Discovery of Coesite and Stishovite in Eucrite

Total Page:16

File Type:pdf, Size:1020Kb

Discovery of Coesite and Stishovite in Eucrite Discovery of coesite and stishovite in eucrite Masaaki Miyaharaa,b,1, Eiji Ohtania,c, Akira Yamaguchid, Shin Ozawaa,d, Takeshi Sakaia,e, and Naohisa Hiraof aInstitute of Mineralogy, Petrology and Economic Geology, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan; bDepartment of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; cV.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; dNational Institute of Polar Research, Tokyo 190-8518, Japan; eGeodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan; and fJapan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan Edited by Susan W. Kieffer, University of Illinois at Urbana–Champaign, Urbana, IL, and approved June 25, 2014 (received for review March 5, 2014) Howardite–eucrite–diogenite meteorites (HEDs) probably origi- measured by electron microprobe analysis (Table S1). Raman nated from the asteroid 4 Vesta. We investigated one eucrite, spectroscopy analyses indicate that the original silica grains are Béréba, to clarify a dynamic event that occurred on 4 Vesta using quartz and cristobalite. Representative Raman spectra are shown in a shock-induced high-pressure polymorph. We discovered high- Fig. S1. Some silica grains adjacent to or near the shock-melt veins pressure polymorphs of silica, coesite, and stishovite originating have network-like textures (Fig. 1B). Raman spectroscopy analyses from quartz and/or cristobalite in and around the shock-melt veins further indicate that the network-like textures include the high- of Béréba. Lamellar stishovite formed in silica grains through a pressure polymorphs of silica, coesite, and stishovite, along with solid-state phase transition. A network-like rupture was formed quartz. Transmission electron microscopy (TEM) images indicate and melting took place along the rupture in the silica grains. Nano- that the network-like texture consists of a fine-grained granular sized granular coesite grains crystallized from the silica melt. coesite assemblage (Fig. 2) and minor lamellar stishovite. Amor- Based on shock-induced high-pressure polymorphs, the estimated ∼ ∼ phous (or poorly crystallized) silica exists between coesite and shock-pressure condition ranged from 8to 13 GPa. Considering stishovite grains. Lamellae-like textures are observed in some silica radiometric ages and shock features, the dynamic event that led to grains adjacent to or near the shock-melt veins (Fig. 1 C and D), the formation of coesite and stishovite occurred ca. 4.1 Ga ago, similar to a transition texture from quartz (or cristobalite) to which corresponds to the late heavy bombardment period (ca. 3.8– stishovite (13, 14). TEM images indicate that the silica grains with 4.1 Ga), deduced from the lunar cataclysm. There are two giant impact basins around the south pole of 4 Vesta. Although the lamellae-like texture include lamellar stishovite (Fig. 3). We also investigated pyroxene and plagioclase in and around the shock-melt origin of HEDs is thought to be related to dynamic events that EARTH, ATMOSPHERIC, formed the basins ca. 1.0 Ga ago, our findings are at variance with veins, but their high-pressure polymorphs (e.g., majorite, akimo- AND PLANETARY SCIENCES that idea. toite, jadeite, and lingunite) were not detected. High-pressure polymorphs of silica have been found in lunar shock metamorphism | meteoroid impact meteorites, Martian meteorites, and carbonaceous chondrite (14–17), and in terrestrial impacted rocks (13, 18). Coesite is thermodynamically stable above ∼2.5 GPa (19). Stishovite can be owardite–eucrite–diogenite meteorites (HEDs) are the larg- Hest group among the achondrites. Although the origin of easily synthesized in shock experiments (20, 21). On the other HEDs is still under debate (1, 2), the similarities between the hand, the formation of coesite is not easily achieved in a dynamic reflectance spectra of HEDs and the spectra of one of the largest process. This is because phase transformation from quartz to – asteroids in the asteroid belt 4 Vesta and dynamic considerations coesite is sluggish because of a high kinetic barrier (22 24). indicate that HEDs originated from 4 Vesta (3–5). The Dawn The formation mechanism of shock-induced coesite has been i mission supports this prediction. It has been revealed that many explained as follows ( ): crystallization in the solid state from ii craters exist on 4 Vesta (6, 7), which suggests heavy meteoroid vitrified silica, or ( ) crystallization from silica melt (13, 25). bombardment. The existence of a high-pressure polymorph in Nanosized coesite grain assemblages accompanying minor quartz a shocked meteorite provides clear evidence for a dynamic event and/or stishovite grains occur in the network-like textures of on its parent body (8). Some recent studies propose that 4 Vesta, silica grains in Béréba (Figs. 1B and 2). Coesite that occurs in similar to the Moon, might have suffered from late heavy bom- lunar meteorites is also a nanosized crystal assemblage embed- bardment (9–11). However, to date, no high-pressure polymorph ded in silica glass (17), which is suggestive of a quench crystal has been found in HEDs. We now report clear evidence of high- from silica melt. When quartz is deformed in a piston cylinder at pressure polymorphs of silica, coesite, and stishovite from eucrite. We envisaged that some eucrites might contain high-pressure Significance polymorphs because it is expected that the surface of 4 Vesta consists mainly of eucrite. We obtained one of the eucrites, Quartz and/or cristobalite in eucrite were transformed into Béréba, to clarify a dynamic event occurring on 4 Vesta, using denser minerals, coesite and stishovite, under transient high- the high-pressure mineral inventory. The Béréba sample used in pressure and high-temperature conditions. Coesite and this study has many shock-induced melt (hereafter referred to as stishovite probably formed simultaneously under pressures of A shock melt) veins (Fig. 1 ), implying that it was heavily shocked. similar magnitudes but under different temperature conditions. Major constituent minerals in the host rock of Béréba are low-Ca The expected age of the dynamic event that formed coesite pyroxene (Fs59–63En34–37Wo2–3), augite (Fs25–32En29–31Wo38–44), and stishovite is ca. 4.1 Ga ago, which is inconsistent with the plagioclase (An86–92Ab7–14Or0–1), silica, minor kamacite, ilmen- predicted formation age (ca. 1.0 Ga) of the impact basins on ite, chromite, and Ca-phosphate. Most of the low-Ca pyroxene 4 Vesta. has exsolution lamellae of augite. Plagioclase now transformed into maskelynite partly and/or completely. Flow-like textures Author contributions: M.M. and E.O. designed research; M.M., E.O., A.Y., S.O., T.S., and appear in some maskelynite. Mixing between plagioclase and N.H. performed research; M.M. analyzed data; and M.M., E.O., and A.Y. wrote the paper. pyroxene occurs in the flow-like textures, suggesting that the The authors declare no conflict of interest. feldspar was once melt quenched to maskelynite (12). This article is a PNAS Direct Submission. In this study, the focus of our interest was silica. The silica 1To whom correspondence should be addressed. Email: [email protected]. ∼ μ grain is up to 300 m across. The chemical compositions of the This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. silica grains (especially the impurities present, such as Al) were 1073/pnas.1404247111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1404247111 PNAS Early Edition | 1of4 Downloaded by guest on September 24, 2021 Fig. 1. Back-scattered electron images of silica grains in Béréba. (A) Low-magnification image of a shock-melt vein. Quartz (and/or cristobalite) grains exist in and around the shock-melt veins. Feldspar partially transforms to maskelynite. (B) Silica grains with a network-like texture. Coesite, stishovite, and silica glass (+ minor quartz) coexist in the silica grain. (C) Silica grains with a lamellae-like texture. Stishovite and silica glass coexist in silica grains. (D) High-magnification image of the outlined section in C. Coe, coesite; Fd, feldspar; Pyx, pyroxene; Qtz, quartz; Si-gla, silica glass; Sti, stishovite. 2.7–3.0 GPa under ambient temperature conditions, coesite that stishovite is very sensitive to heating. Some stishovite might forms along melted ruptures in the deformed quartz (26). become amorphous during adiabatic decompression. The network-like texture of Béréba indicates a flow-like tex- The pressure conditions in a silica grain of Béréba would be ture; it would be a mixture of silica and plagioclase because small homogeneous; whereas, the temperature conditions are hetero- amounts of calcium and aluminum, as well as silicon, are con- geneous because some portions are heated beyond the melting tained in the texture. When a silica grain was shocked, it was temperature and melting takes place along the fractures. The ruptured and, simultaneously, melting took place because of Clapeyron slope between coesite and stishovite, deduced from friction along the ruptures. The crystallization of coesite from laboratory high-pressure static experiments, is positive (29). silica melt would have a lower kinetic barrier than a solid–solid Accordingly, both coesite and stishovite probably formed under phase transformation. Nanosized coesite grain assemblages similar pressure conditions,
Recommended publications
  • Crystalline Silica, Cristobalite (CAS No
    Crystalline Silica, Quartz (CAS No. 14808-60-7) Crystalline Silica, Cristobalite (CAS No. 14464-46-1) Crystalline Silica, Tridymite (CAS No. 15468-32-3) Diatomaceous earth (CAS No. 61790-53-2) This dossier on crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth presents the most critical studies pertinent to the risk assessment of these substances in their use in drilling muds and cement additives. This dossier does not represent an exhaustive or critical review of all available data. The majority of information presented in this dossier was obtained from the ECHA database that provides information on chemicals that have been registered under the EU REACH (ECHA). Where possible, study quality was evaluated using the Klimisch scoring system (Klimisch et al., 1997). For the purpose of this dossier, crystalline silica, quartz (CAS No. 14808-60-7) has been reviewed as representative of crystalline silica cristobalite and tridymite. Crystalline silica, quartz is also considered representative of diatomaceous earth, as they both consist mainly of silicon dioxide. Screening Assessment Conclusion – Crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth are classified as tier 1 chemicals and require a hazard assessment only. 1 BACKGROUND Crystalline silica is a common mineral found in the earth's crust. Materials like sand, stone, concrete and mortar contain crystalline silica. It is also used to make products such as glass, pottery, ceramics, bricks and artificial stone. Silica, in the form of sand, is used as the main ingredient in sand casting for the manufacture of metallic components in engineering and other applications. The high melting point of silica enables it to be used in such applications.
    [Show full text]
  • Minnesota's Mineral Resources
    CHAPTER • 9 Minnesota's Mineral Resources IN MINNESOTA the production of iron ore is far more valuable economically than the total of all other mineral products, but im­ portant industries are based on Minnesota's other geological forma­ tions as well. Architectural, monumental, and structural stone are produced from granite, limestone, dolomite, and other Minnesota rocks. Gravel and sand are excavated and processed, and clay is used for many ceramic products. :Manganese in important amounts occurs in the iron ores of the Cuyuna district. Finally, although they are often not thought of as mineral products, two of our most im­ portant mineral resources are water and soil. The iron ores and mining operations of the Mesabi, Vermilion, and Cuyuna iron-bearing districts and of the southeastern lYlinnesota counties will be discussed in detail in later chapters, but a few sta­ tistics on Minnesota's iron ore industry may remind us how impor­ tant this geological heritage is. The following is an estimate of Min­ nesota's iron ore reserves, made on lYlay 1, 1961: Gross Tons Mesabi Range 500,799,179 Vermilion Range 9,755,974 Cuyuna Range 36,530,000 Fillmore County 'il,860,337 Total iron ore 549,945,490 172 MI NESOTA'S MINERAL RESOURCES The total production of iron ore in Minne ota to January 1, 1962, was 2,529,737,553 tons. Total taxes paid on iron ore to January 1, 1961 , were approximately $1,257,448,400, a very important source of funds for the state government. Slightly over 60 per cent of the total iron ore produced in the United States has come from l\1inne- ota.
    [Show full text]
  • Symposium on Agate and Cryptocrystalline Quartz
    Symposium on Agate and Cryptocrystalline Quartz September 10 – 13, 2005 Golden, Colorado Sponsored by Friends of Mineralogy, Colorado Chapter; Colorado School of Mines Geology Museum; and U.S. Geological Survey 2 Cover Photos {top left} Fortification agate, Hinsdale County, Colorado, collection of the Geology Museum, Colorado School of Mines. Coloration of alternating concentric bands is due to infiltration of Fe with groundwater into the porous chalcedony layers, leaving the impermeable chalcedony bands uncolored (white): ground water was introduced via the symmetric fractures, evidenced by darker brown hues along the orthogonal lines. Specimen about 4 inches across; photo Dan Kile. {lower left} Photomicrograph showing, in crossed-polarized light, a rhyolite thunder egg shell (lower left) a fibrous phase of silica, opal-CTLS (appearing as a layer of tan fibers bordering the rhyolite cavity wall), and spherulitic and radiating fibrous forms of chalcedony. Field of view approximately 4.8 mm high; photo Dan Kile. {center right} Photomicrograph of the same field of view, but with a 1 λ (first-order red) waveplate inserted to illustrate the length-fast nature of the chalcedony (yellow-orange) and the length-slow character of the opal CTLS (blue). Field of view about 4.8 mm high; photo Dan Kile. Copyright of articles and photographs is retained by authors and Friends of Mineralogy, Colorado Chapter; reproduction by electronic or other means without permission is prohibited 3 Symposium on Agate and Cryptocrystalline Quartz Program and Abstracts September 10 – 13, 2005 Editors Daniel Kile Thomas Michalski Peter Modreski Held at Green Center, Colorado School of Mines Golden, Colorado Sponsored by Friends of Mineralogy, Colorado Chapter Colorado School of Mines Geology Museum U.S.
    [Show full text]
  • Stishovite and Seifertite in Lunar Meteorite Northwest Africa 4734
    71st Annual Meteoritical Society Meeting (2008) 5058.pdf FIRST EVIDENCE OF HIGH PRESSURE SILICA: STISHOVITE AND SEIFERTITE IN LUNAR METEORITE NORTHWEST AFRICA 4734. H. Chennaoui Aoudjehane1-2, A. Jambon2 1Université Hassan II Aïn Chock, Laboratoire Géosciences, BP 5366 Maârif Casa- blanca Morocco (e-mail: [email protected]), 2Université Pierre et Marie Curie-Paris6 and IPGP Laboratoire MAGIE, Case 110, 4 place Jussieu, 75252 Paris France. Introduction: Silica is a rare phase in lunar rocks; it has been described as either quartz, cristobalite and/or tridymite [1]. Northwest Africa 4734, is an uncommon type of lunar rock, which may be launched paired with the LaPaz Icefield Lunar Mare basalts found in 2002-03 in Antarctica [2-6], it is a coarse grained rock of basaltic composition, exhibits a number of sig- nificant shock features, such as PDFs, extensive fracturation of pyroxene, impact melt pockets and transformation of plagioclase to maskelynite; silica is present as a minor phase. Analytical procedures: We studied the speciation of silica polymorphs to characterize the shock, using SEM imaging, Ra- man spectroscopy, CL imaging and spectroscopy. Further details can be found in [7]. Results: According to the CL spectra [7-9], cristobalite, tridymite, high-pressure silica glass, stishovite and seifertite, are all present. Special emphasis is made on stishovite and seifertite, which, like in shergottites, exhibit specific textural features [7]. Cathodoluminescence spectra characteristic of high-pressure sil- ica phases: glass, stishovite and seifertite have been recorded in addition to the original low-pressure phases. The remanence of cristobalite and tridymite underscores a significant heterogeneity of the shock supported by the rock.
    [Show full text]
  • Moon Minerals a Visual Guide
    Moon Minerals a visual guide A.G. Tindle and M. Anand Preliminaries Section 1 Preface Virtual microscope work at the Open University began in 1993 meteorites, Martian meteorites and most recently over 500 virtual and has culminated in the on-line collection of over 1000 microscopes of Apollo samples. samples available via the virtual microscope website (here). Early days were spent using LEGO robots to automate a rotating microscope stage thanks to the efforts of our colleague Peter Whalley (now deceased). This automation speeded up image capture and allowed us to take the thousands of photographs needed to make sizeable (Earth-based) virtual microscope collections. Virtual microscope methods are ideal for bringing rare and often unique samples to a wide audience so we were not surprised when 10 years ago we were approached by the UK Science and Technology Facilities Council who asked us to prepare a virtual collection of the 12 Moon rocks they loaned out to schools and universities. This would turn out to be one of many collections built using extra-terrestrial material. The major part of our extra-terrestrial work is web-based and we The authors - Mahesh Anand (left) and Andy Tindle (middle) with colleague have build collections of Europlanet meteorites, UK and Irish Peter Whalley (right). Thank you Peter for your pioneering contribution to the Virtual Microscope project. We could not have produced this book without your earlier efforts. 2 Moon Minerals is our latest output. We see it as a companion volume to Moon Rocks. Members of staff
    [Show full text]
  • John S. White Mineral and Gem Collections GENERAL Nephrite Boulder – Trinity County, California Pyrite Navajun, Logroño, Spain 20-11-3
    John S. White Mineral and Gem Collections GENERAL Nephrite boulder – Trinity County, California Pyrite Navajun, Logroño, Spain 20-11-3 12 cm Figured specimen (12) Beryl var. emerald – Crabtree Mountain emerald mine, Mitchell Co., N.C. G5-9-12 5 cm Ocean jasper – Cabamby mine, Majunga, Madagascar – G10-9-1 4.3 cm Ocean jasper – Cabamby mine, Majunga, Madagascar G11-2-3 4 cm Andalusite, variety chiastolite – China 10-2-43 2.7 cm Graphic granite – Madagascar 17-9-3 4.5 cm Garnet color suite – mixed localities G8-11-1 Sasha Siemel Beryl Jaguar hunter Governador Valadares & Minas Gerais, Brazil Mineral dealer 19-4-2 & 19-5-4 These specimens were sold by Sasha Siemel to friends of mine at a mineral show in Doylestown, PA, 1956 Gas bubble in fluorite Cave-in-Rock, Illinois 4-12-3 Russell Feather photo Regional Collection Pennsylvania – Maryland - Virginia Magnetite – Grace mine, Morgantown, PA 4-6-1 6.5 cm Rutile – Parkesburg, Chester County, PA 3-9-16 5 cm Dolomite - Ober & Binkley quarry, E. Petersburg, Lancaster Co., PA 17-2-6 10.5 cm Pyromorphite – Wheatley mine, Phoenixville, Chester Co., PA 6-6-9 9 cm Analcime & Apophyllite – Cornwall mine, Cornwall, Lebanon County, PA 20-10-15 10 cm Quartz – Reading anthracite mine, near St. Clair, Schuykill Co., PA 19-9-7 10 cm Fluorapatite & Actinolite – Silver Hill quarry, Brecknock Twp., Lancaster Co., PA 18-2-18 11.5 cm Wavellite – Mt. Pleasant Mills quarry, Perry Twp., Snyder Co., PA 18-2-19 4 cm Strontianite – Oak Hill quarry, Centre County, PA 21-11-1 5.5 cm Strontianite – Tonoloway limestone, Mt.
    [Show full text]
  • Cristobalite Sio2 C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Tetragonal, Pseudocubic
    Cristobalite SiO2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Tetragonal, pseudocubic. Point Group: 422: As pseudo-octahedral crystals, to 4 mm, with 110 and 331 , rarely pseudocubic. Commonly dendritic to skeletal; as spherulites to sefveragl cm; ¯fbrougs or microcrystalline (\opal"), massive. Twinning: On 111 , common, interpenetrant, polysynthetic, repeated. f g Physical Properties: Tenacity: Brittle. Hardness = 6{7 D(meas.) = 2.32{2.36 D(calc.) = 2.33 Optical Properties: Transparent. Color: Colorless, white, milky white to yellowish; in transmitted light, colorless. Luster: Vitreous. Optical Class: Uniaxial ({). ! = 1.487 ² = 1.484 Cell Data: Space Group: P 41212: a = 4.9709(1) c = 6.9278(2) Z = 4 X-ray Powder Pattern: Synthetic. 4.05 (100), 2.485 (20), 2.841 (13), 3.135 (11), 1.870 (7), 2.465 (5), 2.118 (5) Chemistry: (1) SiO2 [99.13] TiO2 0.38 Al2O3 0.18 FeO 0.09 MnO < 0.02 MgO < 0.03 CaO < 0.02 Na2O 0.05 K2O 0.17 P2O5 < 0.03 Total [100.00] (1) Mare Imbrium, Moon; by electron microprobe, SiO2 by di®erence. Polymorphism & Series: Quartz, tridymite, coesite, and stishovite are polymorphs; inverts from high- or ¯-cristobalite at 268 ±C or below. Occurrence: In vesicles and lithophysae; a late-crystallizing phase in basaltic to rhyolitic volcanic rocks; from acid-sulfate-type hydrothermal alteration of volcanic rocks; precipitated by hot springs. By contact metamorphism of sandstone; developed during diagenesis, recrystallized from siliceous sedimentary rocks. Association: Tridymite, quartz, sanidine, anorthoclase, fayalite, magnetite, kaolinite, alunite, \opal." Distribution: On Cerro San Crist¶obal, near Pachuca, Hidalgo, and in the Sant¶³n mine, Santa Caterina, Guanajuato, Mexico.
    [Show full text]
  • (Quartz) Silica, Sio2, Is a White Or Colorless Crystalline Compound
    Silica (quartz) Silica, SiO2, is a white or colorless crystalline compound found mainly as quartz, sand, flint, and many other minerals. Silica is an important ingredient to manufacture a wide variety of materials. Quartz; Quartz is the most abundant silica mineral. Pure Quartz is colorless and transparent. It occurs in most igneous and practically all metamorphic and sedimentary rocks. It is used as a component of numerous industrial materials. Silicon (Si) has the atomic number 14 and is closely related to carbon. It is a relatively inert metalloid. Silicon is often used for microchips, glass, cement, and pottery. Silica is the most abundant mineral found in the crust of the earth. One of the most common uses of silica quarts is the manufacturer of glass. Silica is the fourteenth element on the periodic table. It can sometimes be found as the substance, quartz which is usually used in jewelry, test tubes, and when placed under pressure, generates an electrical charge. Quartz is the second most abundant mineral in the Earth's crust. It is a clear, glossy mineral with a hardness of 7 on the MOHS scale. Silica, Sa,is a component of glass and concrete. A form of Silica commonly known as quartz, Silica tetrahedra, is the second most common mineral in the earth's crust, it comes in many different forms. Silica is a compound of silicon and oxygen. Earth's outer crust contains 59% of this material. It has three major rock forms, which are quartz, tridymite, and cristobalite. Silica, commonly known in the form of quartz, is the dioxide form of silicon, SiO2.
    [Show full text]
  • Appendix a Recovery of Ejecta Material from Confirmed, Probable
    Appendix A Recovery of Ejecta Material from Confirmed, Probable, or Possible Distal Ejecta Layers A.1 Introduction In this appendix we discuss the methods that we have used to recover and study ejecta found in various types of sediment and rock. The processes used to recover ejecta material vary with the degree of lithification. We thus discuss sample processing for unconsolidated, semiconsolidated, and consolidated material separately. The type of sediment or rock is also important as, for example, carbonate sediment or rock is processed differently from siliciclastic sediment or rock. The methods used to take and process samples will also vary according to the objectives of the study and the background of the investigator. We summarize below the methods that we have found useful in our studies of distal impact ejecta layers for those who are just beginning such studies. One of the authors (BPG) was trained as a marine geologist and the other (BMS) as a hard rock geologist. Our approaches to processing and studying impact ejecta differ accordingly. The methods used to recover ejecta from unconsolidated sediments have been successfully employed by BPG for more than 40 years. A.2 Taking and Handling Samples A.2.1 Introduction The size, number, and type of samples will depend on the objective of the study and nature of the sediment/rock, but there a few guidelines that should be followed regardless of the objective or rock type. All outcrops, especially those near industrialized areas or transportation routes (e.g., highways, train tracks) need to be cleaned off (i.e., the surface layer removed) prior to sampling.
    [Show full text]
  • Discovery of Hardest Known Oxide
    SCIENTIFIC CORRESPONDENCE hardness of stishovite has been reported Discovery of hardest known oxide to be 17-20.8 GPa along different direc­ tions7, but the sample used in this case SIR - Microhardness measurements on and is metastable under normal condi­ had been synthesized at about 9.5-10 GPa synthesized samples of stishovite, a high­ tions7; its bulk modulus, 298 GPa (ref. 8), and 1,200-1,400 °C. The transformation pressure phase of silica, show that it is the is significantly greater than that of alumi­ was not complete at this pressure, as later hardest oxide yet discovered. Among na, 252 GPa, which is itself a hard oxide. shown 11• The small amount of lower-pres­ polycrystalline materials, its hardness (33 Here, we report microhardness measure­ sure phases present drastically modified gigapascals, GPa) rivals those of the hard­ ments on synthesized stishovite. the indentation results. est materials. Despite many searchesl-4, We performed synthesis experiments Polycrystalline stishovite is now the no material with a measured hardness using a 1,200-ton uniaxial MA-8 multi­ hardest oxide known; it is harder than comparable to diamond or cubic boron anvil apparatus (see ref. 9 for method), alumina and boron oxides12• Other super­ nitride has been identified until now. taking Raman and X-ray diffraction (see hard polycrystalline materials include dia­ Hardness (H) of ionic and covalent ref. 10 for image plate system) measure­ mond and cubic boron nitride compacts; materials increases with bulk modulus1- 5_ ments. Microprobe analysis showed only their hardness is much lower than that Diamond has the highest known bulk silicon in the investigated region.
    [Show full text]
  • Silicic Volcanism on Mars Evidenced by Tridymite in High-Sio2 Sedimentary Rock at Gale Crater Richard V
    Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater Richard V. Morrisa,1, David T. Vanimanb, David F. Blakec, Ralf Gellertd, Steve J. Chiperae, Elizabeth B. Rampef, Douglas W. Minga, Shaunna M. Morrisong, Robert T. Downsg, Allan H. Treimanh, Albert S. Yeni, John P. Grotzingerj,1, Cherie N. Achillesg, Thomas F. Bristowc, Joy A. Crispi, David J. Des Maraisc, Jack D. Farmerk, Kim V. Fendrichg, Jens Frydenvangl,m, Trevor G. Graffn, John-Michael Morookiani, Edward M. Stolperj, and Susanne P. Schwenzerh,o aNASA Johnson Space Center, Houston, TX 77058; bPlanetary Science Institute, Tucson, AZ 85719; cNASA Ames Research Center, Moffitt Field, CA 94035; dDepartment of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1; eChesapeake Energy, Oklahoma City, OK 73118; fAerodyne Industries, Houston, TX 77058; gDepartment of Geosciences, University of Arizona, Tucson, AZ 85721; hLunar and Planetary Institute, Houston, TX 77058; iJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109; jDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125; kSchool of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287; lLos Alamos National Laboratory, Los Alamos, NM 87545; mNiels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark; nJacobs, Houston, TX 77058; and oDepartment of Environment, Earth and Ecosystems, The Open University, Milton Keynes MK7 6AA, United Kingdom Contributed by John P. Grotzinger, May 5, 2016 (sent for review March 18, 2016); reviewed by Jon Blundy, Robert M. Hazen, and Harry Y. McSween) Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 poly- (1), where three drill samples were analyzed by CheMin [Confi- morph, was detected in a drill sample of laminated mudstone (Buck- dence Hills, Mojave2, and Telegraph Peak (2)].
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]