Spring Newsletter 2018

Total Page:16

File Type:pdf, Size:1020Kb

Spring Newsletter 2018 GEOLOGY & GEOPHYSICS NEWS Yale University I Department of Geology and Geophysics Spring 2018 Chair’s Letter tributions of students and postdoctoral scholars, Jay Ague ([email protected]) as well as his public outreach activities with the Yale Peabody Museum of Natural History. Welcome to the Spring 2018 We continue to build our faculty and have sev- edition of the Geology and eral searches ongoing or planned. Currently, we Geophysics newsletter! It’s have positions open in geochemistry and climate been a while since our last sciences. We have interviewed a broad spectrum newsletter, and much has of candidates for these positions and plan on happened in the interim. bringing new faculty on board in the next year or I am pleased to intro- so. And a new search in stratigraphic paleontology duce Assistant Professor is being planned as well. Alan Rooney, who joined Herein you can also catch up on the activi- the faculty in 2017. Alan ties and interests of faculty, students, and alums is an isotope geochem- from around the globe. This includes a compelling ist interested in a wide spectrum of problems account by G&G alum Neil Williams G ’76 of an ranging from the history of Earth’s core to the 1840 field trip undertaken by J.D. Dana and W.B. development of complex life on our planet to Clarke in New South Wales, Australia. the dynamics of ancient In sad news, Geochemistry Professor Mark and recent ice sheets. He Pagani, and Emeritus Geophysics Professor Syd uses high-precision isotope Clark passed away. You can read moving tributes measurements of platinum to their remarkable lives, careers, and legacies in group metals, particu- the pages of this newsletter. Each has left an indel- larly the Re-Os system, to ible mark on G&G and the geosciences generally, make breakthroughs in and their contributions will live on and shape our understanding the timing, field long into the future. duration, and geochemical In closing, this will be my last newsletter as signatures of geologic pro- Chair. It has been a tremendous privilege to serve the G&G community over the past six years, and a Alan Rooney, Assistant cesses and events, including Professor groundbreaking new evi- great pleasure to get to know so many departmen- dence for the severe icehouse “Snowball” Earth tal friends and alumni. Please keep us posted about in the Neoproterozoic, and the recent behavior of your activities so we can feature them in future the Greenland ice sheet. newsletters. Best wishes for the rest of 2018! In these pages you will also read about the many exciting facets of Assistant Professor Anjan Inside this Issue Bhullar’s research in vertebrate paleontology Faculty Research. .2 which integrates evidence from genes, growth, In Memoriam—Sydney P. Clarke. 6 and development using laboratory experiments Memories of Mark Pagani. 7 and fossils to study the evolution of major verte- Alumni in Memoriam—A. Lee McAlester. 13 brate groups. For example, he has traced the ori- Recent Awards and Honors: Faculty. .14 gin of the bird skull through retention of the juve- Recent Awards and Honors: Students. 16 nile morphology of dinosaurs, and illuminated the Student News. .18 evolutionary origin of the bird beak. His work on Commencement .................................... 23 ancient life also captures the public’s imagination, Visitors. 24 and is commonly featured in media outlets includ- Field Trips .......................................... 26 ing the New York Times. This newsletter provides Dana and Clarke’s Exploration of the Illawarra District. 28 a fascinating glimpse into the inner workings of Alumni News. 33 Anjan’s laboratory operation highlighting the con- Center for Earth Observation ..........................41 GEOLOGY & GEOPHYSICS NEWS Spring 2018 FACULTY RESEARCH Tracing the Deep History of Vertebrates through Earth History and Experimentally Resurrecting the Past Bharat-Anjan Bhullar ([email protected]) The story of vertebrate life on Earth is immediately and perpetually interest- ing because it is, funda- mentally, our story, and the story of our closest relatives—echoes and varia- tions of ourselves among Alligator embryo tail stained for muscle nerve and cell nuclei. all the vast diversity in the biosphere. Because the sity and change stands in contrast to that of other vertebrate skeleton has laboratories with molecular developmental capa- such high preservational potential, and because bilities, while our emphasis on experimental ma- it is locked within the body and intimately associ- nipulation stands in contrast to that of other labo- ated with unpreserved soft tissues, the vertebrate ratories concerned with evolutionary processes on fossil record records many of the transitions and the scale of hundreds of millions of years. Major transformations in body form that generated the projects and initiatives include the following, many breathtaking variety of backboned animals now of which are in collaboration with other labs in on the planet. Our lab focuses on these major G&G and other departments and units at Yale. Our transformations within and outside of Vertebrata, work is also intimately tied to activities in the Yale and seeks to understand them using the rock Peabody Museum of Natural History. record of their progression in combination with evidence from modern descendants, in particular Developmental and Genetic Bases for Major the molecular and cellular mechanisms of embry- Evolutionary Phenomena onic development, which are the processes that Broad-scale evolution sometimes involves major enact the sculpting of body form anew in each shifts in tempo and mode enacted by fundamental generation. We are particularly interested in 3D changes in developmental processes. Alterations and 4D imaging and modeling. Thus, as in many in overall rate and timing of embryonic events other labs in Geology & Geophysics, we are push- can, for example, enact juvenilization or paedo- ing the boundaries of our field by attempting, morphosis within a lineage. Our previous work experimentally and computationally, to model the has suggested that juvenilization underlies many processes by which Earth system change occurs of the prominent anatomical transitions along the on a geologic timescale—in our case, the morpho- line to modern birds, and we continue to inves- logical, environmental, and genetic processes that tigate ways in which the phenomenon impacted account for long-term biospheric dynamics in the avian evolution. Projects involving postdoc Adam form of biotic evolution. We tend to focus on ways Pritchard, graduate student Michael Hanson, and in which important features of the ancestors of major, instantly recognizable, vertebrate radiations were gradually assembled: the origin of mam- mals, of birds, of reptiles, of jawed vertebrates or vertebrates as a whole. In addition to enormous numbers of fossils, virtual and physical, from prior and current collecting efforts, we have in the lab embryos of taxa as diverse as acorn worms, amphioxus, fish, salamanders, frogs, lizards and snakes, turtles, alligators, several kinds of birds, Matteo Fabbri, Elizabeth Clark, Adam Pritchard and Michael Hanson mice, squirrels, and opossums. Our focus on diver- processing 3D datasets of fossils and embryos. 2 GEOLOGY & GEOPHYSICS NEWS Spring 2018 FACULTY RESEARCH several undergraduates and high school volun- ing the evolution of features in these groups soon teers including Adrien Gau, Indira Khera, Jane after the extinction, as well as exceptionally pre- Lockery, and Amber Polk, use 3D imaging of fos- served primitive mammal material from very early sils and extant taxa to address anatomical aspects in the Cenozoic “age of mammals.” of juvenilization along the avian line. Complemen- tary work, led by Human Frontier Science post- Developmental and Genetic Links between the doctoral fellow João Botelho, includes cellular Brain and Other Tissues of the Head and molecular analyses of skeletal development, At first glance, the evolutionary history of a com- in vivo and in culture, to determine whether the plex structure – and none is more complex than basic growth properties of tissues differ between the vertebrate head – consists of a bewildering birds and nonavian reptiles. Projects led by Ph.D. number of small changes within lineages, some student Daniel Smith deal with major rearrange- concurrent and others spread out through geo- ments of early embryonic body structures at the logic time. We are interested in ways in which origins of anatomically divergent reptile groups multiple seemingly independent events might such as turtles and snakes. actually be nonindependent, linked by a common developmental process. In the head, which is both History, Contingency, and Evolutionary Radiation evolutionarily important and well-represented in In addition to the anatomical and developmental the fossil record owing to a high degree of skeletal mechanisms that produce large-scale evolutionary ossification, we are particularly interested in the changes in form and function, we are interested first structure to gain distinct form in the embryo, in the historical contexts that permitted the di- the brain. There is evidence from biomedical fields versification of each of the disparate major clades that the brain has a primacy in the development of vertebrates and within which morphological of the head and that it is an important molecu- transformations took place. Precipitous events in lar signaling structure. Moreover, it is structurally Earth history such as the end-Cretaceous asteroid important and, for instance, the mere physical ex- impact preceded many, if not most, of the great pansion of the brain in groups like birds and mam- vertebrate radiations, and patterns of extinction mals likely causes a number of alterations in the and survival as well as the fossil record of morpho- form of the head. Our experimental work attempts logical evolution proximal to these events provide to replicate ancestral modes of brain development some insight into the effects of sudden geologic and to determine whether doing so can resurrect change and catastrophe upon vertebrate history. ancestral modes of skull development.
Recommended publications
  • GE OS 1234-101 Historical Geology Lecture Syllabus Instructor
    G E OS 1234-101 Historical Geology Lecture Syllabus Instructor: Dr. Jesse Carlucci ([email protected]), (940) 397-4448 Class: MWF, 10am -10:50am, BO 100 Office hours: Bolin Hall 131, MWF, 11am ± 2pm, Tuesday, noon - 2pm. You can arrange to meet with me at any time, by appointment. Textbook: Earth System History by Steven M. Stanley, 3rd edition. I will occasionally post articles and other readings on blackboard. I will also upload Power Point presentations to blackboard before each class, if possible. Course Objectives: Historical Geology provides the student with a comprehensive survey of the history of life, and major events in the physical development of Earth. Most importantly, this class addresses how processes like plate tectonics and climate interact with life, forming an integrated system. The first half of the class focuses on concepts, and the second on a chronologic overview of major biological and physical events in different geologic periods. L E C T UR E SC H E DU L E Aug 27-31: Overview of course; what is science? The Earth as a planet Stanley (pg. 244-247) Sep 5-7: Earth materials, rocks and minerals Stanley (pg. 13-17; 25-34) Sep 10-14: Rocks & minerals continued; plate tectonics. Stanley (pg. 3-12; 35-46; 128-141; 175-186) Sep 17-21: Geological time and dating of the rock record; chemical systems, the climate system through time. Quiz 1 (Sep 19; 5%). Stanley (pg. 187-194; 196-207; 215-223; 232-238) Sep 24-28: Sedimentary environments and life; paleoecology. Stanley (pg. 76-80; 84-96; 99-123) Oct 1-5: Biological evolution and the fossil record.
    [Show full text]
  • Tipping Points That Could Lead to Abrupt Climate Change
    Tipping Points that Could Lead to Abrupt Climate Change IGSDIINECE Climate Briefing Note: September [], 2008 DRAFT FOR REVIEW 09/16/08 I. Introduction A. Summary The paleoclimate records show that past climate changes have included both steady, linear changes as well as abrupt, non-linear changes where small increases in global warming produced large and irreversible impacts once certain thresholds, or "tipping points", were passed. A non-linear tipping point is analogous to the final step one takes walking off a cliff. Once the step is taken, there is no going back. Abrupt climate change can produce potentially catastrophic impacts, such as the shutdown or reorganization of global currents, dieback of the Amazon rainforest, and collapse of the Greenland Ice Sheet. 1 Experts have concluded that anthropogenic forcing could increase the risk of abrupt climate change and that tipping points could be passed this century, or even this decade.2 If we continue emitting greenhouse gases in a "business-as-usual" scenario, permitting atmospheric carbon dioxide (C02) concentrations to rise 2-3 ppm every year, the question is not whether abrupt climate change will occur, but rather how soon it will occur.3 In fact, some experts conclude that 385 ppm, the current concentration of CO2, is already too high, and that we must return to 350 ppm if we want to preserve a planet similar to that on which civilization developed and to which humanity is adapted.4 Despite the certainty that abrupt changes have occurred in the past and could be triggered again in the near future, current climate change policy does not account for abrupt climate change.
    [Show full text]
  • Sydney Harbour a Systematic Review of the Science 2014
    Sydney Harbour A systematic review of the science 2014 Sydney Institute of Marine Science Technical Report The Sydney Harbour Research Program © Sydney Institute of Marine Science, 2014 This publication is copyright. You may download, display, print and reproduce this material provided that the wording is reproduced exactly, the source is acknowledged, and the copyright, update address and disclaimer notice are retained. Disclaimer The authors of this report are members of the Sydney Harbour Research Program at the Sydney Institute of Marine Science and represent various universities, research institutions and government agencies. The views presented in this report do not necessarily reflect the views of The Sydney Institute of Marine Science or the authors other affiliated institutions listed below. This report is a review of other literature written by third parties. Neither the Sydney Institute of Marine Science or the affiliated institutions take responsibility for the accuracy, currency, reliability, and correctness of any information included in this report provided in third party sources. Recommended Citation Hedge L.H., Johnston E.L., Ayoung S.T., Birch G.F., Booth D.J., Creese R.G., Doblin M.A., Figueira W.F., Gribben P.E., Hutchings P.A., Mayer Pinto M, Marzinelli E.M., Pritchard T.R., Roughan M., Steinberg P.D., 2013, Sydney Harbour: A systematic review of the science, Sydney Institute of Marine Science, Sydney, Australia. National Library of Australia Cataloging-in-Publication entry ISBN: 978-0-646-91493-0 Publisher: The Sydney Institute of Marine Science, Sydney, New South Wales, Australia Available on the internet from www.sims.org.au For further information please contact: SIMS, Building 19, Chowder Bay Road, Mosman NSW 2088 Australia T: +61 2 9435 4600 F: +61 2 9969 8664 www.sims.org.au ABN 84117222063 Cover Photo | Mike Banert North Head The light was changing every minute.
    [Show full text]
  • GEOLOGY What Can I Do with This Major?
    GEOLOGY What can I do with this major? AREAS EMPLOYERS STRATEGIES Some employment areas follow. Many geolo- gists specialize at the graduate level. ENERGY (Oil, Coal, Gas, Other Energy Sources) Stratigraphy Petroleum industry including oil and gas explora- Geologists working in the area of energy use vari- Sedimentology tion, production, storage and waste disposal ous methods to determine where energy sources are Structural Geology facilities accumulated. They may pursue work tasks including Geophysics Coal industry including mining exploration, grade exploration, well site operations and mudlogging. Geochemistry assessment and waste disposal Seek knowledge in engineering to aid communication, Economic Geology Federal government agencies: as geologists often work closely with engineers. Geomorphology National Labs Coursework in geophysics is also advantageous Paleontology Department of Energy for this field. Fossil Energy Bureau of Land Management Gain experience with computer modeling and Global Hydrogeology Geologic Survey Positioning System (GPS). Both are used to State government locate deposits. Consulting firms Many geologists in this area of expertise work with oil Well services and drilling companies and gas and may work in the geographic areas Oil field machinery and supply companies where deposits are found including offshore sites and in overseas oil-producing countries. This industry is subject to fluctuations, so be prepared to work on a contract basis. Develop excellent writing skills to publish reports and to solicit grants from government, industry and private foundations. Obtain leadership experience through campus organi- zations and work experiences for project man- agement positions. (Geology, Page 2) AREAS EMPLOYERS STRATEGIES ENVIRONMENTAL GEOLOGY Sedimentology Federal government agencies: Geologists in this category may focus on studying, Hydrogeology National Labs protecting and reclaiming the environment.
    [Show full text]
  • The Rock and Fossil Record the Rock and Fossil Record the Rock And
    TheThe RockRock andand FossilFossil RecordRecord Earth’s Story and Those Who First Listened . 426 Apply . 427 Internet Connect . 428 When on Earth? . 429 Activity . 430 MathBreak . 434 Internet Connect 432, 435 Looking at Fossils . 436 QuickLab . 438 Internet Connect . 440 Time Marches On . 441 QuickLab . 443 Internet Connect . 445 Chapter Lab . 446 Chapter Review . 449 TEKS/TAKS Practice Tests . 451, 452 Feature Article . 453 Time Stands Still Pre-Reading Questions Sealed in darkness for 49 million years, this beetle still shimmers with the same metallic hues that once helped it hide among ancient plants. This rare fossil 1. How do scientists study was found in Messel, Germany. In the same rock formation, the Earth’s history? scientists have found fossilized crocodiles, bats, birds, and 2. How can you tell the age frogs. A living stag beetle (above) has a similar form and of rocks and fossils? color. Do you think that these two beetles would live in 3. What natural or human similar environments? What do you think Messel, Germany, events have caused mass was like 49 million years ago? In this chapter, you will extinctions in Earth’s learn how scientists answer these kinds of questions. history? 424 Chapter 16 Copyright © by Holt, Rinehart and Winston. All rights reserved. MAKING FOSSILS Procedure 1. You and three or four of your classmates will be given several pieces of modeling clay and a paper sack containing a few small objects. 2. Press each object firmly into a piece of clay. Try to leave an imprint showing as much detail as possible.
    [Show full text]
  • Ultimo Tafe Nsw
    SANDSTONE CARVINGS RECORDING ULTIMO TAFE NSW 1 SANDSTONE CARVINGS RECORDING ULTIMO TAFE NSW CONTENTS PART 1 INTRODUCTION 9 OVERVIEW 11 PART 2 PHOTOGRAPHIC RECORDING 17 PART 3 CONCISE REPORT 227 PART 1 INTRODUCTION & OVERVIEW 6 7 INTRODUCTION BACKGROUND This document presents a photographic record of sandstone carvings which adorn Buildings A, B & C, Ultimo TAFE, Sydney. Close to 100 carvings adorn the facade. Incorporated within the imposts and finials, the carvings largely depict Australian flora and fauna motifs. Funding was provided by the NSW Public Works Minister’s Stonework Program. Included is an inventory which identifies the principle features on each unique carving and an investigation into the history, context and significance of the carvings. Photography was undertaken in 2012-13 from scaffold constructed for façade repairs. No repairs were carried out on the carvings at this time. Recording significant carvings is an important aspect of stone conservation. It provides a record of the current condition of the stone, documentary evidence which can help determine the rate of deterioration when compared with future condition. Photographs record information for future generations, should they choose to re-carve due to loss of all recognisable detail. Recording also provides public access to and appreciation of these skilfully executed and unique carving located high on the façade. ACKNOWLEDGEMENT This report was prepared by the Government Architect’s Office. Joy Singh and Katie Hicks co-ordinated and compiled the report, graphic design by Marietta Buikema and drawings by Milena Crawford. The history, context and significance were researched and written by Margaret Betteridge of MuseCape and Photography by Michael Nicholson.
    [Show full text]
  • Weathering, Erosion, and Susceptibility to Weathering Henri Robert George Kenneth Hack
    Weathering, erosion, and susceptibility to weathering Henri Robert George Kenneth Hack To cite this version: Henri Robert George Kenneth Hack. Weathering, erosion, and susceptibility to weathering. Kanji, Milton; He, Manchao; Ribeira e Sousa, Luis. Soft Rock Mechanics and Engineering, Springer Inter- national Publishing, pp.291-333, 2020, 9783030294779. 10.1007/978-3-030-29477-9. hal-03096505 HAL Id: hal-03096505 https://hal.archives-ouvertes.fr/hal-03096505 Submitted on 5 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Published in: Hack, H.R.G.K., 2020. Weathering, erosion and susceptibility to weathering. 1 In: Kanji, M., He, M., Ribeira E Sousa, L. (Eds), Soft Rock Mechanics and Engineering, 1 ed, Ch. 11. Springer Nature Switzerland AG, Cham, Switzerland. ISBN: 9783030294779. DOI: 10.1007/978303029477-9_11. pp. 291-333. Weathering, erosion, and susceptibility to weathering H. Robert G.K. Hack Engineering Geology, ESA, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente Enschede, The Netherlands e-mail: [email protected] phone: +31624505442 Abstract: Soft grounds are often the result of weathering. Weathering is the chemical and physical change in time of ground under influence of atmosphere, hydrosphere, cryosphere, biosphere, and nuclear radiation (temperature, rain, circulating groundwater, vegetation, etc.).
    [Show full text]
  • Geologic Timeline
    SCIENCE IN THE PARK: GEOLOGY GEOLOGIC TIME SCALE ANALOGY PURPOSE: To show students the order of events and time periods in geologic time and the order of events and ages of the physiographic provinces in Virginia. BACKGROUND: Exact dates for events change as scientists explore geologic time. Dates vary from resource to resource and may not be the same as the dates that appear in your text book. Analogies for geologic time: a 24 hour clock or a yearly calendar. Have students or groups of students come up with their own original analogy. Before you assign this activity, you may want to try it, depending on the age of the student, level of the class, or time constraints, you may want to leave out the events that have a date of less than 1 million years. ! Review conversions in the metric system before you begin this activity ! References L.S. Fichter, 1991 (1997) http://csmres.jmu.edu/geollab/vageol/vahist/images/Vahistry.PDF http://pubs.usgs.gov/gip/geotime/age.html Wicander, Reed. Historical Geology. Fourth Edition. Toronto, Ontario: Brooks/Cole, 2004. Print. VIRGINIA STANDARDS OF LEARNING ES.10 The student will investigate and understand that many aspects of the history and evolution of the Earth can be inferred by studying rocks and fossils. Key concepts include: relative and absolute dating; rocks and fossils from many different geologic periods and epochs are found in Virginia. Developed by C.P. Anderson Page 1 SCIENCE IN THE PARK: GEOLOGY Building a Geologic Time Scale Time: Materials Meter stick, 5 cm adding machine tape, pencil, colored pencils Procedure 1.
    [Show full text]
  • Geologic Time and Geologic Maps
    NAME GEOLOGIC TIME AND GEOLOGIC MAPS I. Introduction There are two types of geologic time, relative and absolute. In the case of relative time geologic events are arranged in their order of occurrence. No attempt is made to determine the actual time at which they occurred. For example, in a sequence of flat lying rocks, shale is on top of sandstone. The shale, therefore, must by younger (deposited after the sandstone), but how much younger is not known. In the case of absolute time the actual age of the geologic event is determined. This is usually done using a radiometric-dating technique. II. Relative geologic age In this section several techniques are considered for determining the relative age of geologic events. For example, four sedimentary rocks are piled-up as shown on Figure 1. A must have been deposited first and is the oldest. D must have been deposited last and is the youngest. This is an example of a general geologic law known as the Law of Superposition. This law states that in any pile of sedimentary strata that has not been disturbed by folding or overturning since accumulation, the youngest stratum is at the top and the oldest is at the base. While this may seem to be a simple observation, this principle of superposition (or stratigraphic succession) is the basis of the geologic column which lists rock units in their relative order of formation. As a second example, Figure 2 shows a sandstone that has been cut by two dikes (igneous intrusions that are tabular in shape).The sandstone, A, is the oldest rock since it is intruded by both dikes.
    [Show full text]
  • Soils in the Geologic Record
    in the Geologic Record 2021 Soils Planner Natural Resources Conservation Service Words From the Deputy Chief Soils are essential for life on Earth. They are the source of nutrients for plants, the medium that stores and releases water to plants, and the material in which plants anchor to the Earth’s surface. Soils filter pollutants and thereby purify water, store atmospheric carbon and thereby reduce greenhouse gasses, and support structures and thereby provide the foundation on which civilization erects buildings and constructs roads. Given the vast On February 2, 2020, the USDA, Natural importance of soil, it’s no wonder that the U.S. Government has Resources Conservation Service (NRCS) an agency, NRCS, devoted to preserving this essential resource. welcomed Dr. Luis “Louie” Tupas as the NRCS Deputy Chief for Soil Science and Resource Less widely recognized than the value of soil in maintaining Assessment. Dr. Tupas brings knowledge and experience of global change and climate impacts life is the importance of the knowledge gained from soils in the on agriculture, forestry, and other landscapes to the geologic record. Fossil soils, or “paleosols,” help us understand NRCS. He has been with USDA since 2004. the history of the Earth. This planner focuses on these soils in the geologic record. It provides examples of how paleosols can retain Dr. Tupas, a career member of the Senior Executive Service since 2014, served as the Deputy Director information about climates and ecosystems of the prehistoric for Bioenergy, Climate, and Environment, the Acting past. By understanding this deep history, we can obtain a better Deputy Director for Food Science and Nutrition, and understanding of modern climate, current biodiversity, and the Director for International Programs at USDA, ongoing soil formation and destruction.
    [Show full text]
  • Lorraine Lisiecki & Maureen Raymo
    PP51B-0482 Age differences between Atlantic and Pacific benthic δ18O at terminations Lorraine Lisiecki & Maureen Raymo Boston University Abstract Methods Results Benthic δ18O is often used as a stratigraphic tool to place marine records on a common The age or duration of terminations (other than the most recent, T1) cannot be measured We create Atlantic and Pacific δ18O stacks for the last 5 terminations using F age model and as a proxy for the timing of ice volume/sea level change. However, directly. Instead we compare sedimentation rates during terminations to examine whether tie points only at the start and end of each termination and averaging data in 3.4 3.6 3.6 18 18 18 3.8 δ δ Pacic benthic Skinner & Shackleton [2005] found that the timing of benthic δ O change at the last the change in benthic O at terminations may be delayed or slower in the Pacific than 2-kyr intervals (Figure F). We also adjust the duration of Pacific O change O 3.8 18 T1 δ 18 18 4 termination differed by 4000 years between two sites in the Atlantic and Pacific. Do the Atlantic. Aligning Pacific δ O to Atlantic δ O should produce a spike in Pacific sedi- by assuming that the duration differences calculated in Figure D result solely 4 4.2 18 mentation rates if slow Pacific terminations are compressed to fit faster Atlantic termina- from lags in Pacific δ18O. Because the spikes in sed rate ratio all occur mid- 4.2 δ these results imply that benthic O change may not accurately record the timing of 4.4 δ 18 18 4.4 18 18 tions.
    [Show full text]
  • A GEOLOGIC RECORD of the FIRST BILLION YEARS of MARS HISTORY. John F. Mustard1 and James W. Head1 1Department of Earth, Environm
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 2604.pdf A GEOLOGIC RECORD OF THE FIRST BILLION YEARS OF MARS HISTORY. John F. Mustard1 and James W. Head1 1Department of Earth, Environmental and Planetary Sciences, Box 1846, Brown University, Provi- dence, RI 02912 ([email protected]) Introduction: A compelling record of the first bil- standing solar system evolution question is the exist- lion years of Mars geologic evolution is spectacularly ence, or not, of a period of heavy bombardment ≈500 presented in a compact region at the intersection of Myr after accretion of the terrestrial planets. Except Isidis impact basin and Syrtis Major volcanic province for the Moon, we have no definitive dates for basins (Fig. 1). In this well-exposed region is a well-ordered formed in the Solar System. Radiometric systems in stratigraphy of geologic units spanning Noachian to crystalline igneous rocks exposed by Isidis would like- Early Hesperian times [1]. Geologic units can be de- ly have been reset and thus contain evidence of the finitively associated with the Isidis basin-forming im- impact providing a key data point for understanding pact (≈3.9 Ga, [2]) as well as pristine igneous and basin forming processes in the Solar System. Further- aqueously altered Noachian crust that pre-date the more the Isidis basin impacted onto the rim of the hy- Isidis event. The rich collection of well defined units pothesized Borealis Basin [7]. Given this proximity spanning ≈500 Myr of time in a compact region is at- there is a possibility that some fragments may have tractive for the collection of samples.
    [Show full text]