Fundamental Data Structures Zuyd Hogeschool, ICT Contents

Total Page:16

File Type:pdf, Size:1020Kb

Fundamental Data Structures Zuyd Hogeschool, ICT Contents Fundamental Data Structures Zuyd Hogeschool, ICT Contents 1 Introduction 1 1.1 Abstract data type ........................................... 1 1.1.1 Examples ........................................... 1 1.1.2 Introduction .......................................... 2 1.1.3 Defining an abstract data type ................................. 2 1.1.4 Advantages of abstract data typing .............................. 5 1.1.5 Typical operations ...................................... 5 1.1.6 Examples ........................................... 6 1.1.7 Implementation ........................................ 7 1.1.8 See also ............................................ 8 1.1.9 Notes ............................................. 8 1.1.10 References .......................................... 8 1.1.11 Further ............................................ 9 1.1.12 External links ......................................... 9 1.2 Data structure ............................................. 9 1.2.1 Overview ........................................... 10 1.2.2 Examples ........................................... 10 1.2.3 Language support ....................................... 11 1.2.4 See also ............................................ 11 1.2.5 References .......................................... 11 1.2.6 Further reading ........................................ 11 1.2.7 External links ......................................... 12 2 Sequences 13 2.1 Array data type ............................................ 13 2.1.1 History ............................................ 13 2.1.2 Abstract arrays ........................................ 14 2.1.3 Implementations ....................................... 14 2.1.4 Language support ....................................... 14 2.1.5 See also ............................................ 17 2.1.6 References .......................................... 17 2.1.7 External links ......................................... 18 2.2 Array data structure .......................................... 18 i ii CONTENTS 2.2.1 History ............................................ 18 2.2.2 Applications .......................................... 19 2.2.3 Element identifier and addressing formulas .......................... 19 2.2.4 Efficiency ........................................... 21 2.2.5 Dimension ........................................... 22 2.2.6 See also ............................................ 23 2.2.7 References .......................................... 23 2.3 Dynamic array ............................................. 24 2.3.1 Bounded-size dynamic arrays and capacity .......................... 25 2.3.2 Geometric expansion and amortized cost ........................... 25 2.3.3 Growth factor ........................................ 25 2.3.4 Performance ......................................... 25 2.3.5 Variants ........................................... 26 2.3.6 Language support ....................................... 26 2.3.7 References .......................................... 26 2.3.8 External links ......................................... 27 2.4 Linked list ............................................... 27 2.4.1 Advantages .......................................... 28 2.4.2 Disadvantages ......................................... 28 2.4.3 History ............................................ 28 2.4.4 Basic concepts and nomenclature ............................... 29 2.4.5 Tradeoffs ........................................... 31 2.4.6 Linked list operations ..................................... 33 2.4.7 Linked lists using arrays of nodes ............................... 35 2.4.8 Language support ....................................... 36 2.4.9 Internal and external storage ................................. 36 2.4.10 Related data structures .................................... 37 2.4.11 Notes ............................................. 38 2.4.12 Footnotes ........................................... 38 2.4.13 References .......................................... 38 2.4.14 External links ......................................... 39 2.5 Doubly linked list ........................................... 39 2.5.1 Nomenclature and implementation .............................. 40 2.5.2 Basic algorithms ....................................... 40 2.5.3 Advanced concepts ...................................... 43 2.5.4 See also ............................................ 43 2.5.5 References .......................................... 43 2.6 Stack (abstract data type) ....................................... 43 2.6.1 History ............................................ 44 2.6.2 Non-essential operations ................................... 44 2.6.3 Software stacks ........................................ 44 CONTENTS iii 2.6.4 Hardware stacks ........................................ 46 2.6.5 Applications .......................................... 48 2.6.6 Security ............................................ 49 2.6.7 See also ............................................ 50 2.6.8 References .......................................... 50 2.6.9 Further reading ........................................ 51 2.6.10 External links ......................................... 51 2.7 Queue (abstract data type) ....................................... 51 2.7.1 Queue implementation .................................... 52 2.7.2 Purely functional implementation ............................... 53 2.7.3 See also ............................................ 53 2.7.4 References .......................................... 53 2.7.5 External links ......................................... 54 2.8 Double-ended queue .......................................... 54 2.8.1 Naming conventions ..................................... 54 2.8.2 Distinctions and sub-types .................................. 54 2.8.3 Operations .......................................... 55 2.8.4 Implementations ....................................... 55 2.8.5 Language support ....................................... 56 2.8.6 Complexity .......................................... 56 2.8.7 Applications ......................................... 57 2.8.8 See also ............................................ 57 2.8.9 References .......................................... 57 2.8.10 External links ......................................... 57 2.9 Circular buffer ............................................. 57 2.9.1 Uses .............................................. 58 2.9.2 How it works ......................................... 59 2.9.3 Circular buffer mechanics ................................... 60 2.9.4 Optimization ......................................... 61 2.9.5 Fixed-length-element and contiguous-block circular buffer ................. 61 2.9.6 External links ......................................... 61 3 Dictionaries 62 3.1 Associative array ........................................... 62 3.1.1 Operations .......................................... 62 3.1.2 Example ............................................ 63 3.1.3 Implementation ........................................ 63 3.1.4 Language support ....................................... 65 3.1.5 Permanent storage ...................................... 65 3.1.6 See also ............................................ 66 3.1.7 References .......................................... 66 3.1.8 External links ......................................... 66 iv CONTENTS 3.2 Association list ............................................ 66 3.2.1 Operation ........................................... 67 3.2.2 Performance ......................................... 67 3.2.3 Applications and software libraries .............................. 67 3.2.4 See also ............................................ 67 3.2.5 References .......................................... 67 3.3 Hash table ............................................... 68 3.3.1 Hashing ............................................ 69 3.3.2 Key statistics ......................................... 70 3.3.3 Collision resolution ...................................... 70 3.3.4 Dynamic resizing ....................................... 75 3.3.5 Performance analysis ..................................... 77 3.3.6 Features ............................................ 77 3.3.7 Uses .............................................. 78 3.3.8 Implementations ....................................... 79 3.3.9 History ............................................ 80 3.3.10 See also ............................................ 80 3.3.11 References .......................................... 80 3.3.12 Further reading ........................................ 81 3.3.13 External links ......................................... 82 3.4 Hash function ............................................. 82 3.4.1 Uses ............................................. 82 3.4.2 Properties .......................................... 85 3.4.3 Hash function algorithms ................................... 87 3.4.4 Locality-sensitive hashing .................................. 91 3.4.5 Origins of the term ...................................... 91 3.4.6 List of hash functions ..................................... 91 3.4.7 See also ............................................ 92 3.4.8 References .......................................... 93 3.4.9 External links ......................................... 93 4 Sets 94 4.1 Set (abstract data type) ........................................ 94 4.1.1 Type theory .......................................... 94 4.1.2 Operations
Recommended publications
  • Programming for Engineers Pointers in C Programming: Part 02
    Programming For Engineers Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff1, Ahmad Fakhri Ab. Nasir2 Faculty of Manufacturing Engineering [email protected], [email protected] PFE – Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir 0.0 Chapter’s Information • Expected Outcomes – To further use pointers in C programming • Contents 1.0 Pointer and Array 2.0 Pointer and String 3.0 Pointer and dynamic memory allocation PFE – Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir 1.0 Pointer and Array • We will review array data type first and later we will relate array with pointer. • Previously, we learn about basic data types such as integer, character and floating numbers. In C programming language, if we have 5 test scores and would like to average the scores, we may code in the following way. PFE – Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir 1.0 Pointer and Array PFE – Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab. Nasir 1.0 Pointer and Array • This program is manageable if the scores are only 5. What should we do if we have 100,000 scores? In such case, we need an efficient way to represent a collection of similar data type1. In C programming, we usually use array. • Array is a fixed-size sequence of elements of the same data type.1 • In C programming, we declare an array like the following statement: PFE – Pointers in C Programming: Part 02 by Wan Azhar Wan Yusoff and Ahmad Fakhri Ab.
    [Show full text]
  • C Programming: Data Structures and Algorithms
    C Programming: Data Structures and Algorithms An introduction to elementary programming concepts in C Jack Straub, Instructor Version 2.07 DRAFT C Programming: Data Structures and Algorithms, Version 2.07 DRAFT C Programming: Data Structures and Algorithms Version 2.07 DRAFT Copyright © 1996 through 2006 by Jack Straub ii 08/12/08 C Programming: Data Structures and Algorithms, Version 2.07 DRAFT Table of Contents COURSE OVERVIEW ........................................................................................ IX 1. BASICS.................................................................................................... 13 1.1 Objectives ...................................................................................................................................... 13 1.2 Typedef .......................................................................................................................................... 13 1.2.1 Typedef and Portability ............................................................................................................. 13 1.2.2 Typedef and Structures .............................................................................................................. 14 1.2.3 Typedef and Functions .............................................................................................................. 14 1.3 Pointers and Arrays ..................................................................................................................... 16 1.4 Dynamic Memory Allocation .....................................................................................................
    [Show full text]
  • R from a Programmer's Perspective Accompanying Manual for an R Course Held by M
    DSMZ R programming course R from a programmer's perspective Accompanying manual for an R course held by M. Göker at the DSMZ, 11/05/2012 & 25/05/2012. Slightly improved version, 10/09/2012. This document is distributed under the CC BY 3.0 license. See http://creativecommons.org/licenses/by/3.0 for details. Introduction The purpose of this course is to cover aspects of R programming that are either unlikely to be covered elsewhere or likely to be surprising for programmers who have worked with other languages. The course thus tries not be comprehensive but sort of complementary to other sources of information. Also, the material needed to by compiled in short time and perhaps suffers from important omissions. For the same reason, potential participants should not expect a fully fleshed out presentation but a combination of a text-only document (this one) with example code comprising the solutions of the exercises. The topics covered include R's general features as a programming language, a recapitulation of R's type system, advanced coding of functions, error handling, the use of attributes in R, object-oriented programming in the S3 system, and constructing R packages (in this order). The expected audience comprises R users whose own code largely consists of self-written functions, as well as programmers who are fluent in other languages and have some experience with R. Interactive users of R without programming experience elsewhere are unlikely to benefit from this course because quite a few programming skills cannot be covered here but have to be presupposed.
    [Show full text]
  • An Efficient Evolutionary Algorithm for Solving Incrementally Structured
    An Efficient Evolutionary Algorithm for Solving Incrementally Structured Problems Jason Ansel Maciej Pacula Saman Amarasinghe Una-May O'Reilly MIT - CSAIL July 14, 2011 Jason Ansel (MIT) PetaBricks July 14, 2011 1 / 30 Our goal is to make programs run faster We use evolutionary algorithms to search for faster programs The PetaBricks language defines search spaces of algorithmic choices Who are we? I do research in programming languages (PL) and compilers The PetaBricks language is a collaboration between: A PL / compiler research group A evolutionary algorithms research group A applied mathematics research group Jason Ansel (MIT) PetaBricks July 14, 2011 2 / 30 The PetaBricks language defines search spaces of algorithmic choices Who are we? I do research in programming languages (PL) and compilers The PetaBricks language is a collaboration between: A PL / compiler research group A evolutionary algorithms research group A applied mathematics research group Our goal is to make programs run faster We use evolutionary algorithms to search for faster programs Jason Ansel (MIT) PetaBricks July 14, 2011 2 / 30 Who are we? I do research in programming languages (PL) and compilers The PetaBricks language is a collaboration between: A PL / compiler research group A evolutionary algorithms research group A applied mathematics research group Our goal is to make programs run faster We use evolutionary algorithms to search for faster programs The PetaBricks language defines search spaces of algorithmic choices Jason Ansel (MIT) PetaBricks July 14, 2011
    [Show full text]
  • Data Structures and Algorithms Binary Heaps (S&W 2.4)
    Data structures and algorithms DAT038/TDA417, LP2 2019 Lecture 12, 2019-12-02 Binary heaps (S&W 2.4) Some slides by Sedgewick & Wayne Collections A collection is a data type that stores groups of items. stack Push, Pop linked list, resizing array queue Enqueue, Dequeue linked list, resizing array symbol table Put, Get, Delete BST, hash table, trie, TST set Add, ontains, Delete BST, hash table, trie, TST A priority queue is another kind of collection. “ Show me your code and conceal your data structures, and I shall continue to be mystified. Show me your data structures, and I won't usually need your code; it'll be obvious.” — Fred Brooks 2 Priority queues Collections. Can add and remove items. Stack. Add item; remove the item most recently added. Queue. Add item; remove the item least recently added. Min priority queue. Add item; remove the smallest item. Max priority queue. Add item; remove the largest item. return contents contents operation argument value size (unordered) (ordered) insert P 1 P P insert Q 2 P Q P Q insert E 3 P Q E E P Q remove max Q 2 P E E P insert X 3 P E X E P X insert A 4 P E X A A E P X insert M 5 P E X A M A E M P X remove max X 4 P E M A A E M P insert P 5 P E M A P A E M P P insert L 6 P E M A P L A E L M P P insert E 7 P E M A P L E A E E L M P P remove max P 6 E M A P L E A E E L M P A sequence of operations on a priority queue 3 Priority queue API Requirement.
    [Show full text]
  • Data Structure
    EDUSAT LEARNING RESOURCE MATERIAL ON DATA STRUCTURE (For 3rd Semester CSE & IT) Contributors : 1. Er. Subhanga Kishore Das, Sr. Lect CSE 2. Mrs. Pranati Pattanaik, Lect CSE 3. Mrs. Swetalina Das, Lect CA 4. Mrs Manisha Rath, Lect CA 5. Er. Dillip Kumar Mishra, Lect 6. Ms. Supriti Mohapatra, Lect 7. Ms Soma Paikaray, Lect Copy Right DTE&T,Odisha Page 1 Data Structure (Syllabus) Semester & Branch: 3rd sem CSE/IT Teachers Assessment : 10 Marks Theory: 4 Periods per Week Class Test : 20 Marks Total Periods: 60 Periods per Semester End Semester Exam : 70 Marks Examination: 3 Hours TOTAL MARKS : 100 Marks Objective : The effectiveness of implementation of any application in computer mainly depends on the that how effectively its information can be stored in the computer. For this purpose various -structures are used. This paper will expose the students to various fundamentals structures arrays, stacks, queues, trees etc. It will also expose the students to some fundamental, I/0 manipulation techniques like sorting, searching etc 1.0 INTRODUCTION: 04 1.1 Explain Data, Information, data types 1.2 Define data structure & Explain different operations 1.3 Explain Abstract data types 1.4 Discuss Algorithm & its complexity 1.5 Explain Time, space tradeoff 2.0 STRING PROCESSING 03 2.1 Explain Basic Terminology, Storing Strings 2.2 State Character Data Type, 2.3 Discuss String Operations 3.0 ARRAYS 07 3.1 Give Introduction about array, 3.2 Discuss Linear arrays, representation of linear array In memory 3.3 Explain traversing linear arrays, inserting & deleting elements 3.4 Discuss multidimensional arrays, representation of two dimensional arrays in memory (row major order & column major order), and pointers 3.5 Explain sparse matrices.
    [Show full text]
  • Parallel Functional Programming with APL
    Parallel Functional Programming, APL Lecture 1 Parallel Functional Programming with APL Martin Elsman Department of Computer Science University of Copenhagen DIKU December 19, 2016 Martin Elsman (DIKU) Parallel Functional Programming, APL Lecture 1 December 19, 2016 1 / 18 Outline 1 Outline Course Outline 2 Introduction to APL What is APL APL Implementations and Material APL Scalar Operations APL (1-Dimensional) Vector Computations Declaring APL Functions (dfns) APL Multi-Dimensional Arrays Iterations Declaring APL Operators Function Trains Examples Reading Martin Elsman (DIKU) Parallel Functional Programming, APL Lecture 1 December 19, 2016 2 / 18 Outline Course Outline Teachers Martin Elsman (ME), Ken Friis Larsen (KFL), Andrzej Filinski (AF), and Troels Henriksen (TH) Location Lectures in Small Aud, Universitetsparken 1 (UP1); Labs in Old Library, UP1 Course Description See http://kurser.ku.dk/course/ndak14009u/2016-2017 Course Outline Week 47 48 49 50 51 1–3 Mon 13–15 Intro, Futhark Parallel SNESL APL (ME) Project Futhark (ME) Haskell (AF) (ME) (KFL) Mon 15–17 Lab Lab Lab Lab Project Wed 13–15 Futhark Parallel SNESL Invited APL Project (ME) Haskell (AF) Lecture (ME) / (KFL) (John Projects Reppy) Martin Elsman (DIKU) Parallel Functional Programming, APL Lecture 1 December 19, 2016 3 / 18 Introduction to APL What is APL APL—An Ancient Array Programming Language—But Still Used! Pioneered by Ken E. Iverson in the 1960’s. E. Dijkstra: “APL is a mistake, carried through to perfection.” There are quite a few APL programmers around (e.g., HIPERFIT partners). Very concise notation for expressing array operations. Has a large set of functional, essentially parallel, multi- dimensional, second-order array combinators.
    [Show full text]
  • Full Functional Verification of Linked Data Structures
    Full Functional Verification of Linked Data Structures Karen Zee Viktor Kuncak Martin C. Rinard MIT CSAIL, Cambridge, MA, USA EPFL, I&C, Lausanne, Switzerland MIT CSAIL, Cambridge, MA, USA ∗ [email protected] viktor.kuncak@epfl.ch [email protected] Abstract 1. Introduction We present the first verification of full functional correctness for Linked data structures such as lists, trees, graphs, and hash tables a range of linked data structure implementations, including muta- are pervasive in modern software systems. But because of phenom- ble lists, trees, graphs, and hash tables. Specifically, we present the ena such as aliasing and indirection, it has been a challenge to de- use of the Jahob verification system to verify formal specifications, velop automated reasoning systems that are capable of proving im- written in classical higher-order logic, that completely capture the portant correctness properties of such data structures. desired behavior of the Java data structure implementations (with the exception of properties involving execution time and/or mem- 1.1 Background ory consumption). Given that the desired correctness properties in- In principle, standard specification and verification approaches clude intractable constructs such as quantifiers, transitive closure, should work for linked data structure implementations. But in prac- and lambda abstraction, it is a challenge to successfully prove the tice, many of the desired correctness properties involve logical generated verification conditions. constructs such transitive closure and
    [Show full text]
  • Priority Queues and Binary Heaps Chapter 6.5
    Priority Queues and Binary Heaps Chapter 6.5 1 Some animals are more equal than others • A queue is a FIFO data structure • the first element in is the first element out • which of course means the last one in is the last one out • But sometimes we want to sort of have a queue but we want to order items according to some characteristic the item has. 107 - Trees 2 Priorities • We call the ordering characteristic the priority. • When we pull something from this “queue” we always get the element with the best priority (sometimes best means lowest). • It is really common in Operating Systems to use priority to schedule when something happens. e.g. • the most important process should run before a process which isn’t so important • data off disk should be retrieved for more important processes first 107 - Trees 3 Priority Queue • A priority queue always produces the element with the best priority when queried. • You can do this in many ways • keep the list sorted • or search the list for the minimum value (if like the textbook - and Unix actually - you take the smallest value to be the best) • You should be able to estimate the Big O values for implementations like this. e.g. O(n) for choosing the minimum value of an unsorted list. • There is a clever data structure which allows all operations on a priority queue to be done in O(log n). 107 - Trees 4 Binary Heap Actually binary min heap • Shape property - a complete binary tree - all levels except the last full.
    [Show full text]
  • Advanced Data Structures
    Advanced Data Structures PETER BRASS City College of New York CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521880374 © Peter Brass 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2008 ISBN-13 978-0-511-43685-7 eBook (EBL) ISBN-13 978-0-521-88037-4 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface page xi 1 Elementary Structures 1 1.1 Stack 1 1.2 Queue 8 1.3 Double-Ended Queue 16 1.4 Dynamical Allocation of Nodes 16 1.5 Shadow Copies of Array-Based Structures 18 2 Search Trees 23 2.1 Two Models of Search Trees 23 2.2 General Properties and Transformations 26 2.3 Height of a Search Tree 29 2.4 Basic Find, Insert, and Delete 31 2.5ReturningfromLeaftoRoot35 2.6 Dealing with Nonunique Keys 37 2.7 Queries for the Keys in an Interval 38 2.8 Building Optimal Search Trees 40 2.9 Converting Trees into Lists 47 2.10
    [Show full text]
  • Programmer's Guide
    Programmer’s Guide Release 2.2.0 January 16, 2016 CONTENTS 1 Introduction 1 1.1 Documentation Roadmap...............................1 1.2 Related Publications..................................2 2 Overview 3 2.1 Development Environment..............................3 2.2 Environment Abstraction Layer............................4 2.3 Core Components...................................4 2.4 Ethernet* Poll Mode Driver Architecture.......................6 2.5 Packet Forwarding Algorithm Support........................6 2.6 librte_net........................................6 3 Environment Abstraction Layer7 3.1 EAL in a Linux-userland Execution Environment..................7 3.2 Memory Segments and Memory Zones (memzone)................ 11 3.3 Multiple pthread.................................... 12 3.4 Malloc.......................................... 14 4 Ring Library 19 4.1 References for Ring Implementation in FreeBSD*................. 20 4.2 Lockless Ring Buffer in Linux*............................ 20 4.3 Additional Features.................................. 20 4.4 Use Cases....................................... 21 4.5 Anatomy of a Ring Buffer............................... 21 4.6 References....................................... 28 5 Mempool Library 31 5.1 Cookies......................................... 31 5.2 Stats.......................................... 31 5.3 Memory Alignment Constraints............................ 31 5.4 Local Cache...................................... 32 5.5 Use Cases....................................... 33 6
    [Show full text]
  • Podcast Ch23a
    Podcast Ch23a • Title: Bit Arrays • Description: Overview; bit operations in Java; BitArray class • Participants: Barry Kurtz (instructor); John Helfert and Tobie Williams (students) • Textbook: Data Structures for Java; William H. Ford and William R. Topp Bit Arrays • Applications such as compiler code generation and compression algorithms create data that includes specific sequences of bits. – Many applications, such as compilers, generate specific sequences of bits. Bit Arrays (continued) • Java binary bit handling operators |, &, and ^ act on pairs of bits and return the new value. The unary operator ~ inverts the bits of its operand. BitBit OperationsOperations x y ~x x | y x & y x ^ y 0 0 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 Bit Arrays (continued) Bit Arrays (continued) • Operator << shifts integer or char values to the left. Operators >> and >>> shift values to the right using signed or unsigned arithmetic, respectively. Assume x and y are 32-bit integers. x = 0...10110110 x << 2 = 0...1011011000 x = 101...11011100 x >> 3 = 111101...11011 x = 101...11011100 x >>> 3 = 000101...11011 Bit Arrays (continued) Before performing the bitwise operator |, &, or ^, Java performs binary numeric promotion on the operands. The type of the bitwise operator expression is the promoted type of the operands. The rules of promotion are as follows: • If either operand is of type long, the other is converted to long. • Otherwise, both operands are converted to type int. In the case of the unary operator ~, Java converts a byte, char, short to int before applying the operator, and the resulting value is an int.
    [Show full text]