Dihydrocodeine Guanoxan Mexiletine Phenacetin Thioridazine Amitriptyline Chloropromazine Diltiazem Haloperidol Mianserin Phenformin Timolol Amphetamine Chlorpheniramine Diprafenone Hydrocodone Minaprine Procainamide Tolterodine Amprenavir Chlorpyrifos Dolasetron Ibogaine Mirtazapine Promethazine Tradodone Aprindine Cinnarizine Donepezil Iloperidone Nefazodone Propafenone Tramadol Aripiprazole Citalopram Doxepin Imipramine Nifedipine Propranolol Trimipramine Atomoxetine Clomipramine Encainide Indoramin Nisoldipine Quanoxan Tropisetron Benztropine Clozapine Ethylmorphine Lidocaine Norcodeine Quetiapine Venlafaxine Bisoprolol Codeine Ezlopitant Loratidine Nortriptyline Ranitidine Verapamil Brofaramine Debrisoquine Flecainide Maprotline olanzapine Remoxipride Zotepine Bufuralol Delavirdine Flunarizine Mequitazine Ondansetron Risperidone Zuclopenthixol Bunitrolol Desipramine Fluoxetine Methadone Oxycodone Sertraline Butylamphetamine Dexfenfluramine Fluperlapine Methamphetamine Parathion Sparteine 2D6 Inhibitors Ajmaline Chlorpromazine Diphenhydramine Indinavir Mibefradil Pimozide Terfenadine Amiodarone Cimetidine Doxorubicin Lasoprazole Moclobemide Quinidine Thioridazine Amitriptyline Cisapride
    [Show full text]
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • Modern Antipsychotic Drugs: a Critical Overview
    Review Synthèse Modern antipsychotic drugs: a critical overview David M. Gardner, Ross J. Baldessarini, Paul Waraich Abstract mine was based primarily on the finding that dopamine ago- nists produced or worsened psychosis and that antagonists CONVENTIONAL ANTIPSYCHOTIC DRUGS, used for a half century to treat were clinically effective against psychotic and manic symp- a range of major psychiatric disorders, are being replaced in clini- 5 toms. Blocking dopamine D2 receptors may be a critical or cal practice by modern “atypical” antipsychotics, including ari- even sufficient neuropharmacologic action of most clinically piprazole, clozapine, olanzapine, quetiapine, risperidone and effective antipsychotic drugs, especially against hallucina- ziprasidone among others. As a class, the newer drugs have been promoted as being broadly clinically superior, but the evidence for tions and delusions, but it is not necessarily the only mecha- this is problematic. In this brief critical overview, we consider the nism for antipsychotic activity. Moreover, this activity, and pharmacology, therapeutic effectiveness, tolerability, adverse ef- subsequent pharmacocentric and circular speculations about fects and costs of individual modern agents versus older antipsy- altered dopaminergic function, have not led to a better un- chotic drugs. Because of typically minor differences between derstanding of the pathophysiology or causes of the several agents in clinical effectiveness and tolerability, and because of still idiopathic psychotic disorders, nor have they provided a growing concerns about potential adverse long-term health conse- non-empirical, theoretical basis for the design or discovery quences of some modern agents, it is reasonable to consider both of improved treatments for psychotic disorders. older and newer drugs for clinical use, and it is important to inform The neuropharmacodynamics of specific modern anti- patients of relative benefits, risks and costs of specific choices.
    [Show full text]
  • Properties and Units in Clinical Pharmacology and Toxicology
    Pure Appl. Chem., Vol. 72, No. 3, pp. 479–552, 2000. © 2000 IUPAC INTERNATIONAL FEDERATION OF CLINICAL CHEMISTRY AND LABORATORY MEDICINE SCIENTIFIC DIVISION COMMITTEE ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)# and INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY CHEMISTRY AND HUMAN HEALTH DIVISION CLINICAL CHEMISTRY SECTION COMMISSION ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)§ PROPERTIES AND UNITS IN THE CLINICAL LABORATORY SCIENCES PART XII. PROPERTIES AND UNITS IN CLINICAL PHARMACOLOGY AND TOXICOLOGY (Technical Report) (IFCC–IUPAC 1999) Prepared for publication by HENRIK OLESEN1, DAVID COWAN2, RAFAEL DE LA TORRE3 , IVAN BRUUNSHUUS1, MORTEN ROHDE1, and DESMOND KENNY4 1Office of Laboratory Informatics, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; 2Drug Control Centre, London University, King’s College, London, UK; 3IMIM, Dr. Aiguader 80, Barcelona, Spain; 4Dept. of Clinical Biochemistry, Our Lady’s Hospital for Sick Children, Crumlin, Dublin 12, Ireland #§The combined Memberships of the Committee and the Commission (C-NPU) during the preparation of this report (1994–1996) were as follows: Chairman: H. Olesen (Denmark, 1989–1995); D. Kenny (Ireland, 1996); Members: X. Fuentes-Arderiu (Spain, 1991–1997); J. G. Hill (Canada, 1987–1997); D. Kenny (Ireland, 1994–1997); H. Olesen (Denmark, 1985–1995); P. L. Storring (UK, 1989–1995); P. Soares de Araujo (Brazil, 1994–1997); R. Dybkær (Denmark, 1996–1997); C. McDonald (USA, 1996–1997). Please forward comments to: H. Olesen, Office of Laboratory Informatics 76-6-1, Copenhagen University Hospital (Rigshospitalet), 9 Blegdamsvej, DK-2100 Copenhagen, Denmark. E-mail: [email protected] Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible.
    [Show full text]
  • Schizophrenia Care Guide
    August 2015 CCHCS/DHCS Care Guide: Schizophrenia SUMMARY DECISION SUPPORT PATIENT EDUCATION/SELF MANAGEMENT GOALS ALERTS Minimize frequency and severity of psychotic episodes Suicidal ideation or gestures Encourage medication adherence Abnormal movements Manage medication side effects Delusions Monitor as clinically appropriate Neuroleptic Malignant Syndrome Danger to self or others DIAGNOSTIC CRITERIA/EVALUATION (PER DSM V) 1. Rule out delirium or other medical illnesses mimicking schizophrenia (see page 5), medications or drugs of abuse causing psychosis (see page 6), other mental illness causes of psychosis, e.g., Bipolar Mania or Depression, Major Depression, PTSD, borderline personality disorder (see page 4). Ideas in patients (even odd ideas) that we disagree with can be learned and are therefore not necessarily signs of schizophrenia. Schizophrenia is a world-wide phenomenon that can occur in cultures with widely differing ideas. 2. Diagnosis is made based on the following: (Criteria A and B must be met) A. Two of the following symptoms/signs must be present over much of at least one month (unless treated), with a significant impact on social or occupational functioning, over at least a 6-month period of time: Delusions, Hallucinations, Disorganized Speech, Negative symptoms (social withdrawal, poverty of thought, etc.), severely disorganized or catatonic behavior. B. At least one of the symptoms/signs should be Delusions, Hallucinations, or Disorganized Speech. TREATMENT OPTIONS MEDICATIONS Informed consent for psychotropic
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Appendix 13C: Clinical Evidence Study Characteristics Tables
    APPENDIX 13C: CLINICAL EVIDENCE STUDY CHARACTERISTICS TABLES: PHARMACOLOGICAL INTERVENTIONS Abbreviations ............................................................................................................ 3 APPENDIX 13C (I): INCLUDED STUDIES FOR INITIAL TREATMENT WITH ANTIPSYCHOTIC MEDICATION .................................. 4 ARANGO2009 .................................................................................................................................. 4 BERGER2008 .................................................................................................................................... 6 LIEBERMAN2003 ............................................................................................................................ 8 MCEVOY2007 ................................................................................................................................ 10 ROBINSON2006 ............................................................................................................................. 12 SCHOOLER2005 ............................................................................................................................ 14 SIKICH2008 .................................................................................................................................... 16 SWADI2010..................................................................................................................................... 19 VANBRUGGEN2003 ....................................................................................................................
    [Show full text]
  • Yorkshire Palliative Medicine Clinical Guidelines Group Guidelines on the Use of Antiemetics Author(S): Dr Annette Edwards (Chai
    Yorkshire Palliative Medicine Clinical Guidelines Group Guidelines on the use of Antiemetics Author(s): Dr Annette Edwards (Chair) and Deborah Royle on behalf of the Yorkshire Palliative Medicine Clinical Guidelines Group Overall objective : To provide guidance on the evidence for the use of antiemetics in specialist palliative care. Search Strategy: Search strategy: Medline, Embase and Cinahl databases were searched using the words nausea, vomit$, emesis, antiemetic and drug name. Review Date: March 2008 Competing interests: None declared Disclaimer: These guidelines are the property of the Yorkshire Palliative Medicine Clinical Guidelines Group. They are intended to be used by qualified, specialist palliative care professionals as an information resource. They should be used in the clinical context of each individual patient’s needs. The clinical guidelines group takes no responsibility for any consequences of any actions taken as a result of using these guidelines. Contact Details: Dr Annette Edwards, Macmillan Consultant in Palliative Medicine, Department of Palliative Medicine, Pinderfields General Hospital, Aberford Road, Wakefield, WF1 4DG Tel: 01924 212290 E-mail: [email protected] 1 Introduction: Nausea and vomiting are common symptoms in patients with advanced cancer. A careful history, examination and appropriate investigations may help to infer the pathophysiological mechanism involved. Where possible and clinically appropriate aetiological factors should be corrected. Antiemetics are chosen based on the likely mechanism and the neurotransmitters involved in the emetic pathway. However, a recent systematic review has highlighted that evidence for the management of nausea and vomiting in advanced cancer is sparse. (Glare 2004) The following drug and non-drug treatments were reviewed to assess the strength of evidence for their use as antiemetics with particular emphasis on their use in the palliative care population.
    [Show full text]