The Crystal Chemistry and Crystal Structure of Kuksite, Pb3zn3te6+

Total Page:16

File Type:pdf, Size:1020Kb

The Crystal Chemistry and Crystal Structure of Kuksite, Pb3zn3te6+ American Mineralogist, Volume 95, pages 933–938, 2010 6+ The crystal chemistry and crystal structure of kuksite, Pb3Zn3Te P2O14, and a note on the crystal structure of yafsoanite, (Ca,Pb)3Zn(TeO6)2 STUART J. MILL S ,1,* ANTHONY R. KA M PF ,2 UWE KOLIT S CH ,3,4 ROBERT M. HOU S LEY,5 AND MATI RAUD S EPP 1 1Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada 2Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A 3Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A-1010 Wien, Austria 4Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria 5Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. AB S TRACT 6+ New discoveries of kuksite, Pb3Zn3Te P2O14, from the Black Pine mine, Montana, and Blue Bell claims, California, have enabled a detailed crystal-chemical study of the mineral to be undertaken. Single-crystal X-ray structure refinements of the structure indicate that it is isostructural with dugganite, 6+ 5+ 6+ Pb3Zn3Te As2O14, and joëlbruggerite, Pb3Zn3(Sb ,Te )As2O13(OH,O). Kuksite from the Black Pine mine crystallizes in space group P321, with unit-cell dimensions a = 8.392(1), c = 5.204(1) Å, V = 3 317.39(8) Å , and Z = 1 (R1 = 2.91% for 588 reflections [Fo > 4σF] and 3.27% for all 624 reflections), 3 while Blue Bell kuksite has the unit cell a = 8.3942(5), c = 5.1847(4) Å, and V = 316.38(4) Å (R1 = 3.33% for 443 reflections [Fo > 4σF] and 3.73% for all 483 reflections). Chemical analyses indicate that solid-solution series exist between kuksite, dugganite, and joëlbruggerite. Raman spectroscopic and powder X-ray diffraction data are also presented for samples from both occurrences. 6+ The crystal structure of the chemically related species yafsoanite, (Ca,Pb)3Te2 Zn3O12, from the type locality (Delbe orebody, Kuranakh Au Deposit, Aldan Shield, Saha Republic, Russia), has been refined to R1 = 2.41% for 135 reflections [Fo > 4σF] and 3.68% for all 193 reflections. A garnet-type structure has been confirmed and significantly improves upon the results of an earlier structure determination. Keywords: Kuksite, dugganite, joëlbruggerite, Black Pine, Blue Bell, tellurate, yafsoanite, Delbe orebody, crystal structure INTRODUCTION Kuksite occurs with malachite, pseudomalachite, chalcocite, Tellurium minerals occur in a wide range of environments tetrahedrite, segnitite, dugganite, and joëlbruggerite in milky worldwide, where primary sulfides and sulfosalts have undergone quartz veins. Kuksite crystallized from solutions rich in Pb, Zn, weathering under acidic conditions. Tellurium mineralogy tends to Sb, As, P, and Te derived from the breakdown of the primary be complex, owing to the various oxidation states possible (Te6+, ore body within the Mount Shields Formation (Peacor et al. Te4+, Te0, and Te2–), which then tend to combine to create many 1985; Mills et al. 2009). The tellurium is present in the ore as a exotic mineral species. Investigations of tellurium mineralogy at substituent in tetrahedrite, a common association in many other the Black Pine mine, 14.5 km NW of Philipsburg, Granite County, deposits (e.g., Fadda et al. 2005). Thermodynamic modeling Montana [U.S.A. (46°26′52″N, 113°21′56″W)], and the Blue suggests that kuksite formed in mildly oxidizing [log aO2(aq) Bell claims, Baker, San Bernardino County, California [U.S.A. > –41] and acidic conditions (pH < 3), as required for other (35°14′38″N, 116°12′25″W)], resulted in the discovery of several unique Black Pine minerals such as joëlbruggerite (Mills et al. rare and new tellurate species. One of these rare tellurates, kuksite, 2009) and auriacusite (Mills et al. 2010). Synthetic analogues of 6+ kuksite can be prepared at >500 °C by solid-state methods (Mill’ Pb3Zn3Te P2O14, is the subject of this report. Kuksite is an extremely rare mineral that previously has only 2009a, 2009b); however, natural samples have almost certainly been described from its type locality, the Delbe orebody within the crystallized at ambient (~25 °C) temperatures. Kuranakh Au Deposit, Aldan Shield, Saha Republic, Russia (Kim et al. 1990). Here it occurs as elongated tabular gray crystals up to Blue Bell claims 0.1 × 0.3 mm with cinnabar, gold, petzite, coloradoite, yafsoanite, Although the Blue Bell mine has been a well-known collect- kuranakhite, cheremnykhite, descloizite, dugganite, and saponite. ing locality for micro minerals at least since 1977 (Crowley 1977) and 45 minerals from there were described in detail by Maynard OCCURRENCE AND PARAGENE S I S (1984), the first tellurate mineral described from the mine, Black Pine mine quetzalcoatlite, was collected by one of the authors (R.M.H.) Kuksite and associated material was collected in the spring of in March of 1996. Shortly following news of this find, kuksite 1993 by John Dagenais of Vancouver, British Columbia, Canada. was found in a single Blue Bell specimen submitted to R.M.H. by Eugene Reynolds. These finds were promptly documented * E-mail: [email protected] in a regional publication (Housley 1997), although the quetzal- 0003-004X/10/0007–933$05.00/DOI: 10.2138/am.2010.3483 933 934 MILLS ET AL.: KUKSITE AND YAFSOANITE coatlite was initially misidentified as tlalocite. Subsequently, Zn), Cu-metal (for Cu), fayalite (for Fe), Te-metal (for Te), Sb- a crystal of the quetzalcoatlite was used to solve the structure metal (for Sb), fluorapatite (for P), GaAs (for As), and anorthite of that mineral (Burns 2000). What is now known as the Blue (for Si). Like many other tellurium oxysalts and dugganite-group Bell claims actually consists of a dozen or more small workings members, kuksite is prone to beam damage (including melting distributed over a rugged hillside. observed under stronger analytical conditions) and anomalously In 2007, R.M.H. found kuksite in material from the Blue low totals (Table 1), cf. Grundler et al. (2008), Mills et al. (2009), Bell D site (Maynard 1984) that had been donated for study by and Kampf et al. (2010). John Jenkins. In March 2008, R.M.H. finally found kuksite in The average of five analyses (calculated on the basis of 14 situ in a small adit at the D site. Ironically, somewhat earlier in O) gave the average composition of Pb2.93(Zn2.74Cu0.06Fe0.01)Σ2.81 November 2007, Brent Thorne had independently found larger (Te0.58Sb0.33)Σ0.91(P1.44As0.74Si0.11)Σ2.29O14 for Black Pine kuksite, kuksite crystals associated with quetzalcoatlite in the D site shaft, while the average of seven analyses gave the average compo- where quetzalcoatlite had been initially found. He kindly made sition of (Pb2.89Bi0.10)Σ2.99(Zn2.84Cu0.20Fe0.02)Σ3.05Te1.05(P1.52Si0.44 some of these crystals available for this study in June 2008. As0.02)Σ1.98O14 for Blue Bell kuksite. The Black Pine kuksite con- At the Blue Bell the most ubiquitous associates of kuksite are tains substantial As, indicating a solid solution toward dugganite, clinochlore, perite, and hemimorphite. Other secondary minerals but also contains substantial Sb toward what would be the Sb found in close association include hematite, quartz, wulfenite, analog of kuskite. We note that semi-quantitative SEM analyses chlorargyrite, dioptase, kettnerite, fluorite, murdochite, and very show Sb to be low or absent in many samples, indicating multiple minor calcite, barite, and gypsum. Many chrysocolla pseudo- generations of formation and/or differing primary minerals to be morphs apparently, at least partly, after aurichalcite are also pres- responsible for formation. Varying Sb is also present in auriacus- ent, as is much gossan. Interestingly, much more Te mineralization ite and alunite supergroup minerals from Black Pine. The Blue is present at this site as green and yellow, X-ray amorphous, Bell kuksite, on the other hand, shows substantial Si substitution opal-like gels consisting of Zn, Cu, Bi, Te, Fe, and Si oxides than analogous to that reported by Kim et al. (1988). the small amount found in well-crystallized minerals. This part of the Blue Bell claims is located in a skarn area, Raman spectroscopy and although the area appears to be highly oxidized, some small Near-infrared Raman spectroscopic analysis was performed inclusions of primary minerals are trapped in garnet and mag- using a Renishaw imaging microscope system 1000 (Depart- netite of the skarn. These inclusions include sphalerite, bornite, hessite, and tetradymite. Thus, it appears that the suite of sec- ondary minerals including the kuksite could have formed during oxidation of the primary minerals present, with perhaps only Mo and P needing to be derived from the surrounding skarn. PHY S ICAL PROPERTIE S Black Pine mine Kuksite commonly occurs in various shades of purple, as barrel-shaped or tabular crystals up to about 0.5 mm across (Fig. 1). Forms observed are {0001}, {1120}, {1010}, and {1121}. The barrel-shaped crystals can be randomly color-zoned, with purple, grayish purple, and colorless most prominent. Less com- monly, kuksite may occur as bluish or greenish crystals. Visually, kuksite is indistinguishable from the related species dugganite, 6+ 5+ 6+ Pb3Zn3Te As2O14, and joëlbruggerite, Pb3Zn3(Sb ,Te )As2O13 (OH,O), although joëlbruggerite tends to be an order of magni- FIGURE 1. Barrel-shaped crystal of kuksite from the Black Pine mine tude smaller than both kuksite and dugganite. in quartz vugh. Field of view is 0.3 mm across. Jean-Marc Johannet specimen and photograph. Blue Bell claims TABLE 1. Quantitative chemical analyses for kuksite (average of five Kuksite occurs as pale greenish-blue simple stout hexagonal analyses for Black Pine and seven for Blue Bell) prisms up to about 0.1 mm in length.
Recommended publications
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 68, pages 280-2E3, 1983 NEW MINERAL NAMES* MrcnnBr- FrelscHen AND ADoLF Pnnsr Arsendescloizite* The mineral occurs at Uchucchacua,Peru, in acicular crystals up to 2fi) x 20 microns, associatedwith galena, manganoan (1982) Paul Keller and P. J. Dunn Arsendescloizite, a new sphalerite, pyrite, pyrrhotite, and alabandite, with gangue of mineral from Tsumeb. Mineralog. Record, 13, 155-157. quartz, bustamite, rhodonite, and calcite. Also found at Stitra, pyrite-pyrrhotite in rhyo- Microprobe analysis (HzO by TGA) gave AszOs 26.5, PbO Sweden,in a metamorphosed deposit 52.3,ZnO1E.5, FeO 0.3, Il2O2.9, sum 100.5%,corresponding to litic and dacitic rocks; in roundedgrains up to 50 fl.min diameter, associated with galena, freibergite, gudmundite, manganoan Pb1.s6(Zn1.63Fe6.oJ(AsOaXOH)1a or PbZn(AsO+XOH), the ar- senateanalogue ofdescloizite. The mineral is slightly soluble in sphalerite,bismuth, and spessartine. hot HNO3. The name is for A. Benavides, for his contribution to the Weissenbergand precessionmeasurements show the mineral development of mining in Peru. Type material is at the Ecole (Uchucchacua)and at the Free to be orthorhombic, space group F212121,a : 6.075, b = 9.358, Natl. Superieuredes Mines, Paris (SAtra). c = 7.$44, Z = 4, D. calc. 6.57. The strongestX-ray lines University, Amsterdam, Netherlands M.F. (31 eiven) are 4.23(6)(lll); 3.23(lOXl02);2.88(10)(210,031); 2.60 Kolfanite* (E)(13 I ) ; 2.W6)Q3r) ; I .65(6X33I, 143,233); r.559 (EX3I 3,060,25I ). Crystalsare tabular up to 1.0 x 0.4 x 0.5 mm in size, on {001}, A.
    [Show full text]
  • Calaverite Aute2 C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Monoclinic
    Calaverite AuTe2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m or 2. Bladed and short to slender prisms elongated k [010], striated k [010], to 1 cm; also massive, granular. Twinning: Common on {110}, less common on {031} and {111}. Physical Properties: Fracture: Uneven to subconchoidal. Tenacity: Brittle. Hardness = 2.5–3 VHN = 197–213 (100 g load). D(meas.) = 9.10–9.40 D(calc.) = 9.31 Optical Properties: Opaque. Color: Grass-yellow to silver-white; white in reflected light. Streak: Greenish to yellowish gray. Luster: Metallic. Pleochroism: Weak. Anisotropism: Weak. R1–R2: (400) 45.7–54.4, (420) 48.4–57.1, (440) 51.1–59.6, (460) 53.6–61.8, (480) 56.0–63.6, (500) 57.9–65.2, (520) 59.4–66.4, (540) 60.6–67.3, (560) 61.3–68.0, (580) 61.8–68.3, (600) 62.2–68.4, (620) 62.5–68.6, (640) 62.7–68.5, (660) 62.8–68.4, (680) 62.9–68.2, (700) 63.0–68.1 Cell Data: Space Group: C2/m or C2. a = 7.1947(4) b = 4.4146(2) c = 5.0703(3) β =90.038(4)◦ Z=2 X-ray Powder Pattern: Cripple Creek, Colorado, USA. 3.02 (10), 2.09 (8), 2.20 (4), 2.93 (3), 1.758 (3), 1.689 (3), 1.506 (3) Chemistry: (1) (2) (3) Au 41.66 42.15 43.59 Ag 0.77 0.60 Te 57.87 57.00 56.41 Total 100.30 99.75 100.00 (1) Cripple Creek, Colorado, USA.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Download the Scanned
    MTNERALOGTCALSOCIETY (LONDON) A meeting of the Society was held on Thursday, January 11th, 1951,in the apartments of the Geological Society of London, Burlington House, Piccadilly, W. 1 (by kind permis- sion). Exnrsrrs (1) Crystals of analcime and baryte from the trachyte of Traprain Law, East Lothian: by Dr. S. I. Tomkeiefi. (2) The use of a Laspeyres ocular lens in preference to the Berek compensator: by Dr. A. F. Hallimond. (3) Sections and colour photographs of (a) artificial corundum, (b) kyanite-staurolite intergrowth, (c) garnet: by Dr. Francis Jones. Papnns The following papers were read: (1) 'RnrcrmNlecn' AND 'BREZTNA'Leltrr,rln rN METEoRrrrc IRoNS. By Dr. L. J. Spencer Reichenbach lamellae, seen as bands on etched sections, were originally described as enclosed plates of troilite parallel to cube pianes in the kamacite-taenite structure, and Brczina lamellae as schreibersite parallel to the rhombic-dodecahedron. These minerals, and also cohenite, have since been observed in both of these and in other orientations. It has sometimes been assumed that bands at right angles indicate orientation on cube planes, but they may also be due to other orientations. On a section parallel to an octahedral plane it is possible only with lamellae parailel to the rhombic dodecahedron' (2) SnorrunNraRy INSLUSTSNSrN tnn IIvpnnsTHENE-GABBRo, ARDNAItrUR6HAN,ARGYLL- SIIIRE. By Mr. M. K. Wells The hypersthene-gabbro contains an abundance of granular basic hornfels inclusions which have all been interpreted in the past as recrystallized basic igneous rocks. Some of these inclusions, particularly banded ones, are now believed to be sedimentary rocks which have sufiered considerable metasomatism.
    [Show full text]
  • Download the Scanned
    INDEX,VOLUME 59* Absorption coefficients Albite, continued attapulgite 1113 1ow-, comparison with ussingite 347 clay ninerals 11r3 nelting in nultispecies fluid 598 dickite 274 Alexandrite, chrorniumIII centers in 159 hal loysite 274 hectorite I 113 ALLAN, DAVID illite 1113 with V. Brown, and J. Stark, Rocke kaolinite 274 and Minez,als of Califowi,a; reviewed metabentonite 1113 by J. Murdoch 387 nontronite 1113 Allemontite, see stibarsen 1331 srnectite 1113 ALLMAN,MICHAEL Absorption spectra with D.F. Lawrence, Geological alexandrite, synthetic 159 Labonatony Techni.ques reviewed apophyllite 62I ; by F.H. Manley and W.R. Powers IL42 garnet 565 olivine 244 A1lophane rhodonite.. shocked t77 dehydration, DTA, infrared spectra 1094 Acmite, Ti-, phase relations of 536 Almandine Actinolite overgrowth by grossularite- spessartine 558 coexisting with hoinblende 529 in netamorphic rocks, optical Arnerican Crystallographic Association, properties 22 abstracts, Spring neeting,1974 1L27 Activity coefficients Amphiboles of coexisting pyroxenes 204 actinolite 2? 529 Al -Ca-anphibole ADMS, HERBERTG. 22 compositions 22 with L.H. Cohen, and W. Klenent, Jr.; coordination polyhedra M High-low quartz inversion : Thermal of site atons in I 083 analysis studies to 7 kbar I 099 hornblende L, 22, 529, 604 ADAMS,JOHN W. magnesioarfvedsonite (authigenic) 830 with T. Botinelly, W.N. Sharp, and refraction indices 22 K. Robinson; Murataite, a new richterite, Mg-Fe- 518 conplex oxide from E1 Paso County, AMSTUTZ,G.C. Colorado L72 with A.J. Bernard, Eds., )nes in Errata 640 Sediments; reviewed by P.B. Barton 881 Aenigmatite ANDERSEN,C.A. in volcanic conplex, composition, and X-ray data Micz,opnobeAnalysis; reviewed by A.E.
    [Show full text]
  • Evolution of Zincian Malachite Synthesis by Low Temperature Co
    Evolution of zincian malachite synthesis by low temperature co- precipitation and its catalytic impact on the methanol synthesis Leon Zwienera, Frank Girgsdiesa, Daniel Brenneckea, Detre Teschnera,b, Albert G.F. Machokeb, Robert Schlögla,b, and Elias Frei*a [a] Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany. [b] Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34 – 36, 45470 Mülheim an der Ruhr, Germany. *E-mail: [email protected] Keywords: zincian malachite • co-precipitation • methanol synthesis Abstract: Low temperature co-precipitation enabled, for the first time, the preparation of phase pure zincian malachite precursors with Zn contents of up to 31 at.-%. The high Zn content was beneficial for maximizing the dispersion of Cu and oxygen defect sites on the ZnO surface. Further, an increase of the Zn loading from 10 to 31 at.-% doubled the specific surface areas obtained from N2O-RFC (Reactive Frontal Chromatography) and H2- TA (Transient Adsorption). As the Zn content was increased from 10 to 31 at.-%, the apparent activation energy for methanol formation was strongly decreased. Furthermore, water formation was reduced indicating a retardation of the rWGS in favor of methanol formation at high Zn loadings. Additionally, compared to high temperature co-precipitation, low temperature precipitated catalysts exhibited increased catalytic activities. 1. Introduction Rising global energy demand, relying on the ongoing consumption of fossil fuels, has led to a drastic increase in atmospheric CO2 concentration over the past century.[1] Since CO2 has been attributed to be the main anthropogenic source of the greenhouse effect, CO2 has become a valuable carbon source available for chemical conversion (e.g.
    [Show full text]
  • Utahite, a New Mineral and Associated Copper Tellurates from the Centennial Eureka Mine, Tintic District, Juab County, Utah
    UTAHITE, A NEW MINERAL AND ASSOCIATED COPPER TELLURATES FROM THE CENTENNIAL EUREKA MINE, TINTIC DISTRICT, JUAB COUNTY, UTAH Andrew C. Roberts and John A. R. Stirling Geological Survey of Canada 601 Booth Street Ottawa, Ontario, Canada K IA OE8 Alan J. Criddle Martin C. Jensen Elizabeth A. Moffatt Department of Mineralogy 121-2855 Idlewild Drive Canadian Conservation Institute The Natural History Museum Reno, Nevada 89509 1030 Innes Road Cromwell Road Ottawa, Ontario, Canada K IA OM5 London, England SW7 5BD Wendell E. Wilson Mineralogical Record 4631 Paseo Tubutama Tucson, Arizona 85750 ABSTRACT Utahite, idealized as CusZn;(Te6+04JiOH)8·7Hp, is triclinic, fracture. Utahite is vitreous, brittle and nonfluorescent; hardness space-group choices P 1 or P 1, with refined unit-cell parameters (Mohs) 4-5; calculated density 5.33 gtcm' (for empirical formula), from powder data: a = 8.794(4), b = 9996(2), c = 5.660(2);\, a = 5.34 glcm' (for idealized formula). In polished section, utahite is 104.10(2)°, f3 = 90.07(5)°, y= 96.34(3YO, V = 479.4(3) ;\3, a:b:c = slightly bireflectant and nonpleochroic. 1n reflected plane-polar- 0.8798:1 :0.5662, Z = 1. The strongest five reflections in the X-ray ized light in air it is very pale brown, with ubiquitous pale emerald- powder pattern are (dA(f)(hkl)]: 9.638(100)(010); 8.736(50)(100); green internal reflections. The anisotropy is unknown because it is 4.841(100)(020); 2.747(60)(002); 2.600(45)(301, 311). The min- masked by the internal reflections. Averaged electron-microprobe eral is an extremely rare constituent on the dumps of the Centen- analyses yielded CuO = 25.76, ZnO = 15.81, Te03 = 45.47, H20 nial Eureka mine, Tintic district, Juab County, Utah, where it (by difference) {12.96], total = {100.00] weight %, corresponding occurs both as isolated 0.6-mm clusters of tightly bound aggre- to CU49;Zn29lTe6+04)39l0H)79s' 7.1H20, based on 0 = 31.
    [Show full text]
  • Aurichalcite (Zn, Cu)5(CO3)2(OH)6 C 2001-2005 Mineral Data Publishing, Version 1
    Aurichalcite (Zn, Cu)5(CO3)2(OH)6 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic, pseudo-orthorhombic by twinning. Point Group: 2/m. As acicular to lathlike crystals with prominent {010}, commonly striated k [001], with wedgelike terminations, to 3 cm. Typically in tufted divergent sprays or spherical aggregates, may be in thick crusts; rarely columnar, laminated or granular. Twinning: Observed in X-ray patterns. Physical Properties: Cleavage: On {010} and {100}, perfect. Tenacity: “Fragile”. Hardness = 1–2 D(meas.) = 3.96 D(calc.) = 3.93–3.94 Optical Properties: Transparent to translucent. Color: Pale green, greenish blue, sky-blue; colorless to pale blue, pale green in transmitted light. Luster: Silky to pearly. Optical Class: Biaxial (–). Pleochroism: Weak; X = colorless; Y = Z = blue-green. Orientation: X = b; Y ' a; Z ' c. Dispersion: r< v; strong. α = 1.654–1.661 β = 1.740–1.749 γ = 1.743–1.756 2V(meas.) = Very small. Cell Data: Space Group: P 21/m. a = 13.82(2) b = 6.419(3) c = 5.29(3) β = 101.04(2)◦ Z=2 X-ray Powder Pattern: Mapim´ı,Mexico. 6.78 (10), 2.61 (8), 3.68 (7), 2.89 (4), 2.72 (4), 1.827 (4), 1.656 (4) Chemistry: (1) CO2 16.22 CuO 19.87 ZnO 54.01 CaO 0.36 H2O 9.93 Total 100.39 (1) Utah; corresponds to (Zn3.63Cu1.37)Σ=5.00(CO3)2(OH)6. Occurrence: In the oxidized zones of copper and zinc deposits. Association: Rosasite, smithsonite, hemimorphite, hydrozincite, malachite, azurite.
    [Show full text]
  • Infrare D Transmission Spectra of Carbonate Minerals
    Infrare d Transmission Spectra of Carbonate Mineral s THE NATURAL HISTORY MUSEUM Infrare d Transmission Spectra of Carbonate Mineral s G. C. Jones Department of Mineralogy The Natural History Museum London, UK and B. Jackson Department of Geology Royal Museum of Scotland Edinburgh, UK A collaborative project of The Natural History Museum and National Museums of Scotland E3 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Firs t editio n 1 993 © 1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 1st edition 1993 Typese t at the Natura l Histor y Museu m ISBN 978-94-010-4940-5 ISBN 978-94-011-2120-0 (eBook) DOI 10.1007/978-94-011-2120-0 Apar t fro m any fair dealin g for the purpose s of researc h or privat e study , or criticis m or review , as permitte d unde r the UK Copyrigh t Design s and Patent s Act , 1988, thi s publicatio n may not be reproduced , stored , or transmitted , in any for m or by any means , withou t the prio r permissio n in writin g of the publishers , or in the case of reprographi c reproductio n onl y in accordanc e wit h the term s of the licence s issue d by the Copyrigh t Licensin g Agenc y in the UK, or in accordanc e wit h the term s of licence s issue d by the appropriat e Reproductio n Right s Organizatio n outsid e the UK. Enquirie s concernin g reproductio n outsid e the term s state d here shoul d be sent to the publisher s at the Londo n addres s printe d on thi s page.
    [Show full text]
  • Thermokinetic Investigation of Binary Cu/Zn Hydroxycarbonates As Precursors for Cu/Zno Catalysts
    Thermokinetic investigation of binary Cu/Zn hydroxycarbonates as precursors for Cu/ZnO catalysts Andrey Tarasov, Julia Schumann, Frank Girgsdies, Nygil Thomas and Malte Behrens Fritz Haber Institute of the Max-Planck Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin (Germany) Fax: (+49)30-8413-4401 [email protected] Keywords: Thermogravimetry, Cu/Zn hydroxycarbonates, decomposition kinetics Abstract A combination of thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) coupled to mass spectrometry has been applied to study the thermal decomposition of Cu/Zn hydroxycarbonates, which are used as a precursor for the active methanol synthesis catalyst. Original TG and DSC profiles and results of a formal kinetic analysis of the calcination process are compared with transformations occurring in the solid phase, which has been studied by means of in-situ XRD. A series of hydroxycarbonate precursors with different Cu/Zn molar ratios (40/60, 60/40, 80/20) was synthesized under conditions reported as optimum for catalytic performance. The samples contain primarily two crystalline phases, aurichalcite (Cu,Zn)5(CO3)2(OH)6 and zincian malachite (Cu,Zn)2CO3(OH)2. At least four formal decomposition stages of CO2 and H2O evolution cause the major mass loss in the TG experiments. The best-fit quality for the all studied samples was obtained for a four-step competitive reaction model. The experimental TG dependences are adequately described by the n-th order equation and 3D Jander diffusion equation. The effects of the gas flow, sample mass, and water transfer conditions on the reaction pathway were studied. The presence of H2O vapor in the reaction feed accelerates the decomposition and dramatically changes the reaction TG profile.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]