Identi Cation of Hub Genes and Pathways in Psoriasis Through

Total Page:16

File Type:pdf, Size:1020Kb

Identi Cation of Hub Genes and Pathways in Psoriasis Through Identication of hub genes and pathways in psoriasis through bioinformatics and validation by RT-qPCR Ling Ai Zou Huangshi Central Hospital, Aliated Hospital of Hubei Polytechnic University, Edong Health Care Group https://orcid.org/0000-0001-5357-9747 Qichao Jian ( [email protected] ) Research Keywords: Psoriasis, Pathogenesis, Hub genes, Pathways, CXCL10 Posted Date: March 30th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-357690/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract Background Although several studies have attempted to investigate the aetiology and mechanism of psoriasis, the precise molecular mechanism remains unclear. Our study aimed to identify the hub genes and associated pathways that promote its pathogenesis in psoriasis, which would be helpful for the discovery of diagnostic and therapeutic markers. Methods GSE30999, GSE34248, GSE41662, and GSE50790 datasets were extracted from the Gene Expression Omnibus (GEO) database. The GEO proles were integrated to obtain differentially expressed genes (DEGs) using the affy package in R software, with |logFC|> 1.5 and adjusted P < 0.05. The DEGs were utilised for Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein-protein interaction (PPI) network analyses. Hub genes were identied using Cytoscape and enriched for analysis in www.bioinformatics.com.cn. These hub genes were validated in the four aforementioned datasets and M5-induced HaCaT cells using real-time quantitative polymerase chain reaction (RT-qPCR). Results A total of 359 DEGs were identied, which were mostly associated with responses to bacterium, defence responses to other organism, and antimicrobial humoral response. These DEGs were mostly enriched in the steroid hormone biosynthesis pathway, NOD-like receptor signaling pathway, and cytokine-cytokine receptor interaction. PPI network analysis indicated seven genes (CXCL1, ISG15, CXCL10, STAT1, OASL, IFIT1, and IFIT3) as the probable hub genes of psoriasis; CXCL10 had a positive correlation with the other six hub genes. The chord plot results further supported the GO and KEGG analysis results of the 359 DEGs. Seven predicted hub genes were validated to be upregulated in four datasets and M5-induced HaCaT cells using RT-qPCR. Conclusions The pathogenesis of psoriasis may be associated with seven hub genes (CXCL1, ISG15, CXCL10, STAT1, OASL, IFIT1, and IFIT3) and pathways, such as the NOD-like receptor signaling pathway and cytokine- cytokine receptor interaction. These hub genes, especially CXCL10, can be used as potential biomarkers in psoriasis. Background Page 2/23 Psoriasis is a chronic immune-mediated inammatory skin disease with global prevalence of 2- 3% [1,2]. The occurrence of psoriasis is a complex interaction among genetics, immunology, and environment [1,3]. Although there are plenty of studies to investigate the etiologies and mechanisms, the precise molecular mechanism of psoriasis remains unclear [3]. Therefore, a thorough exploration of psoriasis’ pathogenesis is helpful for discovery of potential biomarkers and provides novel clues for diagnosis and treatment. Up to now, microarray technology has been extensively utilized to analyze gene expression in many diseases, including psoriasis disease [4,5]. Gene Expression Omnibus (GEO) is a comprehensive public database, which contains various disease gene expression datasets [4]. Thus, bioinformatics analysis can mine the hub genes and associated pathways from GEO database, and provide a novel approach for exploring the molecular mechanism of psoriasis. In the current study, we merged four independent gene expression datasets (GSE30999 [6], GSE34248 [7], GSE41662 [7] and GSE50790 [8]) from the GEO database using the affy package in R software, and identied differentially expressed genes (DEGs) of the merged datasets. Then the DEGs were performed for a series of analyses, such as Gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein-protein interaction (PPI) network analysis, and hub genes prediction. In order to verify these predicted hub genes, we compared the expression levels of these genes between the lesional and non-lesional psoriatic skin in the four datasets, and performed RT-qPCR experiments in M5 induced HaCaT cells. Since some studies conrmed M5 (IL-1a, IL-17A, IL-22, TNF-a, and oncostatin M) can induce a better psoriasis cell model than other cytokines, we use M5 to mimic the hyperproliferative pathological state of psoriasis keratinocytes in our experiments [9-14] Methods Microarray data source Fig. 1 shows the overall workow of this study. Using the key words ‘psoriasis’, ‘lesion*’, ‘Tissue’, ‘Homo sapiens’ and ‘Expression proling by array’ were screened in the National Center of Biotechnology Information (NCBI) - GEO (https://www.ncbi.nlm.nih.gov/geo/). The raw proles of GSE30999 [6], GSE34248 [7], GSE41662 [7], and GSE50790 [8], were downloaded from the NCBI GEO database. The detailed information of four enrolled microarray datasets is shown in Table 1. In GSE30999, GSE34248, GSE41662, and GSE50790, only psoriatic lesional skin samples and their matched non-lesional skin samples were selected, which resulted in 127 pairs of skin samples from psoriasis patients for subsequent analysis. DEGs analysis and integration After the raw data of four datasets were collated, the analyses were performed in the R programming environment (version4.0.2.). The affy package was used to preprocess the collated data by conducting Page 3/23 background correction, normalization and expression calculation [15]. Then the ComBat function of sva package was applied for eliminating batch effect between datasets [16]. And the probes were annotated by matrix data combined with HG-U133_Plus_2-na36 annotation le. Lastly we used the limma package of R language to identify the differential expression genes(DEGs). The signicant differential expression cut-off was set as |logFC| >1.5 and adjusted P<0.05, which were demonstrated as Volcano plots. Furthermore, a heatmap was drawn to show the clustering of samples. GO and KEGG pathway analysis of DEGs Metascape (http://metascape.org) is a free, powerful and online analysis tool for gene annotation and analysis [17]. It is also an automated meta-analysis tool to annotate genes, conduct enrichment analysis and construct protein-protein interaction networks. In this study, Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were enriched based on Metascape. GO terms included biological process, cellular component, and molecular function. The cutoff criterions were P-value < 0.05, minimum overlap of 3, and minimum enrichment of 1.5. The top 20 enrichment Go terms and KEGG pathways in our study were listed as gures and tables respectively. Protein-protein interaction(PPI) network construction and hub genes identication The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, version 11.0, http://www.string- db.org/) was utilized to construct a PPI network for proteins encoded by DEGs, and the minimum required interaction score was set as 0.7 (referred as high condence) [18]. In order to further analyze the results from STRING database, Cytoscape 3.8.0 was used as a tool to visualize the PPI network [19]. The modules in the PPI network were extracted using the Cluster Finding algorithm in MCODE with a max depth of 100, a node score cutoff of 0.2, a degree cutoff of 2, and a k-core of 2. The hub genes were identied by CytoHubba, which was a useful plugin in Cytoscape. It can provide 12 topological analysis methods to explore top 10 genes. Specically, these methods are Maximal Clique Centrality (MCC), Density of Maximum Neighborhood Component (DMNC), Maximum Neighborhood Component (MNC), Degree, Edge Percolated Component (EPC), BottleNeck, EcCentricity, Closeness, Radiality, Betweenness, Stress, and ClusteringCoecient. A hub gene can be identied, if this gene was predicted as one of the top 10 genes in all the 12 methods. Additionally, interactions between hub genes were analyzed back in STRING database. Functional enrichment analysis of hub genes GO and KEGG analyses of 359 DEGs were performed by Metascape, including seven hub genes. Then the functional enrichment analysis of seven hub genes were explored by http: //www. bioinformatics. com.cn, an online platform for data analysis and visualization. Validation of hub genes in datasets Expression data of hub genes were extracted from GSE30999, GSE34248, GSE41662, and GSE50790. The correlations between CXCL10 and the other hub genes were conrmed in the four aforementioned Page 4/23 datasets. Then the differential expression of these hub genes was validated in these four datasets. Cell culture and treatment HaCaT cell line was purchased from Shanghai iCell Bioscience Inc. HaCaT cells were cultured in DMEM(Dulbecco's Modied Eagle's Medium) with 10% fetal bovine serum and 1% penicillin and streptomycin, in a humidied incubator at 37 °C and 5% CO2. Then the cells were treated with 10 ng/ml M5 (IL-1α [PeproTech, 200-01A], IL-17A [PeproTech, 200–17], IL-22 [PeproTech, 200–22], TNF-α [PeproTech, 300-01A], Oncostatin M [Peprotech, 300–10]) for 48 h, to establish the psoriasis cell model. Real-time quantitative PCR (RT-qPCR) Total RNA was extracted from M5 treated HaCaT cells by TRIpure Total RNA Extraction Reagen t(#EP013, ELK Biotechnology, China). Total RNA was reverse transcribed using EntiLink™
Recommended publications
  • A Genetic Variant Protective Against Severe COVID-19 Is Inherited from Neandertals
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.327197; this version posted October 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A genetic variant protective against severe COVID-19 is inherited from Neandertals Authors Hugo Zeberg1,2* and Svante Pääbo1,3* Affiliations 1 Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany. 2 Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden. 3 Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan. *Corresponding authors: [email protected], [email protected] Abstract It was recently shown that the major genetic risk factor associated with becoming severely ill with COVID-19 when infected by SARS-CoV-2 is inherited from Neandertals. Thanks to new genetic association studies additional risk factors are now being discovered. Using data from a recent genome- wide associations from the Genetics of Mortality in Critical Care (GenOMICC) consortium, we show that a haplotype at a region associated with requiring intensive care is inherited from Neandertals. It encodes proteins that activate enzymes that are important during infections with RNA viruses. As compared to the previously described Neandertal risk haplotype, this Neandertal haplotype is protective against severe COVID-19, is of more moderate effect, and is found at substantial frequencies in all regions of the world outside Africa. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.327197; this version posted October 9, 2020.
    [Show full text]
  • Oas1b-Dependent Immune Transcriptional Profiles of West Nile
    MULTIPARENTAL POPULATIONS Oas1b-dependent Immune Transcriptional Profiles of West Nile Virus Infection in the Collaborative Cross Richard Green,*,† Courtney Wilkins,*,† Sunil Thomas,*,† Aimee Sekine,*,† Duncan M. Hendrick,*,† Kathleen Voss,*,† Renee C. Ireton,*,† Michael Mooney,‡,§ Jennifer T. Go,*,† Gabrielle Choonoo,‡,§ Sophia Jeng,** Fernando Pardo-Manuel de Villena,††,‡‡ Martin T. Ferris,†† Shannon McWeeney,‡,§,** and Michael Gale Jr.*,†,1 *Department of Immunology and †Center for Innate Immunity and Immune Disease (CIIID), University of Washington, § Seattle, Washington 98109, ‡OHSU Knight Cancer Institute, Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, and **Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon 97239, ††Department of Genetics and ‡‡Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514 ABSTRACT The oligoadenylate-synthetase (Oas) gene locus provides innate immune resistance to virus KEYWORDS infection. In mouse models, variation in the Oas1b gene influences host susceptibility to flavivirus infection. Oas However, the impact of Oas variation on overall innate immune programming and global gene expression flavivirus among tissues and in different genetic backgrounds has not been defined. We examined how Oas1b acts viral infection in spleen and brain tissue to limit West Nile virus (WNV) susceptibility and disease across a range of innate immunity genetic backgrounds. The laboratory founder strains of the mouse Collaborative Cross (CC) (A/J, C57BL/6J, multiparental 129S1/SvImJ, NOD/ShiLtJ, and NZO/HlLtJ) all encode a truncated, defective Oas1b, whereas the three populations wild-derived inbred founder strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) encode a full-length OAS1B pro- Multi-parent tein.
    [Show full text]
  • Microarray Analysis of Novel Genes Involved in HSV- 2 Infection
    Microarray analysis of novel genes involved in HSV- 2 infection Hao Zhang Nanjing University of Chinese Medicine Tao Liu ( [email protected] ) Nanjing University of Chinese Medicine https://orcid.org/0000-0002-7654-2995 Research Article Keywords: HSV-2 infection,Microarray analysis,Histospecic gene expression Posted Date: May 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-517057/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Background: Herpes simplex virus type 2 infects the body and becomes an incurable and recurring disease. The pathogenesis of HSV-2 infection is not completely clear. Methods: We analyze the GSE18527 dataset in the GEO database in this paper to obtain distinctively displayed genes(DDGs)in the total sequential RNA of the biopsies of normal and lesioned skin groups, healed skin and lesioned skin groups of genital herpes patients, respectively.The related data of 3 cases of normal skin group, 4 cases of lesioned group and 6 cases of healed group were analyzed.The histospecic gene analysis , functional enrichment and protein interaction network analysis of the differential genes were also performed, and the critical components were selected. Results: 40 up-regulated genes and 43 down-regulated genes were isolated by differential performance assay. Histospecic gene analysis of DDGs suggested that the most abundant system for gene expression was the skin, immune system and the nervous system.Through the construction of core gene combinations, protein interaction network analysis and selection of histospecic distribution genes, 17 associated genes were selected CXCL10,MX1,ISG15,IFIT1,IFIT3,IFIT2,OASL,ISG20,RSAD2,GBP1,IFI44L,DDX58,USP18,CXCL11,GBP5,GBP4 and CXCL9.The above genes are mainly located in the skin, immune system, nervous system and reproductive system.
    [Show full text]
  • Origin and Development of Oligoadenylate Synthetase Immune System
    Edinburgh Research Explorer Origin and development of oligoadenylate synthetase immune system Citation for published version: Hu, J, Wang, X, Yanling , X, Enguang , R, Ning, M, Smith, J & Huang, Y 2018, 'Origin and development of oligoadenylate synthetase immune system', BMC Evolutionary Biology, vol. 18, 201. https://doi.org/10.1186/s12862-018-1315-x Digital Object Identifier (DOI): 10.1186/s12862-018-1315-x Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: BMC Evolutionary Biology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 Hu et al. BMC Evolutionary Biology (2018) 18:201 https://doi.org/10.1186/s12862-018-1315-x RESEARCH ARTICLE Open Access Origin and development of oligoadenylate synthetase immune system Jiaxiang Hu1†, Xiaoxue Wang1†, Yanling Xing1, Enguang Rong1, Mengfei Ning1, Jacqueline Smith2 and Yinhua Huang1* Abstract Background: Oligoadenylate synthetases (OASs) are widely distributed in Metazoa including sponges, fish, reptiles, birds and mammals and show large variation, with one to twelve members in any given species.
    [Show full text]
  • Type of the Paper (Article
    SUPPLEMENTAL FILES 1 Figure S1: There is a strong correlation between expression profiles of RNA isolated from FFPE or fresh tissue. Murine skin (n=5) was sampled after euthanasia. One half of the skin sample was subjected to fresh RNA isolation and the other was fixed in formalin for 16 hours followed by paraffin embedding prior to RNA isolation. Real-time PCR was used to quantitate RNA levels of 10 different genes and the ddct for each gene was plotted for each RNA isolation subtype. Correlation between FFPE and freshly isolated RNA delta-CTs was done via linear regression using GraphPad Prism v.6. Supplemental Table S1. 226 genes regulated in DLE and SCLE (q-value<0.05, absolute log2 fold-change 0.6) having a potential binding site for STAT1 in their promoter Gene symbol ENTREZ DLE fold- DLE SCLE SCLE GENE ID change q-value fold-change q-value FGFR2 2263 0.5 0.0000 0.6 0.0021 CXCL10 3627 39.5 0.0000 22.5 0.0000 CCL5 6352 3.6 0.0000 2.7 0.0000 KRT16 3868 6.4 0.0000 6.1 0.0000 RTP4 64108 1.9 0.0000 1.6 0.0010 PLEK 5341 2.5 0.0000 2.0 0.0000 S100A8 6279 4.5 0.0000 3.4 0.0000 CD9 928 0.6 0.0016 0.6 0.0109 IL2RG 3561 2.9 0.0000 2.3 0.0000 CAT 847 0.6 0.0051 0.6 0.0021 CD3D 915 2.9 0.0000 2.3 0.0000 HLA-DRA 3122 2.3 0.0000 1.9 0.0000 ITGB5 3693 0.7 0.0258 0.6 0.0111 SERPINB3 6317 4.7 0.0000 4.3 0.0000 CD274 29126 1.7 0.0051 1.7 0.0121 IL12RB2 3595 1.7 0.0073 1.6 0.0009 STK17B 9262 1.9 0.0007 1.6 0.0121 ITGAX 3687 2.0 0.0000 1.9 0.0000 ATP5PO 539 0.5 0.0140 0.4 0.0016 SERPINB4 6318 6.5 0.0000 3.1 0.0000 HAVCR2 84868 1.9 0.0000 1.9 0.0000
    [Show full text]
  • Cancer Upregulated Gene 2, a Novel Oncogene, Confers Resistance to Oncolytic Vesicular Stomatitis Virus Through STAT1-OASL2 Signaling
    Cancer Gene Therapy (2013) 20, 125–132 & 2013 Nature America, Inc. All rights reserved 0929-1903/13 www.nature.com/cgt ORIGINAL ARTICLE Cancer upregulated gene 2, a novel oncogene, confers resistance to oncolytic vesicular stomatitis virus through STAT1-OASL2 signaling W Malilas1, SS Koh2, R Srisuttee1, W Boonying1, I-R Cho1, C-S Jeong3, RN Johnston4 and Y-H Chung1 We have recently found a novel oncogene, named cancer upregulated gene 2 (CUG2), which activates Ras and mitogen-activated protein kinases (MAPKs), including ERK, JNK and p38 MAPK. Because activation of these signaling pathways has previously been shown to enhance cancer cell susceptibility to oncolysis by certain viruses, we examined whether vesicular stomatitis virus (VSV) could function as a potential therapeutic agent by efficiently inducing cytolysis in cells transformed by CUG2. Unexpectedly, NIH3T3 cells stably expressing CUG2 (NIH-CUG2) were resistant to VSV because of the activation of signal transducers and activators of transcription 1 (STAT1). The result was supported by evidence showing that suppression of STAT1 with short interference RNA (siRNA) renders cells susceptible to VSV. Furthermore, 20–50 oligoadenylate synthetase-like (OASL) 2 was the most affected by STAT1 expression level among anti-viral proteins and furthermore suppression of OASL2 mRNA level caused NIH-CUG2 cells to succumb to VSV as seen in NIH-CUG2 cells treated with STAT1 siRNA. In addition, Colon26L5 carcinoma cells stably expressing CUG2 (Colon26L5-CUG2) exhibited resistance to VSV, whereas Colon26L5 stably expressing a control vector yielded to VSV infection. Moreover, Colon26L5-CUG2 cells stably suppressing STAT1 succumbed to VSV infection, resulting in apoptosis.
    [Show full text]
  • Full Text (PDF)
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.29.20248986; this version posted January 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Insights into the molecular mechanism of anticancer drug ruxolitinib repurposable in COVID-19 therapy Manisha Mandal Department of Physiology, MGM Medical College, Kishanganj-855107, India Email: [email protected], ORCID: https://orcid.org/0000-0002-9562-5534 Shyamapada Mandal* Department of Zoology, University of Gour Banga, Malda-732103, India Email: [email protected], ORCID: https://orcid.org/0000-0002-9488-3523 *Corresponding author: Email: [email protected]; [email protected] Abstract Due to non-availability of specific therapeutics against COVID-19, repurposing of approved drugs is a reasonable option. Cytokines imbalance in COVID-19 resembles cancer; exploration of anti-inflammatory agents, might reduce COVID-19 mortality. The current study investigates the effect of ruxolitinib treatment in SARS-CoV-2 infected alveolar cells compared to the uninfected one from the GSE5147507 dataset. The protein-protein interaction network, biological process and functional enrichment of differentially expressed genes were studied using STRING App of the Cytoscape software and R programming tools. The present study indicated that ruxolitinib treatment elicited similar response equivalent to that of SARS-CoV-2 uninfected situation by inducing defense response in host against virus infection by RLR and NOD like receptor pathways. Further, the effect of ruxolitinib in SARS- CoV-2 infection was mainly caused by significant suppression of IFIH1, IRF7 and MX1 genes as well as inhibition of DDX58/IFIH1-mediated induction of interferon- I and -II signalling.
    [Show full text]
  • OASL (H-200): Sc-98313
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . OASL (H-200): sc-98313 BACKGROUND PRODUCT OASL (2'-5'-oligoadenylate synthetase-like), also known as p59OASL or TRIP14 Each vial contains 200 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide (thyroid receptor-interacting protein 14), is a 514 amino acid protein that exists and 0.1% gelatin. as 2 alternatively spliced isoforms, designated p56 and p30, and contains 2 ubiquitin-like domains. Expressed in a variety of tissues with highest levels APPLICATIONS present in colon, stomach and testis, OASL interacts with the ligand binding OASL (H-200) is recommended for detection of OASL of human origin by domain of the thyroid receptor (TR) and is able to bind double-stranded RNA Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), and DNA, possibly playing a role in RNA degradation and the overall inhibi tion immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell of protein synthesis. The gene encoding OASL maps to human chromosome 12, lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50- which encodes over 1,100 genes and comprises approximately 4.5% of the hu- 1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30- man genome. Chromosome 12 is associated with a variety of diseases and 1:3000). afflictions, including hypochondrogenesis, achondrogenesis, Kniest dyspla sia, Noonan syndrome and trisomy 12p, which causes facial developmental defects Suitable for use as control antibody for OASL siRNA (h): sc-95857, OASL and seizure disorders.
    [Show full text]
  • Expression of the OAS Gene Family Is Highly Modulated in Subjects Affected by Juvenile Dermatomyositis, Resembling an Immune Response to a Dsrna Virus Infection
    International Journal of Molecular Sciences Article Expression of the OAS Gene Family Is Highly Modulated in Subjects Affected by Juvenile Dermatomyositis, Resembling an Immune Response to a dsRNA Virus Infection Giuseppe Musumeci 1,† , Paola Castrogiovanni 1,† , Ignazio Barbagallo 2, Daniele Tibullo 3, Cristina Sanfilippo 1,4, Giuseppe Nunnari 5, Giovanni Francesco Pellicanò 5, Piero Pavone 6, Rosario Caltabiano 7, Roberto Di Marco 8 , Rosa Imbesi 1 and Michelino Di Rosa 1,* 1 Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95131 Catania, Italy; [email protected] (G.M.); [email protected] (P.C.); cri.sanfi[email protected] (C.S.); [email protected] (R.I.) 2 Department of Drug Sciences, University of Catania, 95100 Catania, Italy; [email protected] 3 Department of Biomedical and Biotechnological Sciences, University of Catania, 95131 Catania, Italy; [email protected] 4 IRCCS Centro Neurolesi Bonino Pulejo, Stada Statale 113, C.da Casazza, 98124 Messina, Italy 5 Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, 98122 Messina, Italy; [email protected] (G.N.); [email protected] (G.F.P.) 6 Division of Pediatrics and Pediatric Emergency, University-Hospital “Policlinico-Vittorio Emanuele”, University of Catania, 95131 Catania, Italy; [email protected] 7 Department “G.F. Ingrassia”, Section of Pathologic Anatomy, University of Catania, 95131 Catania, Italy; [email protected] 8 Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 23 July 2018; Accepted: 14 September 2018; Published: 17 September 2018 Abstract: Background: Juvenile dermatomyositis (JDM) is a systemic, autoimmune, interferon (IFN)-mediated inflammatory muscle disorder that affects children younger than 18 years of age.
    [Show full text]
  • Oass in Defense of Mycobacterial Infection: Angels Or Demons?
    OASs in Mycobacterial Infection Zhang et al. Curr. Issues Mol. Biol. (2021) 40: 221-230. caister.com/cimb OASs in Defense of Mycobacterial Infection: Angels or Demons? Weipan Zhang, Xiaojian Cao, Gang Cao and Xi Chen* State Key laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China *Corresponding author: [email protected] DOI: https://doi.org/10.21775/cimb.040.221 Abstract The interaction between pattern-recognition receptors (PRRs) and pathogen- associated molecular patterns (PAMPs) induces type I interferon (IFN) responses. IFNs stimulates hundreds of genes to exert its biological effects. OASs are the members of IFN-stimulate genes (ISGs). Among them, OAS1 activates RNase L to cleave RNA viruses genome, OAS2 activates downstream immune signaling pathways of IFNs, OAS3 induces RNase L to cut the genome of RNA virus and activate IFN I response to enhance the immune effect, and OASL inhibits the survival of RNA viruses by activating RIG-I signaling pathway but promotes the reproduction of DNA viruses by inhibiting the cGAS signaling pathway. However, the role of OASs in mycobacterial infection remains incomprehensible. In this review, we summarized the latest literature regarding the roles of OASs in mycobacterial infection. Introduction Mycobacterium tuberculosis (M. tuberculosis) is an obligate intracellular pathogen, which is capable of maintaining long-term persistence in host by modulating its innate and adaptive immune response (Toledo Pinto et al., 2018). The mechanisms by which host immune response restricts M. tuberculosis replication and transmission are still unknown. M. tuberculosis invades and induces large amounts of cytokines secretion by macrophage such as interferon (IFN), IL-1β and TNFα (Leisching et al., 2017b).
    [Show full text]
  • RNA Binding Proteins As Drivers and Therapeutic Target Candidates in Pancreatic Ductal Adenocarcinoma
    International Journal of Molecular Sciences Article RNA Binding Proteins as Drivers and Therapeutic Target Candidates in Pancreatic Ductal Adenocarcinoma Markus Glaß 1,* , Patrick Michl 2 and Stefan Hüttelmaier 1 1 Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; [email protected] 2 Universitätsklinik und Poliklinik für Innere Medizin I, Universitätsklinikum Halle (Saale), Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; [email protected] * Correspondence: [email protected] Received: 8 May 2020; Accepted: 8 June 2020; Published: 11 June 2020 Abstract: Pancreatic ductal adenocarcinomas (PDAC) belong to the most frequent and most deadly malignancies in the western world. Mutations in KRAS and TP53 along with some other frequent polymorphisms occur almost universally and are likely to be responsible for tumor initiation. However, these mutations cannot explain the heterogeneity in therapeutic responses observed in PDAC patients, which limits efficiency of current therapeutic strategies. Instead, recent classifications of PDAC tumor samples are based on transcriptomics data and thus include information about epigenetic, transcriptomic, and post-transcriptomic deregulations. RNA binding proteins (RBPs) are important post-transcriptional regulators involved in every aspect of the RNA life cycle and thus considerably influence the transcriptome. In this study, we systematically investigated deregulated expression, prognostic value, and essentiality reported for RBPs in PDAC or PDAC cancer models using publicly available data. We identified 44 RBPs with suggested oncogenic potential. These include various proteins, e.g., IGF2 mRNA binding proteins (IGF2BPs), with reported tumor-promoting roles. We further characterized these RBPs and found common patterns regarding their expression, interaction, and regulation by microRNAs.
    [Show full text]
  • Positive Selection in Transcription Factor Genes
    POSITIVE SELECTION IN TRANSCRIPTION FACTOR GENES ALONG THE HUMAN LINEAGE by GABRIELLE CELESTE NICKEL Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Thesis Adviser: Dr. Mark D. Adams Department of Genetics CASE WESTERN RESERVE UNIVERSITY January 2009 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Gabrielle Nickel______________________________________________________ candidate for the _Ph.D._______________________________degree *. Helen Salz_______________________________________________ (chair of the committee) Mark Adams______________________________________________ Radhika Atit_______________________________________________ Peter Harte________________________________________________ Joe Nadeau________________________________________________ ________________________________________________ (date) August 28, 2008_______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. 1 TABLE OF CONTENTS Table of Contents……………………………………………………………………………………………………….2 List of Tables……………………………………………………………………………………………………………...6 List of Figures……………………………………………………………………………………………………………..8 List of Abbreviations…………………………………………………………………………………………………10 Glossary………………………………………………………………………………………………..………………….12 Abstract..………………………………………………………………………………………………………………….16 Chapter 1: Introduction and Background………………………………………….……………………...17 Origin of Modern Humans………………………………………………………………………………..19 Human‐chimpanzee
    [Show full text]