Representations of Celestial Coordinates in FITS a Linear Transformation Matrix

Total Page:16

File Type:pdf, Size:1020Kb

Representations of Celestial Coordinates in FITS a Linear Transformation Matrix Astronomy & Astrophysics manuscript no. ccs June 13, 2018 (DOI: will be inserted by hand later) Representations of celestial coordinates in FITS Mark R. Calabretta(1) and Eric W. Greisen(2) 1 Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710, Australia 2 National Radio Astronomy Observatory, P.O. Box O, Socorro, NM, USA 87801-0387 Draft dated 17 Jul 2002 Abstract. In Paper I, Greisen & Calabretta (2002) describe a generalized method for assigning physical coordinates to FITS image pixels. This paper implements this method for all spherical map projections likely to be of interest in astronomy. The new methods encompass existing informal FITS spherical coordinate conventions and translations from them are described. Detailed examples of header interpretation and construction are given. Key words. methods: data analysis – techniques:image processing – astronomical data bases: miscellaneous – astrometry 1. Introduction PIXEL COORDINATES This paper is the second in a series which establishes conven- linear transformation: CRPIXja tions by which world coordinates may be associated with FITS translation, rotation, PCi_ja (Hanisch et al., 2001) image, random groups, and table data. skewness, scale CDELTia Paper I (Greisen & Calabretta, 2002) lays the groundwork by developing general constructs and related FITS header key- PROJECTION PLANE words and the rules for their usage in recording coordinate in- COORDINATES formation. In Paper III, Greisen et al. (2002) apply these meth- spherical CTYPEia ods to spectral coordinates. Paper IV (Calabretta et al., 2002) projection PVi_ma extendsthe formalism to deal with generaldistortions of the co- ordinate grid. This paper, Paper II, addresses the specific prob- NATIVE SPHERICAL lem of describing celestial coordinates in a two-dimensional COORDINATES projection of the sky. As such it generalizes the informal but spherical CRVALia widely used conventions established by Greisen (1983, 1986) coordinate LONPOLEa for the Astronomical Image Processing System, hereinafter re- rotation LATPOLEa arXiv:astro-ph/0207413v1 19 Jul 2002 ferred to as the AIPS convention. CELESTIAL SPHERICAL Paper I describes the computation of world coordinates as COORDINATES a multi-step process. Pixel coordinates are linearly transformed to intermediateworld coordinatesthat in the final step are trans- Fig. 1. Conversion of pixel coordinates to celestial coordinates. The formed into the required world coordinates. intermediate world coordinates of Paper I, Fig. 1 are here interpreted as projection plane coordinates, i.e. Cartesian coordinates in the plane In this paper we associate particular elements of the inter- of projection, and the multiple steps required to produce them have mediate world coordinates with Cartesian coordinates in the been condensed into one. This paper is concerned in particular with plane of the spherical projection. Figure 1, by analogy with the steps enclosed in the dotted box. Fig. 1 of Paper I, focuses on the transformation as it applies to these projection plane coordinates. The final step is here di- vided into two sub-steps, a spherical projection defined in terms The original FITS paper by Wells et al. (1981) intro- of a convenient coordinate system which we refer to as native duced the CRPIX ja1 keyword to define the pixel coordinates spherical coordinates, followed by a spherical rotation of these (r1, r2, r3,...) of a coordinate reference point. Paper I retains native coordinates to the required celestial coordinate system. this but replaces the coordinate rotation keywords CROTAi with 1 The single-character alternate version code “a” on the various Send offprint requests to: M. Calabretta, FITS keywords was introduced in Paper I. It has values blank and e-mail: [email protected] A through Z. 2 Mark R. Calabretta and Eric W. Greisen: Representations of celestial coordinates in FITS a linear transformation matrix. Thus, the transformation of be made to support older FITS-reading programs. Section 7 pixel coordinates (p1, p2, p3,...) to intermediate world coor- discusses the concepts presented here, including worked exam- dinates (x1, x2, x3,...) becomes ples of header interpretation and construction. N xi = si mi j(p j r j) , (1) 2. Basic concepts = − Xj 1 N 2.1. Spherical projection = (simi j)(p j r j) , As indicated in Fig. 1, the first step in transforming (x, y) co- = − Xj 1 ordinates in the plane of projection to celestial coordinates is where N is the numberof axes givenby the NAXIS keyword. As to convert them to native longitude and latitude, (φ, θ). The suggested by the two forms of the equation, the scales si, and equations for the transformation depend on the particular pro- matrix elements mi j may be represented either separately or in jection and this will be specified via the CTYPEia keyword. combination. In the first form si is given by CDELTia and mi j by Paper I defined “4-3” form for such purposes; the rightmost PCi ja; in the second, the product simi j is given by CDi ja. The three-characters are used as an algorithm code that in this pa- two forms may not coexist in one coordinate representation. per will specify the projection. For example, the stereographic Equation (1) establishes that the reference point is the ori- projection will be coded as ‘STG’. Some projections require gin of intermediate world coordinates. We require that the lin- additional parameters that will be specified by the FITS key- ear transformation be constructed so that the plane of projec- words PVi ma for m = 0, 1, 2,..., also introduced in Paper I. / tion is defined by two axes of the xi coordinate space. We will These parameters may be associated with the longitude and or refer to intermediate world coordinates in this plane as pro- latitude coordinate as specified for each projection. However, jection plane coordinates, (x, y), thus with reference point at definition of the three-letter codes for the projections and the (x, y) = (0, 0). Note that this does not necessarily correspond to equations, their inverses and the parameters which define them, any plane defined by the p j axes since the linear transformation form a large part of this work and will be discussed in Sect. 5. matrix may introduce rotation and/or skew. The leftmost four characters of CTYPEia are used to identify Wells et al. (1981) established that all angles in FITS the celestial coordinate system and will be discussed in Sect. 3. were to be measured in degrees and this has been entrenched by the AIPS convention and confirmed in the IAU-endorsed 2.2. Reference point of the projection FITS standard (Hanisch et al., 2001). Paper I introduced the CUNITia keyword to define the units of CRVALia and CDELTia. The last step in the chain of transformations shown in Fig. 1 is Accordingly, we require CUNITia = ‘deg’ for the celes- the spherical rotation from native coordinates, (φ, θ), to celes- tial CRVALia and CDELTia, whether given explicitly or not. tial2 coordinates (α, δ). Since a spherical rotation is completely Consequently, the (x, y) coordinates in the plane of projection specified by three Euler angles it remains only to define them. are measured in degrees. For consistency, we use degree mea- In principle, specifying the celestial coordinates of any par- sure for native and celestial spherical coordinates and for all ticular native coordinate pair provides two of the Euler an- other angular measures in this paper. gles (either directly or indirectly). In the AIPS convention, the For linear coordinate systems Wells et al. (1981) prescribed CRVALia keyword values for the celestial axes3 specify the ce- that world coordinates should be computed simply by adding lestial coordinates of the reference point and this in turn is as- the relative world coordinates, xi, to the coordinate value at sociated with a particular point on the projection. For zenithal the reference point given by CRVALia. Paper I extends this by projections that point is the sphere’s point of tangency to the providing that particular values of CTYPEia may be established plane of projection and this is the pole of the native coordinate by convention to denote non-linear transformations involving system. Thus the AIPS convention links a celestial coordinate predefined functions of the xi parameterized by the CRVALia pair to a native coordinatepair via the referencepoint. Note that keyword values and possibly other parameters. this association via the reference point is purely conventional; In Sects. 2, 3 and 5 of this paper we will define the func- it has benefits which are discussed in Sect. 5 but in principle tions for the transformation from (x, y) coordinates in the plane any other point could have been chosen. of projection to celestial spherical coordinates for all spherical Section 5 presents the projection equations for the transfor- map projections likely to be of use in astronomy. mation of (x, y) to (φ, θ). The native coordinates of the refer- The FITS header keywords discussed within the main body ence point would therefore be those obtained for (x, y) = (0, 0). of this paper apply to the primary image header and image ex- However, it may happen that this point lies outside the bound- tension headers. Image fragments within binary tables exten- ary of the projection, for example as for the ZPN projection of sions defined by Cotton et al. (1995) have additional nomencla- Sect. 5.1.7. Therefore, while this work follows the AIPS ap- ture requirements,a solution for which was proposedin PaperI. proach it must of necessity generalize it. Coordinate descriptions may also be associated with the ran- 2 Usage here of the conventional symbols for right ascension and dom groups data format defined by Greisen & Harten (1981). declination for celestial coordinates is meant only as a mnemonic. It These issues will be expanded upon in Sect. 4. does not preclude other celestial systems.
Recommended publications
  • Unusual Map Projections Tobler 1999
    Unusual Map Projections Waldo Tobler Professor Emeritus Geography department University of California Santa Barbara, CA 93106-4060 http://www.geog.ucsb.edu/~tobler 1 Based on an invited presentation at the 1999 meeting of the Association of American Geographers in Hawaii. Copyright Waldo Tobler 2000 2 Subjects To Be Covered Partial List The earth’s surface Area cartograms Mercator’s projection Combined projections The earth on a globe Azimuthal enlargements Satellite tracking Special projections Mapping distances And some new ones 3 The Mapping Process Common Surfaces Used in cartography 4 The surface of the earth is two dimensional, which is why only (but also both) latitude and longitude are needed to pin down a location. Many authors refer to it as three dimensional. This is incorrect. All map projections preserve the two dimensionality of the surface. The Byte magazine cover from May 1979 shows how the graticule rides up and down over hill and dale. Yes, it is embedded in three dimensions, but the surface is a curved, closed, and bumpy, two dimensional surface. Map projections convert this to a flat two dimensional surface. 5 The Surface of the Earth Is Two-Dimensional 6 The easy way to demonstrate that Mercator’s projection cannot be obtained as a perspective transformation is to draw lines from the latitudes on the projection to their occurrence on a sphere, here represented by an adjoining circle. The rays will not intersect in a point. 7 Mercator’s Projection Is Not Perspective 8 It is sometimes asserted that one disadvantage of a globe is that one cannot see all of the entire earth at one time.
    [Show full text]
  • Map Projections Paper 4 (Th.) UNIT : I ; TOPIC : 3 …Introduction
    FOR SEMESTER 3 GE Students , Geography Map Projections Paper 4 (Th.) UNIT : I ; TOPIC : 3 …Introduction Prepared and Compiled By Dr. Rajashree Dasgupta Assistant Professor Dept. of Geography Government Girls’ General Degree College 3/23/2020 1 Map Projections … The method by which we transform the earth’s spheroid (real world) to a flat surface (abstraction), either on paper or digitally Define the spatial relationship between locations on earth and their relative locations on a flat map Think about projecting a see- through globe onto a wall Dept. of Geography, GGGDC, 3/23/2020 Kolkata 2 Spatial Reference = Datum + Projection + Coordinate system Two basic locational systems: geometric or Cartesian (x, y, z) and geographic or gravitational (f, l, z) Mean sea level surface or geoid is approximated by an ellipsoid to define an earth datum which gives (f, l) and distance above geoid gives (z) 3/23/2020 Dept. of Geography, GGGDC, Kolkata 3 3/23/2020 Dept. of Geography, GGGDC, Kolkata 4 Classifications of Map Projections Criteria Parameter Classes/ Subclasses Extrinsic Datum Direct / Double/ Spherical Triple Surface Spheroidal Plane or Ist Order 2nd Order 3rd Order surface of I. Planar a. Tangent i. Normal projection II. Conical b. Secant ii. Transverse III. Cylindric c. Polysuperficial iii. Oblique al Method of Perspective Semi-perspective Non- Convention Projection perspective al Intrinsic Properties Azimuthal Equidistant Othomorphic Homologra phic Appearance Both parallels and meridians straight of parallels Parallels straight, meridians curve and Parallels curves, meridians straight meridians Both parallels and meridians curves Parallels concentric circles , meridians radiating st. lines Parallels concentric circles, meridians curves Geometric Rectangular Circular Elliptical Parabolic Shape 3/23/2020 Dept.
    [Show full text]
  • A Bevy of Area Preserving Transforms for Map Projection Designers.Pdf
    Cartography and Geographic Information Science ISSN: 1523-0406 (Print) 1545-0465 (Online) Journal homepage: http://www.tandfonline.com/loi/tcag20 A bevy of area-preserving transforms for map projection designers Daniel “daan” Strebe To cite this article: Daniel “daan” Strebe (2018): A bevy of area-preserving transforms for map projection designers, Cartography and Geographic Information Science, DOI: 10.1080/15230406.2018.1452632 To link to this article: https://doi.org/10.1080/15230406.2018.1452632 Published online: 05 Apr 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tcag20 CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE, 2018 https://doi.org/10.1080/15230406.2018.1452632 A bevy of area-preserving transforms for map projection designers Daniel “daan” Strebe Mapthematics LLC, Seattle, WA, USA ABSTRACT ARTICLE HISTORY Sometimes map projection designers need to create equal-area projections to best fill the Received 1 January 2018 projections’ purposes. However, unlike for conformal projections, few transformations have Accepted 12 March 2018 been described that can be applied to equal-area projections to develop new equal-area projec- KEYWORDS tions. Here, I survey area-preserving transformations, giving examples of their applications and Map projection; equal-area proposing an efficient way of deploying an equal-area system for raster-based Web mapping. projection; area-preserving Together, these transformations provide a toolbox for the map projection designer working in transformation; the area-preserving domain. area-preserving homotopy; Strebe 1995 projection 1. Introduction two categories: plane-to-plane transformations and “sphere-to-sphere” transformations – but in quotes It is easy to construct a new conformal projection: Find because the manifold need not be a sphere at all.
    [Show full text]
  • Bibliography of Map Projections
    AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOlOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur­ rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur­ vey publications released prior to the current year are listed in the most recent annual "Price and Availability List" Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month­ ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in­ Books of the U.S. Geological Survey are available over the terest (such as leaflets, pamphlets, booklets), single copies of Earthquakes counter at the following Geological Survey Public Inquiries Offices, all & Volcanoes, Preliminary Determination of Epicenters, and some mis­ of which are authorized agents of the Superintendent of Documents: cellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from • WASHINGTON, D.C.--Main Interior Bldg., 2600 corridor, 18th and C Sts., NW.
    [Show full text]
  • Estimation of an Unknown Cartographic Projection and Its Parameters from the Map
    Estimation of an Unknown Cartographic Projection and its Parameters from the Map Faculty of Sciences, Charles University in Prague , Tel.: ++420-221-951-400 Abstract This article presents a new off-line method for the detection, analysis and estimation of an unknown carto- graphic projection and its parameters from a map. Several invariants are used to construct the objective function φ that describes the relationship between the 0D, 1D, and 2D entities on the analyzed and reference maps. It is min- imized using the Nelder-Mead downhill simplex algorithm. A simplified and computationally cheaper version of the objective function φ involving only 0D elements is also presented. The following parameters are estimated: a map projection type, a map projection aspect given by the meta pole K coordinates [ϕk,λk], a true parallel latitude ϕ0, central meridian longitude λ0, a map scale, and a map rotation. Before the analysis, incorrectly drawn elements on the map can be detected and removed using the IRLS. Also introduced is a new method for computing the L2 distance between the turning functions Θ1, Θ2 of the corresponding faces using dynamic programming. Our ap- proach may be used to improve early map georeferencing; it can also be utilized in studies of national cartographic heritage or land use applications. The results are presented both for real cartographic data, representing early maps from the David Rumsay Map Collection, and for the synthetic tests. Keywords: digital cartography, map projection, analysis, simplex method, optimization, Voronoi diagram, outliers detection, early maps, georeferencing, cartographic heritage, meta data, Marc 21, MapAnalyst. 1 Introduction the proposed solution, this step can be performed semi- automatically and with a higher degree of relevance us- ing our method.
    [Show full text]
  • Representations of Celestial Coordinates in FITS
    A&A 395, 1077–1122 (2002) Astronomy DOI: 10.1051/0004-6361:20021327 & c ESO 2002 Astrophysics Representations of celestial coordinates in FITS M. R. Calabretta1 and E. W. Greisen2 1 Australia Telescope National Facility, PO Box 76, Epping, NSW 1710, Australia 2 National Radio Astronomy Observatory, PO Box O, Socorro, NM 87801-0387, USA Received 24 July 2002 / Accepted 9 September 2002 Abstract. In Paper I, Greisen & Calabretta (2002) describe a generalized method for assigning physical coordinates to FITS image pixels. This paper implements this method for all spherical map projections likely to be of interest in astronomy. The new methods encompass existing informal FITS spherical coordinate conventions and translations from them are described. Detailed examples of header interpretation and construction are given. Key words. methods: data analysis – techniques: image processing – astronomical data bases: miscellaneous – astrometry 1. Introduction PIXEL p COORDINATES j This paper is the second in a series which establishes conven- linear transformation: CRPIXja r j tions by which world coordinates may be associated with FITS translation, rotation, PCi_ja mij (Hanisch et al. 2001) image, random groups, and table data. skewness, scale CDELTia si Paper I (Greisen & Calabretta 2002) lays the groundwork by developing general constructs and related FITS header key- PROJECTION PLANE x words and the rules for their usage in recording coordinate in- COORDINATES ( ,y) formation. In Paper III, Greisen et al. (2002) apply these meth- spherical CTYPEia (φ0,θ0) ods to spectral coordinates. Paper IV (Calabretta et al. 2002) projection PVi_ma Table 13 extends the formalism to deal with general distortions of the co- ordinate grid.
    [Show full text]
  • Mapping the Drowned World by Tracey Clement
    Mapping The Drowned World by Tracey Clement A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Sydney College of The Arts The University of Sydney 2017 Statement This volume is presented as a record of the work undertaken for the degree of Doctor of Philosophy at Sydney College of the Arts, University of Sydney. Table of Contents Acknowledgments iii List of images iv Abstract x Introduction: In the beginning, The End 1 Chapter One: The ABCs of The Drowned World 6 Chapter Two: Mapping The Drowned World 64 Chapter Three: It's all about Eve 97 Chapter Four: Soon it would be too hot 119 Chapter Five: The ruined city 154 Conclusion: At the end, new beginnings 205 Bibliography 210 Appendix A: Timeline for The Drowned World 226 Appendix B: Mapping The Drowned World artist interviews 227 Appendix C: Experiment and process documentation 263 Work presented for examination 310 ii Acknowledgments I wish to acknowledge the support of my partner Peter Burgess. He provided installation expertise, help in wrangling images down to size, hard-copies of multiple drafts, many hot dinners, and much, much more. Thanks also to my supervisor Professor Bradford Buckley for his steady guidance. In addition, the technical staff at SCA deserve a mention. Thanks also to all my friends, particularly those who let themselves be coerced into assisting with installation: you know who you are. And last, but certainly not least, thank you so much to the librarians at all of the University of Sydney libraries, and especially at SCA.
    [Show full text]
  • Cylindrical Projections 27
    MAP PROJECTION PROPERTIES: CONSIDERATIONS FOR SMALL-SCALE GIS APPLICATIONS by Eric M. Delmelle A project submitted to the Faculty of the Graduate School of State University of New York at Buffalo in partial fulfillments of the requirements for the degree of Master of Arts Geographical Information Systems and Computer Cartography Department of Geography May 2001 Master Advisory Committee: David M. Mark Douglas M. Flewelling Abstract Since Ptolemeus established that the Earth was round, the number of map projections has increased considerably. Cartographers have at present an impressive number of projections, but often lack a suitable classification and selection scheme for them, which significantly slows down the mapping process. Although a projection portrays a part of the Earth on a flat surface, projections generate distortion from the original shape. On world maps, continental areas may severely be distorted, increasingly away from the center of the projection. Over the years, map projections have been devised to preserve selected geometric properties (e.g. conformality, equivalence, and equidistance) and special properties (e.g. shape of the parallels and meridians, the representation of the Pole as a line or a point and the ratio of the axes). Unfortunately, Tissot proved that the perfect projection does not exist since it is not possible to combine all geometric properties together in a single projection. In the twentieth century however, cartographers have not given up their creativity, which has resulted in the appearance of new projections better matching specific needs. This paper will review how some of the most popular world projections may be suited for particular purposes and not for others, in order to enhance the message the map aims to communicate.
    [Show full text]
  • Download Ebook ^ Cartography Introduction
    NKAXDCBELVYX // eBook < Cartography Introduction Cartography Introduction Filesize: 5.46 MB Reviews Basically no words to clarify. Of course, it is perform, still an amazing and interesting literature. Its been printed in an exceptionally basic way which is only soon after i finished reading through this ebook where actually altered me, change the way i really believe. (Newton Runolfsson) DISCLAIMER | DMCA M5NRJO9YEFUZ ^ Book « Cartography Introduction CARTOGRAPHY INTRODUCTION Reference Series Books LLC Dez 2011, 2011. Taschenbuch. Book Condition: Neu. 244x190x3 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 66. Chapters: Cylindrical equal-area projection, Waymarking, Pacific Railroad Surveys, Raised-relief map, Babylonian Map of the World, Cartography of Asia, GeoComputation, SAGA GIS, MapGuide Open Source, Robert Erskine, Great Trigonometric Survey, Leo Belgicus, Baseline, United States National Grid, Esri grid, 45X90 points, Willem Blaeu, Cartography of Africa, Decimal degrees, Charles F. Homann, Pieter van der Aa, NearMap, Principal Triangulation of Great Britain, David Rumsey, Raleigh Ashlin Skelton, George Dow, Goode homolosine projection, Fantasy map, Rafael Palacios, Dual naming, General Perspective projection, Rumpsville, Geographia Map Company, Serra de Collserola, National mapping agency, Geographical pole, Globe of Peace, Ergograph, Bonne projection, United States and Mexican Boundary Survey, Principal meridian, ArcMap, Digital raster graphic, Lambert cylindrical equal-area projection,
    [Show full text]
  • Between the Sinusoidal Projection and the Werner: an Alternative to the Bonne
    CyberGeo, No. 241, 13/06/2003 Between the Sinusoidal projection and the Werner: an alternative to the Bonne. Une alternative à la projection cartographique de Bonne. Henry Bottomley Abstract The Sinusoidal projection and the Werner projection are equal area projections of the world. There are intermediate projections with similar properties, of which the best known is the Bonne projection. This note describes an alternative intermediate projection. Mots-clés : projection cartographique, projection équivalente, projection sinusoïdale, Werner, Bonne Résumé La projection sinusoïdale et la projection de Werner sont des projections équivalentes du monde: elles conservent les surfaces. Entre les deux, il existe des projections avec des propriétés similaires, parmi lesquelles la plus connue est la projection de Bonne. Cette article represente une autre projection entre la projection sinusoïdale et celle de Werner. Key-words : map projection, equal area projection, sinusoidal projection, Werner, Bonne ---------------------------------------------------------------------------------------------------- Both the Sinusoidal projection and the Werner provide simple equal area map projections, and have been used for many centuries. Unlike cylindrical equal area projections, they both reflect the fact that lines of latitude are shorter nearer the poles than those near the equator. To achieve this, they keep the central meridian straight and preserve distances along it, while transforming other meridians into curves; this has the effect of distorting shapes, in particular those towards the sides of the map, but helps remind the viewer of the curvature of the earth’s surface. There are intermediate projections with similar properties, of which the best known is the Bonne projection used extensively in the 19th century. This note describes an alternative intermediate projection.
    [Show full text]
  • Guidance Note 7 Part 2
    IOGP Publication 373-7-2 – Geomatics Guidance Note number 7, part 2 – September 2019 To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org. Geomatics Guidance Note Number 7, part 2 Coordinate Conversions and Transformations including Formulas Revised - September 2019 Page 1 of 162 IOGP Publication 373-7-2 – Geomatics Guidance Note number 7, part 2 – September 2019 To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org. Table of Contents Preface ............................................................................................................................................................5 1 IMPLEMENTATION NOTES ................................................................................................................. 6 1.1 ELLIPSOID PARAMETERS ......................................................................................................................... 6 1.2 ARCTANGENT FUNCTION ......................................................................................................................... 6 1.3 ANGULAR UNITS ....................................................................................................................................... 7 1.4 LONGITUDE 'WRAP-AROUND' .................................................................................................................. 7 1.5 OFFSETS ...................................................................................................................................................
    [Show full text]
  • Map Projection Article on Wikipedia
    Map Projection Article on Wikipedia Miljenko Lapaine a, * a University of Zagreb, Faculty of Geodesy, [email protected] * Corresponding author Abstract: People often look up information on Wikipedia and generally consider that information credible. The present paper investigates the article Map projection in the English Wikipedia. In essence, map projections are based on mathematical formulas, which is why the author proposes a mathematical approach to them. Weaknesses in the Wikipedia article Map projection are indicated, hoping it is going to be improved in the near future. Keywords: map projection, Wikipedia 1. Introduction 2. Map Projection Article on Wikipedia Not so long ago, if we were to find a definition of a term, The contents of the article Map projection at the English- we would have left the table with a matching dictionary, a language edition of Wikipedia reads: lexicon or an encyclopaedia, and in that book asked for 1 Background the term. However, things have changed. There is no 2 Metric properties of maps need to get up, it is enough with some search engine to 2.1 Distortion search that term on the internet. On the monitor screen, the search term will appear with the indication that there 3 Construction of a map projection are thousands or even more of them. One of the most 3.1 Choosing a projection surface famous encyclopaedias on the internet is certainly 3.2 Aspect of the projection Wikipedia. Wikipedia is a free online encyclopaedia, 3.3 Notable lines created and edited by volunteers around the world. 3.4 Scale According to Wikipedia (2018a) “The reliability of 3.5 Choosing a model for the shape of the body Wikipedia (predominantly of the English-language 4 Classification edition) has been frequently questioned and often assessed.
    [Show full text]