Seed Fates of Arctomecon Californica

Total Page:16

File Type:pdf, Size:1020Kb

Seed Fates of Arctomecon Californica UNLV Retrospective Theses & Dissertations 1-1-2007 Seed fates of Arctomecon californica Laura Megill University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Megill, Laura, "Seed fates of Arctomecon californica" (2007). UNLV Retrospective Theses & Dissertations. 2129. http://dx.doi.org/10.25669/yge6-mkht This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. SEED FATES OF ARCTOMECON CALIFORNICA by Laura Megill Bachelor of Arts University of Colorado, Colorado Springs 2001 Master of Science University of Nevada, Las Vegas 2007 A thesis submitted in partial fulfillment of the requirements for Master of Science Degree in Biological Science School of Life Sciences College of Sciences Graduate College University of Nevada, Las Vegas May 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1443777 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform 1443777 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Thesis Approval uNiy The Graduate College University of Nevada, Las Vegas 26 February ,20 07 The Thesis prepared by Laura Megill Entitled Seed Fates of Arctomecon californica (Papaveraceae) is approved in partial fulfillment of the requirements for the degree of Master of Science Degree, School of Life Sciences C. Examination Committee Chair 'V— bOean of the Graduate College Examination Committee Member Examination CommiiteeiMemher zxamination Committee Member Graduate College mculty Representative 11 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT Seed Fates oi Arctomecon californica by Laura Megill Dr. Lawrence R. Walker, Examination Committee Chair Professor of Life Sciences University of Nevada, Las Vegas Seed fates were investigated for Arctomecon californica a Critically Endangered plant in the State of Nevada. This species is a short-lived rare perennial plant endemic to the Mojave Desert. Conservation plans for the species would benefit by understanding the fate of A. californica seeds from seed production, dispersal, and granivory to incorporation within the seed bank. Each year, 18% of the capsules suffered predispersal loss. The average number of seeds per capsule ranged from 87 to 99 seeds. Seed viability ranged from 87.5% to 100% per plant. Seed production was highly dependent on the number of mature capsules per plant and was used to predict seed output per plant. Dispersal from the capsule mainly by the ejection of seeds triggered by wind tended to disperse seeds away from parent plants. Once seeds reached the soil surface, ants were the main agents responsible for seed removal. The role of rodents appeared to be minimal in A. californica seed removal experiments. Examination of the potential role of seed elaiosomes in dispersal elicited variable responses from ants. The seed bank of this species was spatially heterogeneous with most seeds found either close to the surface (34%) or deep within the soil column (26%). The proportion of viable seeds tended to be highest within the 6-15 cm depth increment, suggesting the presence of a long-lived seed bank. The distribution of seeds within the seed bank with respect to viability indicated 111 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 10.5% were viable seeds while 35.6% consisted of seed fragments or decayed seeds and the rest, 53.9% were filled but non-viable seeds. IV Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS ABSTRACT................................................................................................................................. iii ACKNOWLEDGMENTS..........................................................................................................vi CHAPTER 1 INTRODUCTION...........................................................................................1 CHAPTER 2 METHODS.......................................................................................................7 Study Sites ...............................................................................................................................7 Seed Production ......................................................................................................................8 Seed Dispersal ......................................................................................................................... 8 Granivory ...............................................................................................................................10 Elaiosome...............................................................................................................................10 Seed B ank ..............................................................................................................................12 Seed Fate Model ................................................................................................................... 13 Statistical Analyses ...............................................................................................................14 CHAPTER 3 RESULTS.......................................................................................................17 Seed Production ....................................................................................................................17 Seed Dispersal .......................................................................................................................21 Granivory ...............................................................................................................................24 Elaiosome...............................................................................................................................25 Seed B ank ............................................................................................................................. 28 Seed Fate Model ...................................................................................................................29 CHAPTER 4 DISCUSSION................................................................................................ 31 Seed Production .....................................................................................................................31 Seed Dispersal ........................................................................................................................34 Granivory ................................................................................................................................38 Elaiosome................................................................................................................................40 Seed B ank .............................................................................................................................. 43 Seed Fate M odel....................................................................................................................47 Management Recommendations ......................................................................................... 48 APPENDIX I FIGURES........................................................................................................51 APPENDIX II TABLES..........................................................................................................75 BIBLIOGRAPHY.......................................................................................................................85 VITA........................................... 93 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGMENTS I would like to thank the many people who made this thesis possible. It is difficult to overstate my gratitude to my MS advisor and committee chair, Dr. Lawrence Walker. With his enthusiasm, his inspiration, his great efforts to explain things clearly and simply, and his grasp for theoretical
Recommended publications
  • Project: 2003-NPS-305-P Seed Fates of Arctomecon Californica By
    Project: 2003-NPS-305-P Seed Fates of Arctomecon californica By: Laura Megill & Dr. Lawrence Walker University of Nevada, Las Vegas Final Report Clark County Multiple Species Habitat Conservation Plan June 30, 2006 ** A copy of the finished thesis and subsequent publications will be sent upon completion. INTRODUCTION The Las Vegas bearpoppy, Arctomecon californica Torr. and Frem., is a rare herbaceous perennial endemic to the Mojave Desert that mainly inhabits gypsum outcrops. The Las Vegas bearpoppy is listed as Critically Endangered by the State of Nevada (Mistretta et al., 1995). A vital aspect of the life history of the bearpoppy that has been overlooked in previous studies is the fate of seeds. The unknown fate of the bearpoppy seeds provides an information gap in conservation management plans that is critical to plan mitigation measures (Powell and Walker 2003). Therefore, the objective of this research project is to determine the seed fates of the Las Vegas bearpoppy to further promote conservation efforts. The scope of this project follows seed fates through seed production, seed dispersal, and granivory to incorporation within the soil seed bank. In addition, seed viability testing will occur throughout the project to substantiate seed fate data. The research data will be collected from four study areas with an additional area added for soil seed bank studies traversing the natural range of the Las Vegas bearpoppy over a two-year consecutive period. The following hypotheses will be addressed in this research study: (1) Seed production corresponds to capsule size and number of rosettes. (2) Primary seed dispersal declines leptokurtically from the source.
    [Show full text]
  • Habitat Conservation Plan Washington County, Utah
    Habitat Conservation Plan Washington County, Utah Submitted by: Washington County Commission 197 East Tabernacle St. George, Utah 84770 (801) 634-5700 Submitted to: U.S. Fish and Wildlife Service Utah Field Office Lincoln Plaza, Suite 404 145 East 1300 South Salt Lake City, Utah 84115 801-524-5001 Prepared by: Washington County HCP Steering Committee and SWCA, Inc. Environmental Consultants 114 North San Francisco Street, Suite 100 Flagstaff, Arizona 86001 (800) 224-4234 December 1995 TABLE OF CONTENTS EXECUTIVE SUMMARY............................................................................................................ ix CHAPTER 1.0 INTRODUCTION .................................................................................................1 1.1 THE NEED FOR AN HCP IN WASHINGTON COUNTY ...................................1 1.2 PLAN AREA AND PROPOSED ACTIVITIES .....................................................2 1.3 THE HCP PLANNING PROCESS .........................................................................2 1.4 COORDINATION WITH THE DESERT TORTOISE RECOVERY PLAN .........9 1.5 HCP GOALS AND OBJECTIVES .........................................................................9 1.6 PROPOSED PROGRAM ......................................................................................10 1.7 IS THE DESERT TORTOISE NATIVE TO THE ST. GEORGE AREA? ..........11 CHAPTER 2.0 BIOLOGICAL PROGRAM ................................................................................13 2.1 SPECIES OF CONCERN ......................................................................................13
    [Show full text]
  • The Plant Press the ARIZONA NATIVE PLANT SOCIETY
    The Plant Press THE ARIZONA NATIVE PLANT SOCIETY Volume 36, Number 1 Summer 2013 In this Issue: Plants of the Madrean Archipelago 1-4 Floras in the Madrean Archipelago Conference 5-8 Abstracts of Botanical Papers Presented in the Madrean Archipelago Conference Southwest Coralbean (Erythrina flabelliformis). Plus 11-19 Conservation Priority Floras in the Madrean Archipelago Setting for Arizona G1 Conference and G2 Plant Species: A Regional Assessment by Thomas R. Van Devender1. Photos courtesy the author. & Our Regular Features Today the term ‘bioblitz’ is popular, meaning an intensive effort in a short period to document the diversity of animals and plants in an area. The first bioblitz in the southwestern 2 President’s Note United States was the 1848-1855 survey of the new boundary between the United States and Mexico after the Treaty of Guadalupe Hidalgo of 1848 ended the Mexican-American War. 8 Who’s Who at AZNPS The border between El Paso, Texas and the Colorado River in Arizona was surveyed in 1855- 9 & 17 Book Reviews 1856, following the Gadsden Purchase in 1853. Besides surveying and marking the border with monuments, these were expeditions that made extensive animal and plant collections, 10 Spotlight on a Native often by U.S. Army physicians. Botanists John M. Bigelow (Charphochaete bigelovii), Charles Plant C. Parry (Agave parryi), Arthur C. V. Schott (Stephanomeria schotti), Edmund K. Smith (Rhamnus smithii), George Thurber (Stenocereus thurberi), and Charles Wright (Cheilanthes wrightii) made the first systematic plant collection in the Arizona-Sonora borderlands. ©2013 Arizona Native Plant In 1892-94, Edgar A. Mearns collected 30,000 animal and plant specimens on the second Society.
    [Show full text]
  • Appendix F3 Rare Plant Survey Report
    Appendix F3 Rare Plant Survey Report Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District 626 Wilshire Boulevard Suite 1100 Los Angeles, CA 90017 213.599.4300 www.esassoc.com Oakland Olympia Petaluma Portland Sacramento San Diego San Francisco Seattle Tampa Woodland Hills D210324 TABLE OF CONTENTS Cadiz Valley Water Conservation, Recovery, and Storage Project: Rare Plant Survey Report Page Summary ............................................................................................................................... 1 Introduction ..........................................................................................................................2 Objective .......................................................................................................................... 2 Project Location and Description .....................................................................................2 Setting ................................................................................................................................... 5 Climate ............................................................................................................................. 5 Topography and Soils ......................................................................................................5
    [Show full text]
  • The Developmental and Genetic Bases of Apetaly in Bocconia Frutescens
    Arango‑Ocampo et al. EvoDevo (2016) 7:16 DOI 10.1186/s13227-016-0054-6 EvoDevo RESEARCH Open Access The developmental and genetic bases of apetaly in Bocconia frutescens (Chelidonieae: Papaveraceae) Cristina Arango‑Ocampo1, Favio González2, Juan Fernando Alzate3 and Natalia Pabón‑Mora1* Abstract Background: Bocconia and Macleaya are the only genera of the poppy family (Papaveraceae) lacking petals; how‑ ever, the developmental and genetic processes underlying such evolutionary shift have not yet been studied. Results: We studied floral development in two species of petal-less poppies Bocconia frutescens and Macleaya cordata as well as in the closely related petal-bearing Stylophorum diphyllum. We generated a floral transcriptome of B. frutescens to identify MADS-box ABCE floral organ identity genes expressed during early floral development. We performed phylogenetic analyses of these genes across Ranunculales as well as RT-PCR and qRT-PCR to assess loci- specific expression patterns. We found that petal-to-stamen homeosis in petal-less poppies occurs through distinct developmental pathways. Transcriptomic analyses of B. frutescens floral buds showed that homologs of all MADS-box genes are expressed except for the APETALA3-3 ortholog. Species-specific duplications of other ABCE genes inB. frute- scens have resulted in functional copies with expanded expression patterns than those predicted by the model. Conclusions: Petal loss in B. frutescens is likely associated with the lack of expression of AP3-3 and an expanded expression of AGAMOUS. The genetic basis of petal identity is conserved in Ranunculaceae and Papaveraceae although they have different number of AP3 paralogs and exhibit dissimilar floral groundplans.
    [Show full text]
  • Dynamics of a Dwarf Bear-Poppy (Arctomecon Humilis) Population Over a Sixteen-Year Period
    Western North American Naturalist Volume 64 Number 4 Article 8 10-29-2004 Dynamics of a dwarf bear-poppy (Arctomecon humilis) population over a sixteen-year period K. T. Harper Brigham Young University Renée Van Buren Utah Valley State College, Orem, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Harper, K. T. and Van Buren, Renée (2004) "Dynamics of a dwarf bear-poppy (Arctomecon humilis) population over a sixteen-year period," Western North American Naturalist: Vol. 64 : No. 4 , Article 8. Available at: https://scholarsarchive.byu.edu/wnan/vol64/iss4/8 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 64(4), © 2004, pp 482–491 DYNAMICS OF A DWARF BEAR-POPPY (ARCTOMECON HUMILIS) POPULATION OVER A SIXTEEN-YEAR PERIOD K.T. Harper1,2 and Renée Van Buren3 ABSTRACT.—A population of the dwarf bear-poppy (Arctomecon humilis Coville, Papaveraceae) at Red Bluff, Wash- ington County, Utah, was monitored twice annually between 1987 and 2002. This is a narrowly endemic, gypsophilous species that has been formally listed as endangered since 1979. During the 16 years of observation, density of this species has fluctuated between 3 and 1336 individuals on the 0.07-ha monitoring plot. Moderate to large recruitments of seedlings occurred in 1992, 1995, and 2001. Seedling recruitments from a large, long-lived seed bank are triggered by abundant precipitation during the February–April period.
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • IP Athos Renewable Energy Project, Plan of Development, Appendix D.2
    APPENDIX D.2 Plant Survey Memorandum Athos Memo Report To: Aspen Environmental Group From: Lehong Chow, Ironwood Consulting, Inc. Date: April 3, 2019 Re: Athos Supplemental Spring 2019 Botanical Surveys This memo report presents the methods and results for supplemental botanical surveys conducted for the Athos Solar Energy Project in March 2019 and supplements the Biological Resources Technical Report (BRTR; Ironwood 2019) which reported on field surveys conducted in 2018. BACKGROUND Botanical surveys were previously conducted in the spring and fall of 2018 for the entirety of the project site for the Athos Solar Energy Project (Athos). However, due to insufficient rain, many plant species did not germinate for proper identification during 2018 spring surveys. Fall surveys in 2018 were conducted only on a reconnaissance-level due to low levels of rain. Regional winter rainfall from the two nearest weather stations showed rainfall averaging at 0.1 inches during botanical surveys conducted in 2018 (Ironwood, 2019). In addition, gen-tie alignments have changed slightly and alternatives, access roads and spur roads have been added. PURPOSE The purpose of this survey was to survey all new additions and re-survey areas of interest including public lands (limited to portions of the gen-tie segments), parcels supporting native vegetation and habitat, and windblown sandy areas where sensitive plant species may occur. The private land parcels in current or former agricultural use were not surveyed (parcel groups A, B, C, E, and part of G). METHODS Survey Areas: The area surveyed for biological resources included the entirety of gen-tie routes (including alternates), spur roads, access roads on public land, parcels supporting native vegetation (parcel groups D and F), and areas covered by windblown sand where sensitive species may occur (portion of parcel group G).
    [Show full text]
  • Threatened, Endangered, Candidate & Proposed Plant Species of Utah
    TECHNICAL NOTE USDA - Natural Resources Conservation Service Boise, Idaho and Salt Lake City, Utah TN PLANT MATERIALS NO. 52 MARCH 2011 THREATENED, ENDANGERED, CANDIDATE & PROPOSED PLANT SPECIES OF UTAH Derek Tilley, Agronomist, NRCS, Aberdeen, Idaho Loren St. John, PMC Team Leader, NRCS, Aberdeen, Idaho Dan Ogle, Plant Materials Specialist, NRCS, Boise, Idaho Casey Burns, State Biologist, NRCS, Salt Lake City, Utah Last Chance Townsendia (Townsendia aprica). Photo by Megan Robinson. This technical note identifies the current threatened, endangered, candidate and proposed plant species listed by the U.S.D.I. Fish and Wildlife Service (USDI FWS) in Utah. Review your county list of threatened and endangered species and the Utah Division of Wildlife Resources Conservation Data Center (CDC) GIS T&E database to see if any of these species have been identified in your area of work. Additional information on these listed species can be found on the USDI FWS web site under “endangered species”. Consideration of these species during the planning process and determination of potential impacts related to scheduled work will help in the conservation of these rare plants. Contact your Plant Material Specialist, Plant Materials Center, State Biologist and Area Biologist for additional guidance on identification of these plants and NRCS responsibilities related to the Endangered Species Act. 2 Table of Contents Map of Utah Threatened, Endangered and Candidate Plant Species 4 Threatened & Endangered Species Profiles Arctomecon humilis Dwarf Bear-poppy ARHU3 6 Asclepias welshii Welsh’s Milkweed ASWE3 8 Astragalus ampullarioides Shivwits Milkvetch ASAM14 10 Astragalus desereticus Deseret Milkvetch ASDE2 12 Astragalus holmgreniorum Holmgren Milkvetch ASHO5 14 Astragalus limnocharis var.
    [Show full text]
  • Field Investigation for Blm Sensitive Rare Plant Species Within the Snake River Birds of Prey National Conservation Area, Souhwestern Idaho Interim Report, 2000
    FIELD INVESTIGATION FOR BLM SENSITIVE RARE PLANT SPECIES WITHIN THE SNAKE RIVER BIRDS OF PREY NATIONAL CONSERVATION AREA, SOUHWESTERN IDAHO INTERIM REPORT, 2000 By Michael Mancuso and Christopher Murphy Conservation Data Center March 2001 Idaho Department of Fish and Game Natural Resource Policy Bureau 600 South Walnut, P.O. Box 25 Boise, Idaho 83707 Rod Sando, Director Challenge Cost-Share Project Lower Snake River District BLM Idaho Department of Fish and Game Agreement No. DAA000203 ABSTRACT The Snake River Birds of Prey National Conservation Area (NCA) encompasses over 480,000 acres of public land along 80 miles of the Snake River in southwestern Idaho. Although the NCA is best known for its great density of nesting raptors, other biodiversity values also exist, including a diverse suite and relative abundance of rare plant species. Sixteen Bureau of Land Management (BLM) Sensitive plant species are known to occur within the NCA. In 2000, the BLM’s Lower Snake River District contracted with the Idaho Conservation Data Center to conduct a systematic field investigation for Sensitive plant species on the NCA. The project’s purpose is to provide the BLM with a conservation assessment of rare plant resources within the NCA. Field investigations in 2000 discovered a total of 51 new rare plant occurrences within the NCA. New occurrences were found for nine of the 16 target species. We also obtained updated information for 33 occurrences previously known from the study area. This report summarizes first-year results of this two-year project. An appendix contains Element Occurrence Records for all the new and updated occurrences.
    [Show full text]
  • Lake Havasu City Recommended Landscaping Plant List
    Lake Havasu City Recommended Landscaping Plant List Lake Havasu City Recommended Landscaping Plant List Disclaimer Lake Havasu City has revised the recommended landscaping plant list. This new list consists of plants that can be adapted to desert environments in the Southwestern United States. This list only contains water conscious species classified as having very low, low, and low-medium water use requirements. Species that are classified as having medium or higher water use requirements were not permitted on this list. Such water use classification is determined by the type of plant, its average size, and its water requirements compared to other plants. For example, a large tree may be classified as having low water use requirements if it requires a low amount of water compared to most other large trees. This list is not intended to restrict what plants residents choose to plant in their yards, and this list may include plant species that may not survive or prosper in certain desert microclimates such as those with lower elevations or higher temperatures. In addition, this list is not intended to be a list of the only plants allowed in the region, nor is it intended to be an exhaustive list of all desert-appropriate plants capable of surviving in the region. This list was created with the intention to help residents, businesses, and landscapers make informed decisions on which plants to landscape that are water conscious and appropriate for specific environmental conditions. Lake Havasu City does not require the use of any or all plants found on this list. List Characteristics This list is divided between trees, shrubs, groundcovers, vines, succulents and perennials.
    [Show full text]
  • Desacetylisotenulin, a Molluscicide from the Desert Plant
    Agric. Biol Chem., 48 (12), 3147-3149, 1984 3147 Note none of the NMR spectral data to explain how this structure has been reported. The AHand 13C NMRspectra were therefore recorded and analyzed (Table I). The Desacetylisotenulin, a Molluscicide lactone ring closure to C-8a concurs with the coupling from the Desert Plant patterns for 7-H, 8-H and 9-H. The aromatic solvent- Psathyrotes ramosissima induced shifts in the XH NMR (^<5=^C5D5N-^CDC13) are also compatible with the relative configuration de- picted in 2. The significant low field shift of H-ll Isao Kubo and Takeshi Matsumoto (+0.39ppm) indicates that this proton and the hydroxyl group at C-6 are syn, whereas the moderate low field shifts Division of Entomology and Parasitology, of H-7 (+0.1 ppm) and H-l (+0.09ppm) compared with College of Natural Resources, that of Me-15 (+0.14ppm) indicate that both H-7 and H- University of California, Berkeley, California 94720, U.S.A. Table I. JH and 13C NMRSpectral Data of Received May 25, 1984 Desacetylisotenulin Proton In CDC13 Carbon In C5D5N H-l 2.56(1H,ddd,2.0,2.7,10.7) £"* .jjH Desacetylisotenulin was isolated as a molluscicide from the desert plant Psathyrotes ramosissima, whose chemical H-2 7.67(1H,dd,2.0,6.0) Z" ' components* have not before been examined. We de- H-3 6.14(lH,dd,2.7,6.0) ~ *£' scribe here its spectral examination and biological activity. H-6 4.15 (1H, dd, 2.9, 6,8) ' Schistosomiasis, a parasitic disease carried by snail H-7 2.15(lH,m) " ' vectors, is one of the largest of human health problems.
    [Show full text]