Clemson University TigerPrints All Dissertations Dissertations August 2020 Geometric-based Optimization Algorithms for Cable Routing and Branching in Cluttered Environments Nafiseh Masoudi Clemson University,
[email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Masoudi, Nafiseh, "Geometric-based Optimization Algorithms for Cable Routing and Branching in Cluttered Environments" (2020). All Dissertations. 2702. https://tigerprints.clemson.edu/all_dissertations/2702 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact
[email protected]. GEOMETRIC BASED OPTIMIZATION ALGORITHMS FOR CABLE ROUTING AND BRANCHING IN CLUTTERED ENVIRONMENTS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Mechanical Engineering by Nafiseh Masoudi August 2020 Accepted July 21, 2020 by: Dr. Georges M. Fadel, Committee Chair Dr. Margaret M. Wiecek Dr. Joshua D. Summers Dr. Cameron J. Turner Distinguished External Reviewer: Dr. Jonathan Cagan, Carnegie Mellon University ABSTRACT The need for designing lighter and more compact systems often leaves limited space for planning routes for the connectors that enable interactions among the system’s components. Finding optimal routes for these connectors in a densely populated environment left behind at the detail design stage has been a challenging problem for decades. A variety of deterministic as well as heuristic methods has been developed to address different instances of this problem. While the focus of the deterministic methods is primarily on the optimality of the final solution, the heuristics offer acceptable solutions, especially for such problems, in a reasonable amount of time without guaranteeing to find optimal solutions.