Thesis Submitted for the Degree of Doctor of Philosophy University of Bath Department of Biology and Biochemistry September, 2017

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Submitted for the Degree of Doctor of Philosophy University of Bath Department of Biology and Biochemistry September, 2017 University of Bath PHD The Role of Interconversion of Scopoletin and Scopolin in Cassava Postharvest Physiological Deterioration (PPD) Fathoni, Ahmad Award date: 2017 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 The Role of Interconversion of Scopoletin and Scopolin in Cassava Postharvest Physiological Deterioration (PPD) 1 The Role of Interconversion of Scopoletin and Scopolin in Cassava Postharvest Physiological Deterioration (PPD) Ahmad Fathoni A thesis submitted for the degree of Doctor of Philosophy University of Bath Department of Biology and Biochemistry September, 2017 Copyright Attention is drawn to the fact that copyright of this thesis rests with the author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and they must not copy it or use material from it except as permitted by law or with the consent of the author. This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation. Signed………………………………….. Date…………………………….. Ahmad Fathoni i Acknowledgments All praise is due to God Almighty, Allah SWT, who has been giving me the strength and blessing throughout my life and research so that I am able to complete my PhD at Bath. I am very thankful to my mother, brothers and sisters, Angelina, Evelina and Erick for their endless love, support and prayers all the time. I would like to acknowledge the Ministry of Research and Technology and Higher Education (Kemenristekdikti), the Republic of Indonesia for the full financial support via Research and Innovation in Science and Technology Project (RISET-Pro) scholarship and Research Centre (RC) for Biotechnology-Indonesian Institute of Sciences (LIPI) for giving me the opportunity to pursue my PhD at the University of Bath. My gratitude goes to Prof. Dr. Enny Sudarmonowati, currently as Chairman of Deputy for Life Sciences, LIPI for her great support, and encouragement throughout my research career and also Dr. N. Sri Hartati, currently as Head of Plant Molecular Genetics and Biosynthetic Pathway Alteration Laboratory, RC for Biotechnology-LIPI for her support, and help. I am extremely grateful to my supervisors; Dr. John R. Beeching for his exemplary help, support, and guidance before and since I first came to Bath until I completed my thesis and Prof. Rod Scott for his best support during my study. I would like to acknowledge our collaborator from ETH, Zurich; Prof. Wilhelm Gruissem and Dr. Herve Vanderschuren for allowing me to do cassava transformation in their laboratory from May to June 2015, Dr. Ima Zainuddin for helping me through the transformation work, as well as everyone in Plant Biotechnology Lab, ETH, Zurich. I would like to thank Biochemical Society, and Departmental Travel Bursary for the travel grant, the Organizing committee for giving me partial fellowship to attend the 1st World Congress on Root and Tuber Crops (WCRTC) in China, January 2016. Again, I thank Biochemical Society for the second travel grant that had helped me to attend the International Conference on Root and Tuber ii Crops for Food Sustainability at the University of Brawijaya, Malang, Indonesia in October 2017. I would like to express my gratitude to Dr. James Doughty as the Director of Postgraduate Studies (Research), Dr. John R. Beeching and Prof. Rod Scott as the Head of Department for giving me such a great opportunity to write a proposal of the Global Challenges Research Fund (GCRF) Foundation Award for Global Agricultural and Food Systems Research to BBSRC in September 2016. I am greatly thankful to Mr. Andy Howman, the Head of International Student Recruitment, University of Bath and his team, for their tremendous help with several issues in the beginning of my study. I am most thankful to my colleagues, Dr. Shi Liu for his generous help and discussion, Dr. M.A.A. Wahab for helping me through difficult situations in the early stage of my PhD and all lab members of 4S/1.52 for their warm welcome. I thank Dr. Lidia Alhalaseh for providing me with standard scopolin and also Dr. Shaun Reeksting, Instrument Specialist, Faculty of Science for helping me with the biochemical analysis. I would like to thank Dr. Baoxiu Qi, Dr. Yaxiao Li, Dr. Ludi Wang, Dr. Julia Tratt and all lab members of 3S/1.13 for their kind help and discussion on Arabidopsis work. I would like to take this opportunity to express my thankfulness to all staff in the Department of Biology and Biochemistry, particularly teaching lab and glasshouse technician for their help. Thanks to Dr. M. Nor Hidayat, Remigius H. Wirawan and his family for tremendous help, all Indonesian students in Bath, my colleagues at LIPI and everyone who contributed to my research, and life in Bath over the last four years. iii This thesis is dedicated to my mother and my beloved one, Angelina. iv Table of Contents Acknowledgments...................................................................................... ii Table of Contents ...................................................................................... v List of Figures ........................................................................................... xi List of Tables ......................................................................................... xvii List of Abbreviations ............................................................................... xix Abstract ................................................................................................. xxii Chapter 1. Introduction and Literature Review ...........................................1 1.1. Introduction .........................................................................................2 1.1.1. Background of the thesis ..............................................................2 1.1.2. Aim of the thesis ...........................................................................5 1.1.3. Research strategies ......................................................................5 1.2. Cassava (Manihot esculenta Crantz) ..................................................6 1.2.1. Introduction ...................................................................................6 1.2.2. Taxonomy and morphology ..........................................................7 1.2.3. The origins and domestication ......................................................9 1.2.4. Importance of cassava as a crop ................................................11 1.2.5. Production and its challenges .....................................................12 1.3. Postharvest Physiological Deterioration (PPD) in cassava ................15 1.3.1. Introduction .................................................................................15 1.3.2. Physiological and biochemical responses during PPD ................17 1.3.3. Economic impact of PPD ............................................................29 1.3.4. Factors affecting PPD .................................................................30 1.3.5. Strategies to tackle PPD .............................................................31 1.4. Phenylpropanoid metabolism in higher plants ...................................35 1.5. Biosynthesis of scopoletin in cassava and its role on PPD ................37 1.6. Wound stress responses of other root and tuber crops .....................40 1.6.1. Sweet potato...............................................................................40 v 1.6.2. Yam ............................................................................................41 1.6.3. Taro (Aroids)...............................................................................41 1.6.4. Potato .........................................................................................42 1.7. Genetic transformation in cassava ....................................................43 Chapter 2. Materials and Methods ...........................................................45 2.1. Plant materials ..................................................................................46 2.1.1. Cassava .....................................................................................46 2.1.2. Friable Embryogenic Callus (FEC) of cassava ............................46 2.1.3. Cassava in vitro culture ..............................................................46 2.1.4. Arabidopsis .................................................................................46 2.2. Antibiotics for bacterial and transgenic line selection
Recommended publications
  • Scopoletin 8-Hydroxylase: a Novel Enzyme Involved in Coumarin
    bioRxiv preprint doi: https://doi.org/10.1101/197806; this version posted October 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron- 2 deficiency responses in Arabidopsis 3 4 Running title: At3g12900 encodes a scopoletin 8-hydroxylase 5 6 Joanna Siwinska1, Kinga Wcisla1, Alexandre Olry2,3, Jeremy Grosjean2,3, Alain Hehn2,3, 7 Frederic Bourgaud2,3, Andrew A. Meharg4, Manus Carey4, Ewa Lojkowska1, Anna 8 Ihnatowicz1,* 9 10 1Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of 11 Gdansk, Abrahama 58, 80-307 Gdansk, Poland 12 2Université de Lorraine, UMR 1121 Laboratoire Agronomie et Environnement Nancy- 13 Colmar, 2 avenue de la forêt de Haye 54518 Vandœuvre-lès-Nancy, France; 3INRA, UMR 14 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye 15 54518 Vandœuvre-lès-Nancy, France; 16 4Institute for Global Food Security, Queen’s University Belfast, David Keir Building, Malone 17 Road, Belfast, UK; 18 19 [email protected] 20 [email protected] 21 [email protected] 22 [email protected] 23 [email protected] 24 [email protected] 25 [email protected] 26 [email protected] 27 [email protected] 28 *Correspondence: [email protected], +48 58 523 63 30 29 30 The date of submission: 02.10.2017 31 The number of figures: 9 (Fig.
    [Show full text]
  • Morning Glory Systemically Accumulates Scopoletin And
    Morning Glory Systemically Accumulates Scopoletin and Scopolin after Interaction with Fusarium oxysporum Bun-ichi Shimizua,b,*, Hisashi Miyagawaa, Tamio Uenoa, Kanzo Sakatab, Ken Watanabec, and Kei Ogawad a Graduate School of Agriculture, Kyoto University, Kyoto 606Ð8502, Japan b Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan. Fax: +81-774-38-3229. E-mail: [email protected] c Ibaraki Agricultural Center, Ibaraki 311Ð4203, Japan d Kyushu National Agricultural Experiment Station, Kumamoto 861Ð1192, Japan * Author for correspondence and reprint requests Z. Naturforsch. 60c,83Ð90 (2005); received September 14/October 29, 2004 An isolate of non-pathogenic Fusarium, Fusarium oxysporum 101-2 (NPF), induces resis- tance in the cuttings of morning glory against Fusarium wilt caused by F. oxysporum f. sp. batatas O-17 (PF). The effect of NPF on phenylpropanoid metabolism in morning glory cuttings was studied. It was found that morning glory tissues responded to treatment with NPF bud-cell suspension (108 bud-cells/ml) with the activation of phenylalanine ammonia- lyase (PAL). PAL activity was induced faster and greater in the NPF-treated cuttings com- pared to cuttings of a distilled water control. High performance liquid chromatography analy- sis of the extract from tissues of morning glory cuttings after NPF treatment showed a quicker induction of scopoletin and scopolin synthesis than that seen in the control cuttings. PF also the induced synthesis of these compounds at 105 bud-cells/ml, but inhibited it at 108 bud- cells/ml. Possibly PF produced constituent(s) that elicited the inhibitory effect on induction of the resistance reaction.
    [Show full text]
  • Accumulation and Secretion of Coumarinolignans and Other Coumarins in Arabidopsis Thaliana Roots in Response to Iron Deficiency
    Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Abadia, Frederic Gaymard, Javier Abadia, Ana Alvarez-Fernandez To cite this version: Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Aba- dia, et al.. Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH. Frontiers in Plant Science, Frontiers, 2016, 7, pp.1711. 10.3389/fpls.2016.01711. hal-01417731 HAL Id: hal-01417731 https://hal.archives-ouvertes.fr/hal-01417731 Submitted on 15 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-07-01711 November 21, 2016 Time: 15:23 # 1 ORIGINAL RESEARCH published: 23 November 2016 doi: 10.3389/fpls.2016.01711 Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at
    [Show full text]
  • Isolated and Identified As Scopoletin (6-Methoxy-7-Hydroxycourmarin; 6-Methoxy- 7-Hydroxy-1,2-Benzopyrone)
    36 BOTANY: SKOOG AND MONTALDI PRoc. N. A. S. 22 Lake G. R., P. McCutchun, R. Van Meter, and J. C. Neel, Anal. Chem., 23, 1634 (1951). 23 Mackinney, G., J. Biol. Chem., 140, 315 (1941). 24 Hartree, B. E. F., in Modern Methods of Plant Analysis, ed. K. Paech, and M. V. Tracey (Berlin: Springer-Verlag, 1955), Vol. IV, p. 241. 25 Pharmacopeia of the United States, Fifteenth Revision (American Pharmaceutical Association, 1955), p. 186. 26 Ford, J. E., Brit. J. Nutrition, 7, 299 (1953). 27 Saltzman, B. E., Anal. Chem., 27, 284 (1955). " Galston, A. W., and S. M. Siegel, Science, 120, 1070 (1954). 29 Thimann, K. V., Amer. J. Bot., 43, 241 (1956). 30 Porter, J. W., Proc. Nutrition Soc. (Gr. Brit.), 12, 106 (1953). A UXIN-KINETIN INTERACTION REGULATING THE SCOPOLETIN AND SCOPOLIN LEVELS IN TOBACCO TISSUE CULTURES BY FOLKE SKOOG AND EDGARDO MONTALDI* DEPARTMENT OF BOTANY, UNIVERSITY OF WISCONSIN Communicated November 17, 1960 Tobacco tissue cultured in vitro has been observed to release a strongly ultra- violet fluorescent material into the agar medium. The intensity of the fluores- cence varies with the composition of the medium and the age and other conditions of the cultures. It is especially striking in the presence of high concentrations of 3- indoleacetic acid (IAA). A major fraction of the fluorescent material has been isolated and identified as scopoletin (6-methoxy-7-hydroxycourmarin; 6-methoxy- 7-hydroxy-1,2-benzopyrone). Influences of auxins and kinetin on its formation, its liberation from a glycosidic bound form, and its release into the medium will be reported.
    [Show full text]
  • PYK10 Myrosinase Reveals a Functional Coordination Between Endoplasmic Reticulum Bodies and Glucosinolates in Arabidopsis Thaliana
    The Plant Journal (2017) 89, 204–220 doi: 10.1111/tpj.13377 PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in Arabidopsis thaliana Ryohei T. Nakano1,2,3, Mariola Pislewska-Bednarek 4, Kenji Yamada5,†, Patrick P. Edger6,‡, Mado Miyahara3,§, Maki Kondo5, Christoph Bottcher€ 7,¶, Masashi Mori8, Mikio Nishimura5, Paul Schulze-Lefert1,2,*, Ikuko Hara-Nishimura3,*,#,k and Paweł Bednarek4,*,# 1Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D-50829 Koln,€ Germany, 2Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D-50829 Koln,€ Germany, 3Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan, 4Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland, 5Department of Cell Biology, National Institute of Basic Biology, Okazaki 444-8585, Japan, 6Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA, 7Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany, and 8Ishikawa Prefectural University, Nonoichi, Ishikawa 834-1213, Japan Received 29 March 2016; revised 30 August 2016; accepted 5 September 2016; published online 19 December 2016. *For correspondence (e-mails [email protected]; [email protected]; [email protected]). #These authors contributed equally to this work. †Present address: Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland. ‡Present address: Department of Horticulture, Michigan State University, East Lansing, MI, USA. §Present address: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
    [Show full text]
  • Accumulation and Secretion of Coumarinolignans and Other Coumarins in Arabidopsis Thaliana Roots in Response to Iron Deficiency at High Ph
    fpls-07-01711 November 21, 2016 Time: 15:23 # 1 ORIGINAL RESEARCH published: 23 November 2016 doi: 10.3389/fpls.2016.01711 Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH Patricia Sisó-Terraza1†, Adrián Luis-Villarroya1†, Pierre Fourcroy2‡, Jean-François Briat2, Anunciación Abadía1, Frédéric Gaymard2, Javier Abadía1 and Ana Álvarez-Fernández1* 1 Plant Stress Physiology Group, Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain, 2 Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Edited by: Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier, France Janin Riedelsberger, University of Talca, Chile Root secretion of coumarin-phenolic type compounds has been recently shown to Reviewed by: Stefano Cesco, be related to Arabidopsis thaliana tolerance to Fe deficiency at high pH. Previous Free University of Bozen-Bolzano, Italy studies revealed the identity of a few simple coumarins occurring in roots and exudates Dierk Scheel, of Fe-deficient A. thaliana plants, and left open the possible existence of other Leibniz Institute of Plant Biochemistry, Germany unknown phenolics. We used HPLC-UV/VIS/ESI-MS(TOF), HPLC/ESI-MS(ion trap) and *Correspondence: HPLC/ESI-MS(Q-TOF) to characterize (identify and quantify) phenolic-type compounds Ana Álvarez-Fernández accumulated in roots or secreted into the nutrient solution of A. thaliana plants in [email protected] response to Fe deficiency. Plants grown with or without Fe and using nutrient solutions †These authors have contributed equally to this work. buffered at pH 5.5 or 7.5 enabled to identify an array of phenolics.
    [Show full text]
  • The Age of Coumarins in Plant–Microbe Interactions Pca Issue Special Ioannis A
    The Age of Coumarins in Plant–Microbe Interactions Special Issue Ioannis A. Stringlis *, Ronnie de Jonge and Corne´ M. J. Pieterse Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands *Corresponding author: E-mail, [email protected]; Fax,+31 30 253 2837. (Received February 9, 2019; Accepted April 23, 2019) Coumarins are a family of plant-derived secondary metab- For example, the cell wall-fortifying compounds lignin, cutin olites that are produced via the phenylpropanoid pathway. and suberin form structural barriers that inhibit pathogen in- In the past decade, coumarins have emerged as iron-mobi- vasion (Doblas et al. 2017). Other phenylpropanoid derivatives – Review lizing compounds that are secreted by plant roots and aid in such as flavonoids, anthocyanins and tannins participate in iron uptake from iron-deprived soils. Members of the cou- other aspects of environmental stress adaptation, or in plant marin family are found in many plant species. Besides their growth and physiology (Vogt 2010). More specifically, flavon- role in iron uptake, coumarins have been extensively studied oids emerged as important mediators of the chemical commu- for their potential to fight infections in both plants and nication between leguminous plants and beneficial nitrogen- animals. Coumarin activities range from antimicrobial and fixing rhizobia. In this mutualistic interaction, root-secreted fla- antiviral to anticoagulant and anticancer. In recent years, vonoids act as chemoattractants for rhizobia and activate genes studies in the model plant species tobacco and required for nodulation, which established the initial paradigm Arabidopsis have significantly increased our understanding for the role phenylpropanoid-derived metabolites in beneficial of coumarin biosynthesis, accumulation, secretion, chemical plant–microbe interactions (Fisher and Long 1992, Phillips modification and their modes of action against plant patho- 1992).
    [Show full text]
  • Identification of Qtls Affecting Scopolin and Scopoletin
    Identification of QTLs affecting scopolin and scopoletin biosynthesis in Arabidopsis thaliana Joanna Siwinska, Leszek Kadzinski, Rafal Banasiuk, Anna Gwizdek-Wisniewska, Alexandre Olry, Bogdan Banecki, Ewa Lojkowska, Anna Ihnatowicz To cite this version: Joanna Siwinska, Leszek Kadzinski, Rafal Banasiuk, Anna Gwizdek-Wisniewska, Alexandre Olry, et al.. Identification of QTLs affecting scopolin and scopoletin biosynthesis in Arabidopsis thaliana. BMC Plant Biology, BioMed Central, 2014, 14, 10.1186/s12870-014-0280-9. hal-01477746 HAL Id: hal-01477746 https://hal.univ-lorraine.fr/hal-01477746 Submitted on 10 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Siwinska et al. BMC Plant Biology 2014, 14:280 http://www.biomedcentral.com/1471-2229/14/280 RESEARCH ARTICLE Open Access Identification of QTLs affecting scopolin and scopoletin biosynthesis in Arabidopsis thaliana Joanna Siwinska1, Leszek Kadzinski1, Rafal Banasiuk1, Anna Gwizdek-Wisniewska1, Alexandre Olry2,3, Bogdan Banecki1, Ewa Lojkowska1 and Anna Ihnatowicz1* Abstract Background: Scopoletin and its glucoside scopolin are important secondary metabolites synthesized in plants as a defense mechanism against various environmental stresses. They belong to coumarins, a class of phytochemicals with significant biological activities that is widely used in medical application and cosmetics industry.
    [Show full text]
  • Two Glucosides of Coumarin Derivatives in Sweet Potato Roots Infected by Ceratocystis Fimbriata by Takao MINAMIKAWA, TAKASHI
    [Agr. Biol. Chem., Vol. 28, No. 4, p. 230•`233, 1964] Two Glucosides of Coumarin Derivatives in Sweet Potato Roots Infected by Ceratocystis Fimbriata By Takao MINAMIKAWA,TAKASHI AKAZAWA and IKUZO URITANI Laboratoryof BiochemistryNagoya University, Anjo, Aichi ReceivedJanuary 13, 1964 Two glucosides of coumarin derivatives were separated from sweet potato roots with black rot, by the combination of silica gel-coated thin layer chromatography and paper chromatography, and identified with skimmin and scopolin. The magnitude of synthesis of both bound coumarins was lower than that of the corresponding free coumarins, whereas they were detectable in neither cut nor fresh root tissues. sues7). During the course of this work, we INTRODUCTION also tried to find out whether or not the Several workers have reported the produc fungus infection would induce the produc tion of coumarins in plant tissues infected by tion of the bound forms of the respective pathogenic microorganisms1•`4) Post-infec coumarins in the root tissues. Hughes and tion synthesis of umbelliferone (7-hydroxy- Swain4) reported that about 25-fold increase coumarin) and scopoletin (6-methoxy-7-hy of scopolin (scopoletin-7-ƒÀ-glucoside) was in droxycoumarin) in sweet potato roots attack duced by the infection of Phytophthora in ed by the black rot fungus, Ceratocystis festans in potato tubers, whereas the chloro fimbriata, was reported by Uritani and Hoshi genic acid increase was only 2- to 5-fold in - ya5), and recently the third coumarin com the infected region. pound, esculetin (6,7-dihydroxycoumarin), This paper describes the chromatographic has been added to the list6). We have also identification of skimmin (umbelliferone-7-ƒÀ- carried out an analytical study on the synthe sis of the former two coumarins in the in glucoside) and scopolin in the sweet potato tissue with black rot.
    [Show full text]
  • IRONMAN Tunes Responses to Iron Deficiency in Concert with Environmental Ph
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431461; this version posted February 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Short title: IRONMAN Tunes Iron Deficiency Responses 2 3 Corresponding author details: 4 Wolfgang Schmidt 5 Institute of Plant and Microbial Biology, Academia Sinica, 11529 Taipei, Taiwan 6 E-mail, [email protected] 7 8 9 IRONMAN Tunes Responses to Iron Deficiency in Concert with Environmental pH 10 11 Chandan Kumar Gautama,b,c, Huei-Hsuan Tsaic and Wolfgang Schmidta,c,d,e,1 12 13 aMolecular and Biological Agricultural Sciences Program, Taiwan International Graduate 14 Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan 15 bGraduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, 16 Taiwan 17 cInstitute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan 18 dBiotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan 19 eGenome and Systems Biology Degree Program, College of Life Science, National Taiwan 20 University, Taipei 10617, Taiwan 21 22 23 One sentence summary: Ectopic expression of IRONMAN peptides improves growth under 24 iron-limiting conditions by inducing responses to limited iron availability in accordance with the 25 environmental pH. 26 27 The author responsible for distribution of materials integral to the findings presented in this 28 article in accordance with the policy described in the Instructions for Authors 29 (www.plantphysiol.org) is: Wolfgang Schmidt ([email protected]).
    [Show full text]
  • Reference Substances 2018/2019
    Reference Substances 2018 / 2019 Reference Substances Reference 2018/2019 Contents | 3 Contents Page Welcome 4 Our Services 5 Reference Substances 6 Index I: Alphabetical List of Reference Substances and Synonyms 156 Index II: Plant-specific Marker Compounds 176 Index III: CAS Registry Numbers 214 Index IV: Substance Classification 224 Our Reference Substance Team 234 Order Information 237 Order Form 238 Prices insert 4 | Welcome Welcome to our new 2018 / 2019 catalogue! PhytoLab proudly presents the new you will also be able to view exemplary Index I contains an alphabetical list of all 2018 / 2019 catalogue of phyproof® certificates of analysis and download substances and their synonyms. It pro- Reference Substances. The seventh edition material safety data sheets (MSDS). vides information which name of a refer- of our catalogue now contains well over ence substance is used in this catalogue 1300 phytochemicals. As part of our We very much hope that our product and guides you directly to the correct mission to be your leading supplier of portfolio meets your expectations. The list page. herbal reference substances PhytoLab of substances will be expanded even has characterized them as primary further in the future, based upon current If you are a planning to analyse a specific reference substances and will supply regulatory requirements and new scientific plant please look for the botanical them together with the comprehensive developments. The most recent information name in Index II. It will inform you about certificates of analysis you are familiar will always be available on our web site. common marker compounds for this herb. with.
    [Show full text]
  • Min 2 3 4 5 6 7 Fluoresce N Ce Mau 1 2 3 4 5 6 7 Esculin Scopolin Fraxin
    1 2 3 4 5 6 7 Fluorescence mAu Fluorescence Esculin Fraxin Scopolin 2 3 4 5 6 7 min Figure S1 : Inhibition of esculetin uptake by orthovanadate addition. Representative fluorescence chromatograms obtained using λexc 365 and λem 460 nm for root extracts of Arabidopsis f6’h1 mutant seedlings grown for 7 days on Hoagland agar plates and then transferred 7 days on Hoagland agar containing poorly 3- available Fe and supplemented with 50µM esculetin and different concentrations of orthovanadate (VO4 ). 3- 3- 3- 3- 3- 1:+0µMVO4 ,2:+50µMVO4 ,3:+100µMVO4 ,4:+200µMVO4 ,5:+250µMVO4 , 6: + 500 3- 3- µM VO4 ,7:+1mMVO4 . 90 1200 80 1000 70 60 800 50 600 40 30 400 Fraxin (nmol/g) 20 Scopolin (nmol/g) * 200 10 0 0 +Fe +Fe +Glyb +Fe +Fe +Glyb Figure S2. Inhibition of fraxetin uptake by the ATP-dependent transport inhibitor glibenclamide. Uptake of coumarins by roots grown in hydroponic Hoagland solution containing poorly available Fe (+Fe), supplemented or not with 150 µM glibenclamide (Glyb). Plants were kept for three days in the presence of coumarins and glibenclamide and coumarin glucosides were analyzed by HPLC. t test significant difference: *P <0.05(n = 4 biological repeats). Bars represent means ± SD. Intens. Fraxetin + Fe pH8 : ‐MS x106 467.9896 4 2 207.0359 676.0282 936.9805 0 100 200 300 400 500 600 700 800 900 m/z Intens. Fraxetin + Fe pH7 : ‐MS x106 4 467.9893 2 207.0359 331.9027 936.9799 0 100 200 300 400 500 600 700 800 900 m/z Intens.
    [Show full text]