Active Vehicle Suspension with Anti-Roll System Based on Advanced Sliding Mode Controller
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Schaeffler Symposium 2018
2018 Schaeffler Symposium 9/6/2018 Intelligent Active Roll Control INTELLIGENT ACTIVE ROLL CONTROL SHAUN TATE 1 2018 Schaeffler Symposium 9/6/2018 Intelligent Active Roll Control Production Experience & Awards Series Production – 12V BMW 7 Series 2015 BMW 5 Series 2017 RR Phantom 2018 Series Production – 48V Bentley Bentayga 2015 Audi SQ7 2016 Porsche Panamera 2017 Porsche Cayenne 2017 Bentley Continental 2018 Award‐Winning System German Innovation Award Vehicle Dynamics International Award Auto Test Sieger PACE Award 2016 2016 2016 2017 Feature to Product Mapping Stationary Ride Comfort Feature Adaptive Suspension Setup Agility & Stability Conditions Improvement Control Response Clearance Vertical Acceleration Exit Base Stability / Roll Leveling Acceleration Steering Products ‐ Easy Loading Easy Entry Easy Parking Adapt Ground Adapt Wheel Increase Articulation Load Reduce Acceleration Reduce Lateral Reduce Yaw Adapt Self Adapt Steering Dynamic Body Trailer iARC 2 2018 Schaeffler Symposium 9/6/2018 Intelligent Active Roll Control Market Trends & Features Trend 3: Large Trucks/SUVs/Vans for improved comfort and more safety Weight Trend 2: HEV/EV for improved comfort and system availability Vehicle Trend 1: SUV for improved comfort and agility Vehicle Center of Gravity Selling Features Using Schaeffler iARC System Feature Driving Dynamics Comfort Features ADAS Support L3 / Active Safety ‐ Roll Into m Lane Mode ‐ Self Steering Yaw Ride Stability Body Tilt Control Control Emergency Split Free Speed Road Vehicle Class ‐ Stability Active Control -
Active Suspension Control of Electric Vehicle with In-Wheel Motors
University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2018 Active suspension control of electric vehicle with in-wheel motors Xinxin Shao University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses1 University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Shao, Xinxin, Active suspension control of electric vehicle with in-wheel motors, Doctor of Philosophy thesis, School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, 2018. -
Electronic Stability Control Systems for Heavy Vehicles; Proposed Rule
Vol. 77 Wednesday, No. 100 May 23, 2012 Part III Department of Transportation National Highway Traffic Safety Administration 49 CFR Part 571 Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems for Heavy Vehicles; Proposed Rule VerDate Mar<15>2010 18:07 May 22, 2012 Jkt 226001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\23MYP2.SGM 23MYP2 mstockstill on DSK4VPTVN1PROD with PROPOSALS2 30766 Federal Register / Vol. 77, No. 100 / Wednesday, May 23, 2012 / Proposed Rules DEPARTMENT OF TRANSPORTATION New Jersey Avenue SE., West Building A. UMTRI Study Ground Floor, Room W12–140, B. Simulator Study National Highway Traffic Safety Washington, DC 20590–0001 C. NHTSA Track Testing Administration • Hand Delivery or Courier: West 1. Effects of Stability Control Systems— Phase I Building Ground Floor, Room W12–140, 49 CFR Part 571 2. Developing a Dynamic Test Maneuver 1200 New Jersey Avenue SE., between and Performance Measure To Evaluate [Docket No. NHTSA–2012–0065] 9 a.m. and 5 p.m. ET, Monday through Roll Stability—Phase II Friday, except Federal holidays. (a) Test Maneuver Development RIN 2127–AK97 • Fax: (202) 493–2251 (b) Performance Measure Development Instructions: For detailed instructions 3. Developing a Dynamic Test Maneuver Federal Motor Vehicle Safety on submitting comments and additional and Performance Measure To Evaluate Standards; Electronic Stability Control information on the rulemaking process, Yaw Stability—Phase III Systems for Heavy Vehicles see the Public Participation heading of (a) Test Maneuver Development (b) Performance Measure Development the SUPPLEMENTARY INFORMATION AGENCY: National Highway Traffic section 4. Large Bus Testing Safety Administration (NHTSA), of this document. -
Design, Analysis and Optimization of Anti-Roll Bar
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals Pravin Bharane et al. Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 9( Version 4), September 2014, pp.137-140 RESEARCH ARTICLE OPEN ACCESS Design, Analysis and Optimization of Anti-Roll Bar Pravin Bharane*, Kshitijit Tanpure**, Amit Patil***, Ganesh Kerkal**** *,**,***,****( Assistant Professor, Department of Mechanical Engg., Dnyanganga College of Engg. & Research, Pune) ABSTRACT Vehicle anti-roll bar is part of an automobile suspension system which limits body roll angle. This U-shaped metal bar connects opposite wheels together through short lever arms and is clamped to the vehicle chassis with rubber bushes. Its function is to reduce body roll while cornering, also while travelling on uneven road which enhances safety and comfort during driving. Design changes of anti-roll bars are quite common at various steps of vehicle production and a design analysis must be performed for each change. So Finite Element Analysis (FEA) can be effectively used in design analysis of anti-roll bars. The finite element analysis is performed by ANSYS. This paper includes pre-processing, analysis, post processing, and analyzing the FEA results by using APDL (Ansys Parametric Design Language). The effects of anti-roll bar design parameters on final anti-roll bar properties are also evaluated by performing sample analyses with the FEA program developed in this project. Keywords: FEA, Anti Roll Bar, APDL, Design Parameters. I. INTRODUCTION Anti-roll bar, also referred to as stabilizer or ensure directional control and stability with adequate sway bar, is a rod or tube, usually made of steel, that traction and braking capabilities [1]. -
Review on Active Suspension System
SHS Web of Conferences 49, 02008 (2018) https://doi.org/10.1051/shsconf/20184902008 ICES 2018 Review on active suspension system 2 Aizuddin Fahmi Mohd Riduan1, Noreffendy Tamaldin , Ajat Sudrajat3, and Fauzi Ahmad4 1,2,4Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka Malaysia. 1,2,4Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia. 3Engineering Physics, Faculty of Science and Technology, Universitas Nasional-Jakarta JL. Sawo Manila, Pasar Minggu, Jakarta 12520, Indonesia. Abstract. For the past decade, active suspension systems had made up most of research area concerning vehicle dynamics. For this review, recent studies on automobile active suspensions systems were examined. Several vehicular suspension types were also described to compare amongst them. From published investigations by previous researchers, various automotive suspensions in terms of cost, weight, structure, reliability, ride comfortability, dynamic and handling performance were exhibited and compared. After careful examination, it was concluded that electromagnetic active suspensions should be the general direction of vehicle suspension designs due to its energy regeneration, high bandwidth, simpler structure, flexible and accurate force control, better handling performance as well as drive characteristics. Keywords: Active Suspension, Handling Performance, Dynamic Performance 1 Introduction Vehicle suspension main task -
Anti-Roll Bar Modeling for NVH and Vehicle
Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses Tobolar,Anti-Roll Jakub and Bar Leitner, Modeling Martin and Heckmann, for NVH Andreas and Vehicle Dynamics Analyses 99 Jakub Tobolárˇ1 Martin Leitner1 Andreas Heckmann1 1German Aerospace Center (DLR), Institute of System Dynamics and Control, Wessling, [email protected] Abstract A The latest extension of the DLR FlexibleBodies Library concerns the field of automotive applications, namely the anti-roll bar. For the particular purposes of NVH and ve- hicle dynamics, the anti-roll bar module provides two ap- propriate levels of detail, both being based upon the beam preprocessor. In this paper, the procedure on preparing the models and their application for particular automotive related analyses is presented. Keywords: anti-roll bar, vehicle chassis, flexible body, beam model, finite element C S Figure 1. Vehicle axle with an anti-roll bar (color emphasized, 1 Introduction courtesy of Wikimedia Commons). Whenever an automotive suspension is excited in vertical direction due to road irregularities or driving maneuvers (Heckmann et al., 2006) provides capabilities to incorpo- in an asymmetrical way, i.e. differently on the right and rate data that originate from FE models in Modelica mod- the left side of the vehicle, the roll motion of the car body els. Thus, a tool chain to perform vehicle dynamics sim- is stimulated. This concerns – in common case – the com- ulation including the structural characteristics of anti-roll fort and driving experience of the car passengers. In limit bars is in principle available. -
Integrated Vehicle Dynamics Control Via Coordination of Active Front
Integrated vehicle dynamics control via coordination of active front steering and rear braking Moustapha Doumiati, Olivier Sename, Luc Dugard, John Jairo Martinez Molina, Peter Gaspar, Zoltan Szabo To cite this version: Moustapha Doumiati, Olivier Sename, Luc Dugard, John Jairo Martinez Molina, Peter Gaspar, et al.. Integrated vehicle dynamics control via coordination of active front steering and rear braking. European Journal of Control, Elsevier, 2013, 19 (2), pp.121-143. 10.1016/j.ejcon.2013.03.004. hal- 00759487 HAL Id: hal-00759487 https://hal.archives-ouvertes.fr/hal-00759487 Submitted on 3 Dec 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Integrated vehicle dynamics control via coordination of active front steering and rear braking Moustapha Doumiati, Olivier Sename, Luc Dugard, John Martinez,a ∗ Peter Gaspar, Zoltan Szabob aGipsa-Lab UMR CNRS 5216, Control Systems Department, 961 Rue de la Houille Blanche, 38402 Saint Martin d’Hères, France, Email: [email protected], {surname.name}@gipsa-lab.grenoble-inp.fr bComputer and Automation Research Institue, Hungarian Academy of Sciences, Kende u. 13-17, H-1111, Budapest, Hungary, Email: gaspar, [email protected] January 26, 2012 Abstract This paper investigates the coordination of active front steering and rear braking in a driver- assist system for vehicle yaw control. -
Influence of Body Stiffness on Vehicle Dynamics Characteristics In
Influence of Body Stiffness on Vehicle Dynamics Characteristics in Passenger Cars Master's thesis in Automotive Engineering OSKAR DANIELSSON ALEJANDRO GONZALEZ´ COCANA~ Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics group CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2015 Master's thesis 2015:68 MASTER'S THESIS IN AUTOMOTIVE ENGINEERING Influence of Body Stiffness on Vehicle Dynamics Characteristics in Passenger Cars OSKAR DANIELSSON ALEJANDRO GONZALEZ´ COCANA~ Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics group CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2015 Influence of Body Stiffness on Vehicle Dynamics Characteristics in Passenger Cars OSKAR DANIELSSON ALEJANDRO GONZALEZ´ COCANA~ c OSKAR DANIELSSON, ALEJANDRO GONZALEZ´ COCANA,~ 2015 Master's thesis 2015:68 ISSN 1652-8557 Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics group Chalmers University of Technology SE-412 96 G¨oteborg Sweden Telephone: +46 (0)31-772 1000 Cover: Volvo S60 model reinforced with bars for the multibody dynamics simulation tool MSC Adams Chalmers Reproservice G¨oteborg, Sweden 2015 Influence of Body Stiffness on Vehicle Dynamics Characteristics in Passenger Cars Master's thesis in Automotive Engineering OSKAR DANIELSSON ALEJANDRO GONZALEZ´ COCANA~ Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics group Chalmers University of Technology Abstract Automotive industry is a highly competitive market where details play a key role. Detecting, understanding and improving these details are needed steps in order to create sustainable cars capable of giving people a premium driving experience. Body stiffness is one of this important specifications of a passenger car which affects not only weight thus fuel consumption but also handling, steering and ride characteristics of the vehicle. -
MAE 515 Advanced Vehicle Dynamics
MAE 515 Advanced Automotive Vehicle Dynamics Course Website: https://engineeringonline.ncsu.edu/onlinecourses/coursehomepage /SPR_2018/MAE515.html This course covers advanced materials related to mathematical models and designs in automotive vehicles as multiple degrees of freedom systems to describe their dynamic behaviors in acceleration, braking, steering, rollover, aerodynamics, suspensions, tires, and drive trains. 3 credit hours. • Prerequisite Undergraduate courses in dynamics of machines (MAE 315), aerospace structures (MAE 472) or equivalent or consent of instructor. • Course Objectives A special focus of this course aims at enabling students to apply the theories they learned in mechanics, energy, structures, design, materials, dynamics, aerodynamics, vibrations, and controls to a real-world system they encounter every day. From the basic theories, this course further extends to the development in next- generation vehicle technologies. By the end of the course, the students will be able to: • Demonstrate a skill to apply basic theories to establish useful models for either the entire vehicle or components of the vehicle. • Interpret the properties of critical factors in vehicle motion control • Apply the models established from basic theories for vehicle design and improvement • Identify key components and their working principles of modern vehicles • Identify the technology improvements in vehicles in the last several decades • Identify technologies critical to next-generation vehicle designs based on literature reviews and -
COMPARATIVE STUDY of VEHICLE ROLL STABILITY Final Report
COMPARATIVE STUDY OF VEHICLE ROLL STABILITY Final Report Contract No, FH-11-9577 Phase V T.D. Gillespie R.D. Ervin May 1983 Tuluicol RwDocuumtati'm P- I. RepmNo, Z Accessim (lo. 3. Recipient's Cedmq (lo. I 4. Title d Subtitie 5. RvtDate COMPARATIVE STUDY OF VEHICLE ROLL STABILITY May 1983 6. P-mag Orqmir.ri.r, Cdr 8. Per4emiag OmdmRm No. 7. kihu's) T.D. Gillespie and R.D. Ervin UMTRI-83-25 9. Pduming Orl.niadir Nuad Mess 10. Work Uait No. The University of Michigan 1 Transportation Research Institute 2901 Baxter Road - - 7 (Phase V) Ann Arbor, Michigan 48109 13. Trr ef RW 4p.,iocl had 12 Wag4mnq Nu ad Ahss U.S. Department of Transportation Final 2118183-5/18/83 Federal Highway Administration ' Washington, D.C. 20590 1'. Srmwing Amyae 1.6. Abshct The roll stability levels of a broad range of motor vehicles were determined using computer simulation. The input data needed for these calculations were obtained from both direct measurements and from pre- viously published information. The vehicles of interest covered the range from subcompact passenger cars through heavy-duty truck combinations. The results are discussed in the light of two issues, namely: 1) the roll stability levels of step-van-type trucks used by the bakery industry relative to the stability levels of other vehicles and I 2) the influence of width parameters on the roll stability of heavy truck combinations. 17. Key Wrb roll stability, passenger I 18- D's"hM ] cars, light trucks, bakery trucks, I I heavy-duty trucks I UNLIMITED I 19. -
Active Electromagnetic Suspension System for Improved Vehicle Dynamics
Active electromagnetic suspension system for improved vehicle dynamics Citation for published version (APA): Gysen, B. L. J., Paulides, J. J. H., Janssen, J. L. G., & Lomonova, E. A. (2008). Active electromagnetic suspension system for improved vehicle dynamics. In IEEE Vehicle Power and Propulsion Conference, 2008 : VPPC '08 ; 3 - 5 Sept. 2008, Harbin, China (pp. 1-6). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/VPPC.2008.4677555 DOI: 10.1109/VPPC.2008.4677555 Document status and date: Published: 01/01/2008 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. -
Semi-Active Suspension
KYB TECHNICAL REVIEW No. 55 OCT. 2017 Glossary Semi-active Suspension Included in “The technical term used in Development of Externally-Mounted Shock Absorber with Adjustable Solenoid Damping Force” P. 25 ITO Naoki KYB TECHNICAL REVIEW editor 1 Semi-active Suspension Skyhook damper Cs (imaginary) Acceleration Speed Semi-active suspension is a type of automotive suspension systems that controls the damping force of the shock absorber in response to input from the continuously varying road surfaces. It is intended to approximately Cp: Damping coefcient of implement the active suspension (to be described later) passive damper with a damping force adjustable shock absorber Cs: Damping coefcient of Skyhook damper (hereinafter “SA”). Fcont: Controlling force M2: Sprung mass Semi-active suspension may be implemented by several M1: Unsprung mass types of control methodologies. A generally known typical K2: Suspension spring constant K1: Tire spring constant technology is Skyhook control. X0: Road surface variation X1: Unsprung variation Fig. 1 shows a Skyhook control model. An imaginary X2: Sprung variation damper (= Skyhook damper) hung from an aerial height with its end fi xed there is implemented by generating a Fig. 1 Skyhook control model force of the sprung (vehicle body) speed multiplied by the damping coeffi cient sC . A passive (= uncontrolled) damper 4th quadrant 1st quadrant (Cp), which is installed in parallel with the Skyhook damper (Cs), provides a force equivalent to the SOFT damping force of the damping force adjustable SA. When this damper model is given a random input from the road surface, the relationship between the required Contraction Expansion combined damping forces of the Skyhook and passive dampers, and the relative speed (piston speed) between the sprung and unsprung components (including tires) is Relative speed (m/s) shown in Fig.