Space As a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond
Total Page:16
File Type:pdf, Size:1020Kb
Space as a Tool for Astrobiology: review and recommendations for experimentations in Earth orbit and beyond Hervé Cottin, Julia Michelle Kotler, Daniela Billi, Charles Cockell, René Demets, Pascale Ehrenfreund, Andreas Elsaesser, Louis d’Hendecourt, J. van Loon, Zita Martins, Silvano Onofri, Richard C. Quinn, Elke Rabbow, Petra Rettberg, Antonio J. Ricco, Klaus Slenzka, Rosa de la Torre, Jean-Pierre de Vera, Frances Westall, Nathalie Carrasco, Aurélien Fresneau, Yuko Kawaguchi, Yoko Kebukawa, Dara Nguyen, Olivier Poch, Kafila Saiagh, Fabien Stalport, Akihiko Yamagishi, Hajime Yano and Benjamin A. Klamm HC, KS, DN, AF, OP, FS: LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, France MK: Leiden Observatory, P O Box 9513, 2300 Leiden, the Netherlands, Universität Konstanz FB Biologie, Z 818 D - 78457 Konstanz, Germany & Chemical Analysis Facility, University of Reading, Whiteknights, Reading, Berkshire RG6 6AD, UK DB: University of Rome Tor Vergata, Rome, Italy AE: Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands & Experimental Molecular Biophysics, Department of Physics, Free University of Berlin, 14195 Berlin, Germany PE: Space Policy Institute, George Washington University, 20052 Washington DC, USA PR, ER: DLR, Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, Koeln, Germany RdlT: INTA, Instituto Nacional de Técnica Aeroespacial, Crta. Ajalvir, km. 4, 28850-Torrejón de Ardoz, Madrid, Spain LdH: Institut d’Astrophysique Spatiale, UMR 8617 CNRS, Université Paris-Sud, Orsay, France RD: ESTEC (HRE-UB), Keplerlaan 1, NL-2201 AZ Noordwijk, The Netherlands CC: UK Centre for Astrobiology, SUPA, School of Physics and Astronomy, James Clerk Maxwell Building, King's Buildings, Edinburgh, EH9 3JZ, UK ZM: Department of Earth Science and Engineering, Imperial College London, SW7 2AZ, London, UK JPdV: DLR, Institute of Planetary Research, Experimental Planetary Physics, Research Group Astrobiology and Planetary Simulations, Berlin, Germany FW: CNRS, CBM, UPR 4301, rue Charles Sadron, 45071 Orléans, France KS : Jacobs Univ., Bremen & OHB, D SO: Università della Tuscia, Viterbo, Italy JvL: VU Amsterdam, NL NC: Université Versailles St-Quentin, UPMC Univ. Paris 06, CNRS, LATMOS, 11 Blvd. d’Alembert, 78280 Guyancourt, France YKa, AY: Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji 192- 0392, Japan YKe: Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan HY: Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan RCQ, AJR. & BAK: NASA Ames Research Center, Moffett Field, CA, 94035 USA Keywords: Astrobiology, Exobiology, Astrochemistry, Hardware for space experiments, BIOPAN, STONE, EXPOSE, Tanpopo, Cubesat, Nanosatellites, International Space Station, Space environment Corresponding author: Hervé Cottin, [email protected], phone: +33 1 45 17 15 63, fax: +33 1 45 17 15 64 1 ABSTRACT The space environment is regularly used for experiments addressing astrobiology research goals. The specific conditions prevailing in Earth orbit and beyond, notably the radiative environment (photons and energetic particles) and the possibility to conduct long-duration measurements, have been the main motivations for developing experimental concepts to expose chemical or biological samples to outer space, or to use the reentry of a spacecraft on Earth to simulate the fall of a meteorite. This paper represents an overview of past and current research in astrobiology conducted in Earth orbit and beyond, with a special focus on ESA missions such as Biopan, STONE (on Russian FOTON capsules) and EXPOSE facilities (outside the International Space Station). The future of exposure platforms is discussed, notably how they can be improved for better science return, and how to incorporate the use of small satellites such as those built in cubesat format. 2 Table of content ABSTRACT ................................................................................................................................................ 2 Table of content ...................................................................................................................................... 3 1. Introduction ..................................................................................................................................... 6 2. The Space Radiation Environment .................................................................................................. 7 2.1 Photons .................................................................................................................................... 10 2.2 Radiation other than Photons .................................................................................................. 12 2.3 Space Environment versus Laboratory Environment ............................................................... 16 3. Current and Past Astrobiology Facilities ....................................................................................... 19 3.1 Common tools and facilities ..................................................................................................... 19 a. LDEF .......................................................................................................................... 20 b. EURECA ..................................................................................................................... 20 c. Salute-6,7, Bion-9,11 and MIR space station ........................................................... 20 d. Biopan on Foton capsule .......................................................................................... 21 e. EXPOSE outside the International Space Station ..................................................... 26 f. TANPOPO outside the International Space Station ................................................. 31 g. O/OREOS nanosatellite ............................................................................................ 33 h. OREOcube: an ISS hitchhiker and new in-situ exposure platform ........................... 34 i. STONE experiments .................................................................................................. 36 3.2 Space experiments for chemistry ............................................................................................. 37 3.2.1. Diversity of samples for astrochemistry experiments in space .............................. 38 a. Interstellar Medium .................................................................................................. 38 b. Planetary atmospheres and endogenous sources of organic compounds in planetary environments ............................................................................................... 39 c. Small bodies and exogeneous sources of organic compounds in planetary environments) .............................................................................................................. 40 d. Organic molecules and biosignatures at Mars surface ............................................ 41 3.2.2. Hardware for chemistry .......................................................................................... 43 a. Salute-6,7, Kosmos 2044, Bio-11 and MIR ............................................................... 43 b. Biopan (Dust/Organic/Uvolution) ............................................................................ 47 c. EXPOSE (Process/Organic/Amino/PSS) .................................................................... 50 c1. Open cells ........................................................................................................... 51 c2. RUAG closed cells ............................................................................................... 52 c3. CNES closed cells................................................................................................. 52 c4. Sample preparation ............................................................................................ 54 c6. Sample exposure principle ................................................................................. 55 c7. Sample analysis ................................................................................................... 56 d. Tanpopo (sub-theme 3) ............................................................................................ 57 3 e. O/OREOS-SEVO payload .......................................................................................... 58 f. MUE: Miller-Urey Experiment ................................................................................... 60 3.2.3. Results ..................................................................................................................... 62 a. EURECA/ERA ............................................................................................................. 62 b. Salute-6,7, Kosmos 2044, Bion-11 and MIR ............................................................. 62 c. Biopan (Dust/Organic/Uvolution) ............................................................................. 63 c1. DUST ................................................................................................................... 63 c2. ORGANICS ........................................................................................................... 63 c3. UVolution ...........................................................................................................