Amortized Complexity Verified
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
C Programming: Data Structures and Algorithms
C Programming: Data Structures and Algorithms An introduction to elementary programming concepts in C Jack Straub, Instructor Version 2.07 DRAFT C Programming: Data Structures and Algorithms, Version 2.07 DRAFT C Programming: Data Structures and Algorithms Version 2.07 DRAFT Copyright © 1996 through 2006 by Jack Straub ii 08/12/08 C Programming: Data Structures and Algorithms, Version 2.07 DRAFT Table of Contents COURSE OVERVIEW ........................................................................................ IX 1. BASICS.................................................................................................... 13 1.1 Objectives ...................................................................................................................................... 13 1.2 Typedef .......................................................................................................................................... 13 1.2.1 Typedef and Portability ............................................................................................................. 13 1.2.2 Typedef and Structures .............................................................................................................. 14 1.2.3 Typedef and Functions .............................................................................................................. 14 1.3 Pointers and Arrays ..................................................................................................................... 16 1.4 Dynamic Memory Allocation ..................................................................................................... -
Lecture 04 Linear Structures Sort
Algorithmics (6EAP) MTAT.03.238 Linear structures, sorting, searching, etc Jaak Vilo 2018 Fall Jaak Vilo 1 Big-Oh notation classes Class Informal Intuition Analogy f(n) ∈ ο ( g(n) ) f is dominated by g Strictly below < f(n) ∈ O( g(n) ) Bounded from above Upper bound ≤ f(n) ∈ Θ( g(n) ) Bounded from “equal to” = above and below f(n) ∈ Ω( g(n) ) Bounded from below Lower bound ≥ f(n) ∈ ω( g(n) ) f dominates g Strictly above > Conclusions • Algorithm complexity deals with the behavior in the long-term – worst case -- typical – average case -- quite hard – best case -- bogus, cheating • In practice, long-term sometimes not necessary – E.g. for sorting 20 elements, you dont need fancy algorithms… Linear, sequential, ordered, list … Memory, disk, tape etc – is an ordered sequentially addressed media. Physical ordered list ~ array • Memory /address/ – Garbage collection • Files (character/byte list/lines in text file,…) • Disk – Disk fragmentation Linear data structures: Arrays • Array • Hashed array tree • Bidirectional map • Heightmap • Bit array • Lookup table • Bit field • Matrix • Bitboard • Parallel array • Bitmap • Sorted array • Circular buffer • Sparse array • Control table • Sparse matrix • Image • Iliffe vector • Dynamic array • Variable-length array • Gap buffer Linear data structures: Lists • Doubly linked list • Array list • Xor linked list • Linked list • Zipper • Self-organizing list • Doubly connected edge • Skip list list • Unrolled linked list • Difference list • VList Lists: Array 0 1 size MAX_SIZE-1 3 6 7 5 2 L = int[MAX_SIZE] -
Advanced Data Structures
Advanced Data Structures PETER BRASS City College of New York CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521880374 © Peter Brass 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2008 ISBN-13 978-0-511-43685-7 eBook (EBL) ISBN-13 978-0-521-88037-4 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface page xi 1 Elementary Structures 1 1.1 Stack 1 1.2 Queue 8 1.3 Double-Ended Queue 16 1.4 Dynamical Allocation of Nodes 16 1.5 Shadow Copies of Array-Based Structures 18 2 Search Trees 23 2.1 Two Models of Search Trees 23 2.2 General Properties and Transformations 26 2.3 Height of a Search Tree 29 2.4 Basic Find, Insert, and Delete 31 2.5ReturningfromLeaftoRoot35 2.6 Dealing with Nonunique Keys 37 2.7 Queries for the Keys in an Interval 38 2.8 Building Optimal Search Trees 40 2.9 Converting Trees into Lists 47 2.10 -
Open Data Structures (In Java)
Open Data Structures (in Java) Edition 0.1G Pat Morin Contents Acknowledgments ix Why This Book? xi 1 Introduction 1 1.1 The Need for Efficiency ..................... 2 1.2 Interfaces ............................. 4 1.2.1 The Queue, Stack, and Deque Interfaces . 5 1.2.2 The List Interface: Linear Sequences . 6 1.2.3 The USet Interface: Unordered Sets .......... 8 1.2.4 The SSet Interface: Sorted Sets ............ 9 1.3 Mathematical Background ................... 9 1.3.1 Exponentials and Logarithms . 10 1.3.2 Factorials ......................... 11 1.3.3 Asymptotic Notation . 12 1.3.4 Randomization and Probability . 15 1.4 The Model of Computation ................... 18 1.5 Correctness, Time Complexity, and Space Complexity . 19 1.6 Code Samples .......................... 22 1.7 List of Data Structures ..................... 22 1.8 Discussion and Exercises .................... 26 2 Array-Based Lists 29 2.1 ArrayStack: Fast Stack Operations Using an Array . 30 2.1.1 The Basics ........................ 30 2.1.2 Growing and Shrinking . 33 2.1.3 Summary ......................... 35 Contents 2.2 FastArrayStack: An Optimized ArrayStack . 35 2.3 ArrayQueue: An Array-Based Queue . 36 2.3.1 Summary ......................... 40 2.4 ArrayDeque: Fast Deque Operations Using an Array . 40 2.4.1 Summary ......................... 43 2.5 DualArrayDeque: Building a Deque from Two Stacks . 43 2.5.1 Balancing ......................... 47 2.5.2 Summary ......................... 49 2.6 RootishArrayStack: A Space-Efficient Array Stack . 49 2.6.1 Analysis of Growing and Shrinking . 54 2.6.2 Space Usage ....................... 54 2.6.3 Summary ......................... 55 2.6.4 Computing Square Roots . 56 2.7 Discussion and Exercises ................... -
Kd Trees What's the Goal for This Course? Data St
Today’s Outline - kd trees CSE 326: Data Structures Too much light often blinds gentlemen of this sort, Seeing the forest for the trees They cannot see the forest for the trees. - Christoph Martin Wieland Hannah Tang and Brian Tjaden Summer Quarter 2002 What’s the goal for this course? Data Structures - what’s in a name? Shakespeare It is not possible for one to teach others, until one can first teach herself - Confucious • Stacks and Queues • Asymptotic analysis • Priority Queues • Sorting – Binary heap, Leftist heap, Skew heap, d - heap – Comparison based sorting, lower- • Trees bound on sorting, radix sorting – Binary search tree, AVL tree, Splay tree, B tree • World Wide Web • Hash Tables – Open and closed hashing, extendible, perfect, • Implement if you had to and universal hashing • Understand trade-offs between • Disjoint Sets various data structures/algorithms • Graphs • Know when to use and when not to – Topological sort, shortest path algorithms, Dijkstra’s algorithm, minimum spanning trees use (Prim’s algorithm and Kruskal’s algorithm) • Real world applications Range Query Range Query Example Y A range query is a search in a dictionary in which the exact key may not be entirely specified. Bellingham Seattle Spokane Range queries are the primary interface Tacoma Olympia with multi-D data structures. Pullman Yakima Walla Walla Remember Assignment #2? Give an algorithm that takes a binary search tree as input along with 2 keys, x and y, with xÃÃy, and ÃÃ ÃÃ prints all keys z in the tree such that x z y. X 1 Range Querying in 1-D -
Kernel Extensions and Device Support Programming Concepts
Bull Kernel Extensions and Device Support Programming Concepts AIX ORDER REFERENCE 86 A2 36JX 02 Bull Kernel Extensions and Device Support Programming Concepts AIX Software November 1999 BULL ELECTRONICS ANGERS CEDOC 34 Rue du Nid de Pie – BP 428 49004 ANGERS CEDEX 01 FRANCE ORDER REFERENCE 86 A2 36JX 02 The following copyright notice protects this book under the Copyright laws of the United States of America and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and making derivative works. Copyright Bull S.A. 1992, 1999 Printed in France Suggestions and criticisms concerning the form, content, and presentation of this book are invited. A form is provided at the end of this book for this purpose. To order additional copies of this book or other Bull Technical Publications, you are invited to use the Ordering Form also provided at the end of this book. Trademarks and Acknowledgements We acknowledge the right of proprietors of trademarks mentioned in this book. AIXR is a registered trademark of International Business Machines Corporation, and is being used under licence. UNIX is a registered trademark in the United States of America and other countries licensed exclusively through the Open Group. Year 2000 The product documented in this manual is Year 2000 Ready. The information in this document is subject to change without notice. Groupe Bull will not be liable for errors contained herein, or for incidental or consequential damages in connection with the use of this material. Contents Trademarks and Acknowledgements . iii 64-bit Kernel Extension Development. 23 About This Book . -
Binary Trees, Binary Search Trees
Binary Trees, Binary Search Trees www.cs.ust.hk/~huamin/ COMP171/bst.ppt Trees • Linear access time of linked lists is prohibitive – Does there exist any simple data structure for which the running time of most operations (search, insert, delete) is O(log N)? Trees • A tree is a collection of nodes – The collection can be empty – (recursive definition) If not empty, a tree consists of a distinguished node r (the root), and zero or more nonempty subtrees T1, T2, ...., Tk, each of whose roots are connected by a directed edge from r Some Terminologies • Child and parent – Every node except the root has one parent – A node can have an arbitrary number of children • Leaves – Nodes with no children • Sibling – nodes with same parent Some Terminologies • Path • Length – number of edges on the path • Depth of a node – length of the unique path from the root to that node – The depth of a tree is equal to the depth of the deepest leaf • Height of a node – length of the longest path from that node to a leaf – all leaves are at height 0 – The height of a tree is equal to the height of the root • Ancestor and descendant – Proper ancestor and proper descendant Example: UNIX Directory Binary Trees • A tree in which no node can have more than two children • The depth of an “average” binary tree is considerably smaller than N, eventhough in the worst case, the depth can be as large as N – 1. Example: Expression Trees • Leaves are operands (constants or variables) • The other nodes (internal nodes) contain operators • Will not be a binary tree if some operators are not binary Tree traversal • Used to print out the data in a tree in a certain order • Pre-order traversal – Print the data at the root – Recursively print out all data in the left subtree – Recursively print out all data in the right subtree Preorder, Postorder and Inorder • Preorder traversal – node, left, right – prefix expression • ++a*bc*+*defg Preorder, Postorder and Inorder • Postorder traversal – left, right, node – postfix expression • abc*+de*f+g*+ • Inorder traversal – left, node, right. -
Fundamental Data Structures Contents
Fundamental Data Structures Contents 1 Introduction 1 1.1 Abstract data type ........................................... 1 1.1.1 Examples ........................................... 1 1.1.2 Introduction .......................................... 2 1.1.3 Defining an abstract data type ................................. 2 1.1.4 Advantages of abstract data typing .............................. 4 1.1.5 Typical operations ...................................... 4 1.1.6 Examples ........................................... 5 1.1.7 Implementation ........................................ 5 1.1.8 See also ............................................ 6 1.1.9 Notes ............................................. 6 1.1.10 References .......................................... 6 1.1.11 Further ............................................ 7 1.1.12 External links ......................................... 7 1.2 Data structure ............................................. 7 1.2.1 Overview ........................................... 7 1.2.2 Examples ........................................... 7 1.2.3 Language support ....................................... 8 1.2.4 See also ............................................ 8 1.2.5 References .......................................... 8 1.2.6 Further reading ........................................ 8 1.2.7 External links ......................................... 9 1.3 Analysis of algorithms ......................................... 9 1.3.1 Cost models ......................................... 9 1.3.2 Run-time analysis -
Open Data Structures (In Pseudocode)
Open Data Structures (in pseudocode) Edition 0.1Gβ Pat Morin Contents Acknowledgments ix Why This Book? xi 1 Introduction 1 1.1 The Need for Efficiency ..................... 2 1.2 Interfaces ............................. 4 1.2.1 The Queue, Stack, and Deque Interfaces . 5 1.2.2 The List Interface: Linear Sequences . 6 1.2.3 The USet Interface: Unordered Sets .......... 8 1.2.4 The SSet Interface: Sorted Sets ............. 8 1.3 Mathematical Background ................... 9 1.3.1 Exponentials and Logarithms . 10 1.3.2 Factorials ......................... 11 1.3.3 Asymptotic Notation . 12 1.3.4 Randomization and Probability . 15 1.4 The Model of Computation ................... 18 1.5 Correctness, Time Complexity, and Space Complexity . 19 1.6 Code Samples .......................... 21 1.7 List of Data Structures ..................... 23 1.8 Discussion and Exercises .................... 23 2 Array-Based Lists 31 2.1 ArrayStack: Fast Stack Operations Using an Array . 32 2.1.1 The Basics ........................ 32 2.1.2 Growing and Shrinking . 35 2.1.3 Summary ......................... 37 Contents 2.2 FastArrayStack: An Optimized ArrayStack . 37 2.3 ArrayQueue: An Array-Based Queue . 38 2.3.1 Summary ......................... 41 2.4 ArrayDeque: Fast Deque Operations Using an Array . 42 2.4.1 Summary ......................... 44 2.5 DualArrayDeque: Building a Deque from Two Stacks . 44 2.5.1 Balancing ......................... 48 2.5.2 Summary ......................... 50 2.6 RootishArrayStack: A Space-Efficient Array Stack . 50 2.6.1 Analysis of Growing and Shrinking . 55 2.6.2 Space Usage ....................... 55 2.6.3 Summary ......................... 56 2.7 Discussion and Exercises .................... 57 3 Linked Lists 61 3.1 SLList: A Singly-Linked List . -
Handout 09: Suggested Project Topics
CS166 Handout 09 Spring 2021 April 13, 2021 Suggested Project Topics Here is a list of data structures and families of data structures we think you might find interesting topics for your research project. You're by no means limited to what's contained here; if you have another data structure you'd like to explore, feel free to do so! My Wish List Below is a list of topics where, each quarter, I secretly think “I hope someone wants to pick this topic this quarter!” These are data structures I’ve always wanted to learn a bit more about or that I think would be particularly fun to do a deep dive into. You are not in any way, shape, or form required to pick something from this list, and we aren’t offer- ing extra credit or anything like that if you do choose to select one of these topics. However, if any of them seem interesting to you, we’d be excited to see what you come up with over the quarter. • Bentley-Saxe dynamization (turning static data structures into dynamic data structures) • Bε-trees (a B-tree variant designed to minimize writes) • Chazelle and Guibas’s O(log n + k) 3D range search (fast range searches in 3D) • Crazy good chocolate pop tarts (deamortizing binary search trees) • Durocher’s RMQ structure (fast RMQ without the Method of Four Russians) • Dynamic prefix sum lower bounds (proving lower bounds on dynamic prefix parity) • Farach’s suffix tree algorithm (a brilliant, beautiful divide-and-conquer algorithm) • Geometric greedy trees (lower bounds on BSTs giving rise to a specific BST) • Ham sandwich trees (fast searches -
Geometric-Based Optimization Algorithms for Cable Routing and Branching in Cluttered Environments
Clemson University TigerPrints All Dissertations Dissertations August 2020 Geometric-based Optimization Algorithms for Cable Routing and Branching in Cluttered Environments Nafiseh Masoudi Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Masoudi, Nafiseh, "Geometric-based Optimization Algorithms for Cable Routing and Branching in Cluttered Environments" (2020). All Dissertations. 2702. https://tigerprints.clemson.edu/all_dissertations/2702 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. GEOMETRIC BASED OPTIMIZATION ALGORITHMS FOR CABLE ROUTING AND BRANCHING IN CLUTTERED ENVIRONMENTS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Mechanical Engineering by Nafiseh Masoudi August 2020 Accepted July 21, 2020 by: Dr. Georges M. Fadel, Committee Chair Dr. Margaret M. Wiecek Dr. Joshua D. Summers Dr. Cameron J. Turner Distinguished External Reviewer: Dr. Jonathan Cagan, Carnegie Mellon University ABSTRACT The need for designing lighter and more compact systems often leaves limited space for planning routes for the connectors that enable interactions among the system’s components. Finding optimal routes for these connectors in a densely populated environment left behind at the detail design stage has been a challenging problem for decades. A variety of deterministic as well as heuristic methods has been developed to address different instances of this problem. While the focus of the deterministic methods is primarily on the optimality of the final solution, the heuristics offer acceptable solutions, especially for such problems, in a reasonable amount of time without guaranteeing to find optimal solutions. -
1. Arrays an Array Is a Structure of Fixed-Size, Which Can Hold Items of the Same Data Type
06/03/2020 8 Common Data Structures every Programmer must know 8 Common Data Structures every Programmer must know A quick introduction to 8 commonly used data structures Vijini Mallawaarachchi Feb 28 · 10 min read Data Structures are a specialized means of organizing and storing data in computers in such a way that we can perform operations on the stored data more efficiently. Data structures have a wide and diverse scope of usage across the fields of Computer Science and Software Engineering. Data structures are being used in almost every program or software system that has been developed. Moreover, data structures come under the fundamentals of Computer Science and Software Engineering. It is a key topic when it comes to Software Engineering interview questions. Hence as developers, we must have good knowledge about data structures. In this article, I will be briefly explaining 8 commonly used data structures every programmer must know. 1. Arrays An array is a structure of fixed-size, which can hold items of the same data type. It can be an array of integers, an array of floating-point numbers, an array of strings https://towardsdatascience.com/8-common-data-structures-every-programmer-must-know-171acf6a1a42 1/13 06/03/2020 8 Common Data Structures every Programmer must know or even an array of arrays (such as 2-dimensional arrays). Arrays are indexed, meaning that random access is possible. Fig 1. Visualization of basic Terminology of Arrays Array operations Traverse: Go through the elements and print them. Search: Search for an element in the array. You can search the element by its value or its index Update: Update the value of an existing element at a given index Inserting elements to an array and deleting elements from an array cannot be done straight away as arrays are fixed in size.