Cancer Upregulated Gene 2, a Novel Oncogene, Confers Resistance to Oncolytic Vesicular Stomatitis Virus Through STAT1-OASL2 Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Cancer Upregulated Gene 2, a Novel Oncogene, Confers Resistance to Oncolytic Vesicular Stomatitis Virus Through STAT1-OASL2 Signaling Cancer Gene Therapy (2013) 20, 125–132 & 2013 Nature America, Inc. All rights reserved 0929-1903/13 www.nature.com/cgt ORIGINAL ARTICLE Cancer upregulated gene 2, a novel oncogene, confers resistance to oncolytic vesicular stomatitis virus through STAT1-OASL2 signaling W Malilas1, SS Koh2, R Srisuttee1, W Boonying1, I-R Cho1, C-S Jeong3, RN Johnston4 and Y-H Chung1 We have recently found a novel oncogene, named cancer upregulated gene 2 (CUG2), which activates Ras and mitogen-activated protein kinases (MAPKs), including ERK, JNK and p38 MAPK. Because activation of these signaling pathways has previously been shown to enhance cancer cell susceptibility to oncolysis by certain viruses, we examined whether vesicular stomatitis virus (VSV) could function as a potential therapeutic agent by efficiently inducing cytolysis in cells transformed by CUG2. Unexpectedly, NIH3T3 cells stably expressing CUG2 (NIH-CUG2) were resistant to VSV because of the activation of signal transducers and activators of transcription 1 (STAT1). The result was supported by evidence showing that suppression of STAT1 with short interference RNA (siRNA) renders cells susceptible to VSV. Furthermore, 20–50 oligoadenylate synthetase-like (OASL) 2 was the most affected by STAT1 expression level among anti-viral proteins and furthermore suppression of OASL2 mRNA level caused NIH-CUG2 cells to succumb to VSV as seen in NIH-CUG2 cells treated with STAT1 siRNA. In addition, Colon26L5 carcinoma cells stably expressing CUG2 (Colon26L5-CUG2) exhibited resistance to VSV, whereas Colon26L5 stably expressing a control vector yielded to VSV infection. Moreover, Colon26L5-CUG2 cells stably suppressing STAT1 succumbed to VSV infection, resulting in apoptosis. Taken together, we propose that VSV treatment combined with the selective regulation of genes such as STAT1 and OASL2 will improve therapeutic outcomes for CUG2-overexpressing tumors. Cancer Gene Therapy (2013) 20, 125–132; doi:10.1038/cgt.2012.96; published online 11 January 2013 Keywords: VSV; STAT1; OASL2; CUG2; virotherapy INTRODUCTION peripheral matrix protein.4 VSV causes vesicular lesions in the To discover new genes that have a crucial role in common mucous membranes of mouse and in the nasal tissues of horses, tumorigenesis regardless of tissue origin, we analyzed commonly cattle and pigs. However, VSV does not induce significant upregulated unknown genes using 242 normal and 300 tumor symptoms in humans. Moreover, evidence of human exposure to 5 samples originating from 11 different tissues with an Affymetrix VSV is generally uncommon in seroprevalence studies, which is gene chip system. An uncharacterized gene, later named cancer beneficial for the potential use of VSV as an oncolytic agent in upregulated gene 2 (CUG2), was identified as a potential human trials. Furthermore, VSV can replicate in malignant cells 6–9 candidate that was commonly upregulated in various tumor more efficiently than in normal cells as do other oncolytic viruses. tissues, including ovary, liver, lung, pancreas and colon. CUG2 was Successful treatments with VSV have been reported in laboratory 10–13 mapped to chromosome 6q22.32, extends about 8.5 kb in length models of breast, lung, brain and colon cancers. However, VSV with a 3-exon structure, encoding a 88-amino-acid polypeptide.1 is very sensitive to the anti-viral activity of interferon (IFN) induction, Further study has revealed that CUG2 protein is a novel and therefore improved strategies for the application of VSV have component of centromeres required for proper kinetochore been sought for preferential replication in tumor cells and 10,14 function during cell division.2 Of interest, CUG2 has been shown resistance to the anti-viral action of host cells. to possess an oncogenic effect in a transplanted model using IFN-induced anti-viral proteins have been extensively studied. NIH3T3 cells expressing CUG2, behaving similarly to Ras.1 Our 20–50 Oligoadenylate synthetase (OAS) stimulated by double- previous study has shown that CUG2 activates Ras and mitogen- stranded RNA polymerizes ATP to 20- and 50-linked oligomers of activated protein kinases (MAPKs) including p38 MAPK, which adenosine and activates RNaseL by inhibiting initiation of protein eventually facilitate reoviral replication and the death of virus- synthesis or degrading RNA.15 The OAS gene family contains four infected cancer cells.3 OAS members: OAS1, OAS2, OAS3 and OASL.16 IFN-stimulated gene Vesicular stomatitis virus (VSV), also known as a potential 15 (ISG15), a 15-kDa ubiquitin-like protein, has recently emerged therapeutic anticancer agent, is a non-enveloped, negative- as an important tool in the defense against viral infections. Like stranded RNA virus and belongs to the Rhabdoviridae family. ubiquitin and other ubiquitin-like proteins, ISG15 is attached to The RNA genome of VSV encodes five proteins, including target proteins through a C-terminal Gly–Gly motif, which is nucleocapsid, polymerase proteins, surface glycoprotein and referred to as ISGylation and is implicated in anti-viral activity.17 1WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea; 2Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea; 3School of Biological Sciences, Ulsan University, Ulsan, Republic of Korea and 4Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada. Correspondence: Professor Y-H Chung, WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea. E-mail: [email protected] Received 2 October 2012; revised 13 December 2012; accepted 13 December 2012; published online 11 January 2013 CUG2 confers resistance to VSV through STAT1 W Malilas et al 126 Guanylate-binding proteins (GBPs) are a family of large IFN- Active ras capture assays 18 induced GTPases. Although it is currently unclear how GBP To capture GTP-bound Ras from cell lysates, a GST-Raf-RBD fusion protein functions in anti-viral activity, ectopic expression of GBP1 or GBP2 was used as described elsewhere.24 The cells were lysed with lysis buffer protects cells against VSV and encephalomyelitis virus infections.19 and glutathione-agarose beads (Clontech, Mountain View, CA, USA) were IFN-inducible protein-10 (IP-10), a non-ELR CXC chemokine, is a added to the supernatant, and the solutions were rocked on ice for 30 min chemoattractant for natural killer and T cells and is believed to be to exclude nonspecific binding. After centrifugation, the supernatant was an important regulator of the T-helper type 1, interleukin-12- harvested, followed by the addition of GST-Raf-RBD (Cytoskeleton, Denver, CO, USA). The solution was rocked on ice for 1 h, followed by the addition driven inflammatory responses as an inducer of cellular 20 of glutathione-agarose beads to capture active Ras, which binds to GST- infiltration. IFN-induced protein with tetratricopeptide repeat 3 Raf-RBD. After washing three times, the pellet was mixed with 40 mlof2Â (IFIT3) is significantly induced upon RNA virus infection. Recent SDS loading buffer. To detect the captured Ras, immunoblotting was study has shown that IFN-induced tetratricopeptide repeat protein performed with anti-Ras antibody (Santa Cruz Biotechnology). IFIT3 potentiates anti-viral signaling by bridging mitochondrial anti-viral signaling complex and tumor necrosis factor receptor- Qualitative reverse transcription-polymerase chain reaction associated factor family member-associated nuclear factor-kB activator-binding kinase 1.21 Total RNA was extracted from cells using the RNeasy mini kit (Qiagen, Valencia, CA, USA) in accordance with the manufacturer’s instructions. In Several lines of evidence have shown that Ras/Raf/MEK all, 2 mg of total RNA were converted to cDNA using Superscript II reverse signaling reduces the threshold for VSV infection by attenuation transcriptase (Invitrogen, Carlsbad, CA, USA), and polymerase chain 22,23 of IFN signaling. Our observation that CUG2 upregulates Ras reaction (PCR) was performed using the specific primers designed by the and MAPK activity3 led us to predict that NIH3T3 cells transformed Vector NTI software (Invitrogen). The cDNA products of each reaction were with CUG2 should become susceptible to VSV infection. In this diluted, and PCR was run at the optimized cycle number. Glyceraldehyde study, we tested this hypothesis by asking whether VSV efficiently 3-phosphate dehydrogenase mRNA was used as an internal standard. induces cytolysis in NIH3T3 cells transformed with CUG2. We unexpectedly found that CUG2 activates STAT1, leading to the Real-time RT-PCR upregulation of the anti-viral gene OASL2, which actually confers In addition, for a quantitative real-time reverse transcription (RT)-PCR, resistance to VSV infection. We also confirmed that activation of several sets of primers were designed by Bioneer Corporation (Daejeon, STAT1 mediated by CUG2 provides resistance to VSV in colon South Korea). Gene amplification was carried out using cDNA samples with carcinoma cells. We herein suggest that VSV treatment combined a SYBR Green-based real-time PCR. All real-time PCR amplification and with selective downregulation of genes such as STAT1 and OASL2 analysis was conducted by Accupower qPCR array using Exicycler 96 Real- will enhance therapeutic efficiency for CUG2-overexpressing Time Quantitative Thermal Block (Bioneer, Daejeon,
Recommended publications
  • Guanine Nucleotidebinding Protein 1 Is One of the Key Molecules
    Guanine nucleotide-binding protein 1 is one of the key molecules contributing to cancer cell radioresistance Motoi Fukumoto,1 Tatsuya Amanuma,1 Yoshikazu Kuwahara,1 Tsutomu Shimura,1 Masatoshi Suzuki,1 Shiro Mori,2 Hiroyuki Kumamoto,3 Yohei Saito,4 Yasuhito Ohkubo,4 Zhenfeng Duan,5 Kenji Sano,6 Tomohiro Oguchi,7 Kazuyuki Kainuma,7 Shinichi Usami,7 Kengo Kinoshita,8 Inchul Lee9 and Manabu Fukumoto1 1Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai; 2Department of Oral and Maxillofacial Surgery, Tohoku University, Sendai; 3Division of Oral Pathology, Department of Oral Medicine and Surgery, Graduate School of Dentistry, Tohoku University, Sendai; 4Department of Radiopharmacy, Tohoku Pharmaceutical University, Sendai, Japan; 5Department of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; 6Department of Pathology, School of Medicine, Shinshu University, Matsumoto; 7Department of Otorhinolaryngology, School of Medicine, Shinshu University, Matsumoto, Japan; 8Graduate School of Information Sciences, Tohoku University, Sendai; 9Department of Pathology, Asan Medical Center, Seoul, Korea Key words Standard fractionated radiotherapy for the treatment of cancer consists of daily GTP-binding proteins, head and neck neoplasms, irradiation of 2-Gy X-rays, 5 days a week for 5–8 weeks. To understand the char- neoplasms, radiation, radiation oncology acteristics of radioresistant cancer cells and to develop more effective radiother- Correspondence apy, we established a series of novel, clinically relevant radioresistant (CRR) cells Manabu Fukumoto, Department of Pathology, IDAC, that continue to proliferate with 2-Gy X-ray exposure every 24 h for more than Tohoku University, 4-1 Seiryou-machi, Aoba-ku, Sendai, 30 days in vitro. We studied three human and one murine cell line, and their CRR Japan.
    [Show full text]
  • Identification and Classification of Differentially Expressed Genes
    Informatics in Medicine Unlocked 20 (2020) 100384 Contents lists available at ScienceDirect Informatics in Medicine Unlocked journal homepage: http://www.elsevier.com/locate/imu Identification and classification of differentially expressed genes reveal potential molecular signature associated with SARS-CoV-2 infection in lung adenocarcinomal cells Opeyemi S. Soremekun, Kehinde F. Omolabi, Mahmoud E.S. Soliman * Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa ARTICLE INFO ABSTRACT Keywords: Genomic techniques such as next-generation sequencing and microarrays have facilitated the identification and Differentially expressed genes classification of molecular signatures inherent in cells upon viral infection, for possible therapeutic targets. SARS-CoV-2 Therefore, in this study, we performed a differential gene expression analysis, pathway enrichment analysis, and COVID-19 gene ontology on RNAseq data obtained from SARS-CoV-2 infected A549 cells. Differential expression analysis Enrichment analysis revealed that 753 genes were up-regulated while 746 down-regulated. SNORA81, OAS2, SYCP2, LOC100506985, RNAseq and SNORD35B are the top 5 upregulated genes upon SARS-Cov-2 infection. Expectedly, these genes have been implicated in the immune response to viral assaults. In the Ontology of protein classification, a high percentage of the genes are classified as Gene-specific transcriptional regulator, metabolite interconversion enzyme, and Protein modifying enzymes. Twenty pathways with P-value lower than 0.05 were enriched in the up-regulated genes while 18 pathways are enriched in the down-regulated DEGs. The toll-like receptor signalling pathway is one of the major pathways enriched. This pathway plays an important role in the innate immune system by identifying the pathogen-associated molecular signature emanating from various microorganisms.
    [Show full text]
  • A Genetic Variant Protective Against Severe COVID-19 Is Inherited from Neandertals
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.327197; this version posted October 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A genetic variant protective against severe COVID-19 is inherited from Neandertals Authors Hugo Zeberg1,2* and Svante Pääbo1,3* Affiliations 1 Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany. 2 Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden. 3 Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan. *Corresponding authors: [email protected], [email protected] Abstract It was recently shown that the major genetic risk factor associated with becoming severely ill with COVID-19 when infected by SARS-CoV-2 is inherited from Neandertals. Thanks to new genetic association studies additional risk factors are now being discovered. Using data from a recent genome- wide associations from the Genetics of Mortality in Critical Care (GenOMICC) consortium, we show that a haplotype at a region associated with requiring intensive care is inherited from Neandertals. It encodes proteins that activate enzymes that are important during infections with RNA viruses. As compared to the previously described Neandertal risk haplotype, this Neandertal haplotype is protective against severe COVID-19, is of more moderate effect, and is found at substantial frequencies in all regions of the world outside Africa. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.327197; this version posted October 9, 2020.
    [Show full text]
  • Contributes to Cell-Autonomous Immunity Against Toxoplasma Gondii Elizabeth M
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2013 Guanylate-binding protein 1 (Gbp1) contributes to cell-autonomous immunity against Toxoplasma gondii Elizabeth M. Selleck Washington University School of Medicine in St. Louis Sarah J. Fentress Washington University School of Medicine in St. Louis Wandy L. Beatty Washington University School of Medicine in St. Louis Daniel Degrandi Heinrich-Heine-Universitat Dusseldorf Klaus Pfeffer Heinrich-Heine-Universitat Dusseldorf See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Selleck, Elizabeth M.; Fentress, Sarah J.; Beatty, Wandy L.; Degrandi, Daniel; Pfeffer, Klaus; Virgin, Herbert W. IV; MacMicking, John D.; and Sibley, L. David, ,"Guanylate-binding protein 1 (Gbp1) contributes to cell-autonomous immunity against Toxoplasma gondii." PLoS Pathogens.,. e1003320. (2013). https://digitalcommons.wustl.edu/open_access_pubs/1496 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Elizabeth M. Selleck, Sarah J. Fentress, Wandy L. Beatty, Daniel Degrandi, Klaus Pfeffer, Herbert W. Virgin IV, John D. MacMicking, and L. David Sibley This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/1496 Guanylate-binding Protein 1 (Gbp1) Contributes to Cell- autonomous Immunity against Toxoplasma gondii Elizabeth M. Selleck1, Sarah J. Fentress1, Wandy L. Beatty1, Daniel Degrandi2, Klaus Pfeffer2, Herbert W. Virgin IV3, John D. MacMicking4, L. David Sibley1* 1 Department of Molecular Microbiology, Washington University School of Medicine, St.
    [Show full text]
  • Oligoadenylate Synthetase (OAS) Proteins
    bioRxiv preprint doi: https://doi.org/10.1101/804716; this version posted October 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. In silico identification of potential inhibitors against human 2’-5’- oligoadenylate synthetase (OAS) proteins Karen J. Gonzalez1, Diego Moncada-Giraldo1, Juan B. Gutierrez2* 1Institute of Bioinformatics, University of Georgia; 2Department of Mathematics, University of Texas at San Antonio. * [email protected] Abstract As part of the type I IFN signaling, the 2’-5’- oligoadenylate synthetase (OAS) proteins have been involved in the progression of several non-viral diseases. Notably, OAS has been correlated with immune-modulatory functions that promote chronic inflammatory conditions, autoimmune disorders, cancer, and infectious diseases. In spite of this, OAS enzymes have been ignored as drug targets, and to date, there are no reports of compounds that can inhibit their activity. In this study, we have used homology modeling and virtual high-throughput screening to identify potential inhibitors of the human proteins OAS1, OAS2, and OAS3. Altogether, we have found 37 molecules that could exert a competitive inhibition in the ATP binding sites of OAS proteins, independently of the activation state of the enzyme. This latter characteristic, which might be crucial for a versatile inhibitor, was observed in compounds interacting with the residues Asp75, Asp77, Gln229, and Tyr230 in OAS1, and their equivalents in OAS2 and OAS3. Although there was little correlation between specific chemical fragments and particular interactions, intermolecular contacts with OAS catalytic triad and other critical amino acids were mainly promoted by heterocycles with π electrons and hydrogen bond acceptors.
    [Show full text]
  • Exposing Toxoplasma Gondii Hiding Inside the Vacuole: a Role for Gbps, Autophagy and Host Cell Death
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Curr Opin Manuscript Author Microbiol. Author Manuscript Author manuscript; available in PMC 2020 February 06. Published in final edited form as: Curr Opin Microbiol. 2017 December ; 40: 72–80. doi:10.1016/j.mib.2017.10.021. Exposing Toxoplasma gondii hiding inside the vacuole: a role for GBPs, autophagy and host cell death Jeroen P Saeij1, Eva-Maria Frickel2 1School of Veterinary Medicine, Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA 2The Francis Crick Institute, Host-Toxoplasma Interaction Laboratory, 1 Midland Road, London NW1 1AT, UK Abstract The intracellular parasite Toxoplasma gondii resides inside a vacuole, which shields it from the host’s intracellular defense mechanisms. The cytokine interferon gamma (IFNγ) upregulates host cell effector pathways that are able to destroy the vacuole, restrict parasite growth and induce host cell death. Interferon-inducible GTPases such as the Guanylate Binding Proteins (GBPs), autophagy proteins and ubiquitin-driven mechanisms play important roles in Toxoplasma control in mice and partly also in humans. The host inflammasome is regulated by GBPs in response to bacterial infection in murine cells and may also respond to Toxoplasma infection. Elucidation of murine Toxoplasma defense mechanisms are guiding studies on human cells, while inevitably leading to the discovery of human-specific pathways that often function in a cell type-dependent manner. Introduction Toxoplasma gondii is an important pathogen of animals and humans with ~30% of the world’s population chronically infected. While immunocompetent people generally control the infection, Toxoplasma infection can lead to congenital abnormalities, ocular disease and health problems in the immunocompromised.
    [Show full text]
  • Oas1b-Dependent Immune Transcriptional Profiles of West Nile
    MULTIPARENTAL POPULATIONS Oas1b-dependent Immune Transcriptional Profiles of West Nile Virus Infection in the Collaborative Cross Richard Green,*,† Courtney Wilkins,*,† Sunil Thomas,*,† Aimee Sekine,*,† Duncan M. Hendrick,*,† Kathleen Voss,*,† Renee C. Ireton,*,† Michael Mooney,‡,§ Jennifer T. Go,*,† Gabrielle Choonoo,‡,§ Sophia Jeng,** Fernando Pardo-Manuel de Villena,††,‡‡ Martin T. Ferris,†† Shannon McWeeney,‡,§,** and Michael Gale Jr.*,†,1 *Department of Immunology and †Center for Innate Immunity and Immune Disease (CIIID), University of Washington, § Seattle, Washington 98109, ‡OHSU Knight Cancer Institute, Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, and **Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon 97239, ††Department of Genetics and ‡‡Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514 ABSTRACT The oligoadenylate-synthetase (Oas) gene locus provides innate immune resistance to virus KEYWORDS infection. In mouse models, variation in the Oas1b gene influences host susceptibility to flavivirus infection. Oas However, the impact of Oas variation on overall innate immune programming and global gene expression flavivirus among tissues and in different genetic backgrounds has not been defined. We examined how Oas1b acts viral infection in spleen and brain tissue to limit West Nile virus (WNV) susceptibility and disease across a range of innate immunity genetic backgrounds. The laboratory founder strains of the mouse Collaborative Cross (CC) (A/J, C57BL/6J, multiparental 129S1/SvImJ, NOD/ShiLtJ, and NZO/HlLtJ) all encode a truncated, defective Oas1b, whereas the three populations wild-derived inbred founder strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) encode a full-length OAS1B pro- Multi-parent tein.
    [Show full text]
  • 1A Multiple Sclerosis Treatment
    The Pharmacogenomics Journal (2012) 12, 134–146 & 2012 Macmillan Publishers Limited. All rights reserved 1470-269X/12 www.nature.com/tpj ORIGINAL ARTICLE Network analysis of transcriptional regulation in response to intramuscular interferon-b-1a multiple sclerosis treatment M Hecker1,2, RH Goertsches2,3, Interferon-b (IFN-b) is one of the major drugs for multiple sclerosis (MS) 3 2 treatment. The purpose of this study was to characterize the transcriptional C Fatum , D Koczan , effects induced by intramuscular IFN-b-1a therapy in patients with relapsing– 2 1 H-J Thiesen , R Guthke remitting form of MS. By using Affymetrix DNA microarrays, we obtained and UK Zettl3 genome-wide expression profiles of peripheral blood mononuclear cells of 24 MS patients within the first 4 weeks of IFN-b administration. We identified 1Leibniz Institute for Natural Product Research 121 genes that were significantly up- or downregulated compared with and Infection Biology—Hans-Knoell-Institute, baseline, with stronger changed expression at 1 week after start of therapy. Jena, Germany; 2University of Rostock, Institute of Immunology, Rostock, Germany and Eleven transcription factor-binding sites (TFBS) are overrepresented in the 3University of Rostock, Department of Neurology, regulatory regions of these genes, including those of IFN regulatory factors Rostock, Germany and NF-kB. We then applied TFBS-integrating least angle regression, a novel integrative algorithm for deriving gene regulatory networks from gene Correspondence: M Hecker, Leibniz Institute for Natural Product expression data and TFBS information, to reconstruct the underlying network Research and Infection Biology—Hans-Knoell- of molecular interactions. An NF-kB-centered sub-network of genes was Institute, Beutenbergstr.
    [Show full text]
  • Discovery of a Small Molecule TUBB3/Βiii-Tubulin Modulator in Lung Cancer
    Discovery of a small molecule TUBB3/βIII-tubulin modulator in lung cancer Felicity Chao Lin Kao A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Women’s and Children’s Health Faculty of Medicine The University of New South Wales March 2016 TH E UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Kao First name: Felicity Other name/s: Chao Lin Abbreviation for degree as g iven in the University calendar: PhD School: School of Women's and Children's Health Faculty: Faculty of Medicine Title: Discovery of a small molecule TU883/I311 1·tubulin modulator in lung cancer Abstract Non-small Cell Lung Cancer (NSCLC) survival rates are dismal and chemotherapy resistance is a significant clinical problem. 13111-tubulin (encoded by TUBB3 gene) is aberranlly expressed and is associated with chemoresistance and tumour aggressiveness in NSCLC, where it has been identified as a bona fide target for chemosensitisation. Currently, there is no commercially available TUB83J13111-tubulin inhibitor. Regulation of 13111 -tubulin is poorly understood, making it difficult to target this protein. We sought to identify a chemical modulator of TU883J1311Hubulin expression, as it will be a valuable research tool to probe TU883J!3111-tubulin regulation . A novel small molecule TU883/13111-tubulin enhancer, WECC0017371 , was identified in our high throughput screen, based on its ability to modulate TUBB3 promoter activity. WECC001 7371 demonstrated the ability to significantly enhance TUBB3 mRNA and 13111-tubulin protein expression in a time· and dose-dependent manner. Additionally, WECC0017371 did not alter microtubule morphology but enhanced 13111-tubuli n immunostaining in two independent NSCLC cell lines, H460 and H1299, compared to control.
    [Show full text]
  • Detection and Manipulation of Live Antigen-Expressing Cells Using
    1 Title: Detection and manipulation of live antigen-expressing cells using 2 conditionally stable nanobodies 3 4 Authors: Jonathan C.Y. Tang1,2†, Eugene Drokhlyansky1,2†, Behzad Etemad3, 5 Stephanie Rudolph4, Binggege Guo1,2, Sui Wang1,2, Emily G, Ellis4, Jonathan Z. Li3, 6 Constance L. Cepko1,2* 7 8 Affiliations: 9 1Howard Hughes Medical Institute 10 2Departments of Genetics and Ophthalmology 11 Harvard Medical School, Boston, MA 02115, USA 12 3Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA 13 4Department of Neurobiology 14 Harvard Medical School, Boston, MA 02115, USA 15 16 †These authors contributed equally to this work 17 *Corresponding author: [email protected] 18 19 Competing Interests: 20 J.C.Y.T, E.D., S.W. and C.L.C. have submitted a U.S. patent application regarding 21 destabilized nanobodies: International Application No. PCT/US2016/027749. Priority: 22 US Prov. Appl. No. 62/148,595. 23 24 25 26 Abstract: The ability to detect and/or manipulate specific cell populations based upon 27 the presence of intracellular protein epitopes would enable many types of studies and 28 applications. Protein binders such as nanobodies (Nbs) can target untagged proteins 29 (antigens) in the intracellular environment. However, genetically expressed protein 30 binders are stable regardless of antigen expression, complicating their use for 31 applications that require cell-specificity. Here, we created a conditional system in which 32 the stability of an Nb depends upon an antigen of interest. We identified Nb framework 33 mutations that can be used to rapidly create destabilized Nbs.
    [Show full text]
  • Microarray Analysis of Novel Genes Involved in HSV- 2 Infection
    Microarray analysis of novel genes involved in HSV- 2 infection Hao Zhang Nanjing University of Chinese Medicine Tao Liu ( [email protected] ) Nanjing University of Chinese Medicine https://orcid.org/0000-0002-7654-2995 Research Article Keywords: HSV-2 infection,Microarray analysis,Histospecic gene expression Posted Date: May 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-517057/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Background: Herpes simplex virus type 2 infects the body and becomes an incurable and recurring disease. The pathogenesis of HSV-2 infection is not completely clear. Methods: We analyze the GSE18527 dataset in the GEO database in this paper to obtain distinctively displayed genes(DDGs)in the total sequential RNA of the biopsies of normal and lesioned skin groups, healed skin and lesioned skin groups of genital herpes patients, respectively.The related data of 3 cases of normal skin group, 4 cases of lesioned group and 6 cases of healed group were analyzed.The histospecic gene analysis , functional enrichment and protein interaction network analysis of the differential genes were also performed, and the critical components were selected. Results: 40 up-regulated genes and 43 down-regulated genes were isolated by differential performance assay. Histospecic gene analysis of DDGs suggested that the most abundant system for gene expression was the skin, immune system and the nervous system.Through the construction of core gene combinations, protein interaction network analysis and selection of histospecic distribution genes, 17 associated genes were selected CXCL10,MX1,ISG15,IFIT1,IFIT3,IFIT2,OASL,ISG20,RSAD2,GBP1,IFI44L,DDX58,USP18,CXCL11,GBP5,GBP4 and CXCL9.The above genes are mainly located in the skin, immune system, nervous system and reproductive system.
    [Show full text]
  • 5'-Oligoadenylate Synthetase 2 (OAS2)
    Biochemistry and Cell Biology Impact of double-stranded RNA characteristics on the activation of human 2’-5’-oligoadenylate synthetase 2 (OAS2). Journal: Biochemistry and Cell Biology Manuscript ID bcb-2019-0060.R1 Manuscript Type: Article Date Submitted by the 29-Mar-2019 Author: Complete List of Authors: Koul, Amit; University of Manitoba Deo, Soumya; University of Lethbridge Booy, Evan; University of Manitoba Orriss, George;Draft University of Manitoba Genung, Matthew; University of Manitoba McKenna, Sean; University of Manitoba Keyword: oligoadenylate synthetase, RNA, viral RNA, enzymology Is the invited manuscript for consideration in a Special Ribowest RNA Issue? : https://mc06.manuscriptcentral.com/bcb-pubs Page 1 of 39 Biochemistry and Cell Biology Impact of double-stranded RNA characteristics on the activation of human 2’-5’- oligoadenylate synthetase 2 (OAS2). Amit, Koul1, Soumya Deo3, Evan P. Booy1, George L. Orriss1, Matthew Genung4 and Sean A. McKenna1, 2 Department of Chemistry1, Department of Biochemistry and Medical Genetics2, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T2N2, Canada. Alberta RNA Research and Training Institute3, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada. Max Rady College of Medicine4, Rady Faculty of Health Sciences, University of Manitoba, 750 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0W2, Canada. Corresponding Author: Dr. Sean A. McKenna [email protected], +1-204-272-1562 Draft ACKNOWLEDGEMENTS This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC). We would like to thank Emy Komatsu, Dr. Hélène Perreault, and Dr. John Sorensen for help with mass spectrometry analysis of 2-5A.
    [Show full text]