<<

LI.I u The Miocene to Pliocene Ringold For111ation and Associated Deposits

0 of the Ancestral System, South-central and North-central Oregon

by Kevin A. Lindsey

WASHINGTON DIVISION OF GEOLOGY I- AND EARTH RESOURCES Open File Report 96-8 c( November 1996

WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher· Commissioner of Public Lands Kaleen Cottingham· Supervisor

CONTENTS

1 Introduction 3 Setting 3 Structural geology 4 Late Neogene depositional framework 6 The 6 Previous studies 8 Age 8 Stratigraphy 10 Methods 10 Sediment facies associations 14 Facies association I 21 Facies association II 22 Facies association Ill 26 Facies association IV 26 Facies association V 26 Facies association distribution 27 Informal member of Wooded Island 33 Informal member of Taylor Flat 34 Informal member of Savage Island 35 Top of the Ringold Formation 37 Ringold correlatives outside the Pasco Basin 38 Conclusions 40 Acknowledgments 41 References cited

Appendices A-D: Measured sections, core geologic logs, cross sections, and isopach and structure contour data, respectively

ILLUSTRATIONS

2 Figure 1. Map showing regional geographic setting of the Columbia Basin and , south-central Washington, and north-central Oregon.

4 Figure 2. Map showing geographic setting of the Pasco Basin and Hanford Site, Washington.

5 Figure 3. Maps showing geologic structures in and near the Pasco Basin, and . Hanford Site.

7 Figure 4. Generalized surficial geologic map of the Pasco Basin.

9 Figure 5. Diagram showing late Neogene stratigraphy of the Pasco Basin emphasizing the Ringold Formation.

15 Figure 6. Outcrop photo of facies association I.

22 Figure 7. Photo of interstratified sand and gravel of facies association I.

24 Figure 8. Diagram illustrating interstratified facies · relationships between fluvial sands (facies association II) and paleosol-overbank deposits (facies association III) of the member of Taylor Flat.

25 Figure 9. Photo showing facies association II. Illustrations ( continued)

27 Figure 10. Two lake-fill sequences of facies association N found on measured section B-11.

28 Figure 11. Closeup of well-stratified diatomite (facies association IVa) at the base of one lake fill sequence near measured section B-11.

29 Figure 12. Measured sections in strata typical of facies association IV.

30 Figure 13. Simplified isopach maps for the main units forming the member of Wooded Island in the subsurface of the western to central Pasco Basin.

32 Figure 14. Distribution of main depositional systems in the member of Wooded Island in the Pasco Basin.

35 Figure 15. Distribution of depositional systems in the Pasco Basin during deposition of the member of Taylor Flat.

36 Figure 16. Distribution of depositional systems in the Pasco Basin during deposition of the member of Savage Island.

TABLES

11 Table 1. Sediment facies types in Ringold deposits.

12 Table 2. Summary of the characteristics and depositional environments of Ringold facies associations.

16 Table 3. Grain-size distributions from facies association I cores in unit E.

17 Table 4. Grain-size distribtuions from outcrops of facies association I in unit E.

18 Table 5. Grain-size distributions from facies association I core in unit A ..

19 Table 6. Pebble count data for Ringold Formation facies association I gravel in unit E.

20 Table 7. Whole rock XRD data for sand in Ringold unit E.

23 Table 8. Grain-size distributions, silt and sand intervals in facies associations I, II, III.

31 Table 9. 40Ar-39Ar radiometric dates from tephra beds. The Miocene to Pliocene Ringold Formation and Associated Deposits of the Ancestral Columbia River System, South-central Washington and North-central Oregon

Kevin A. Lindsey Daniel B. Stephens and Associates, Inc. 1845 Tenninal Drive, Suite 200 Richland, Washington 99352

INTRODUCTION

During the Late Neogene quartzo-feldspathic detrital sediments were deposited in and adjacent to the Columbia Basin of central Washington in a fluvial system interpreted to be the ancestor of the modern Columbia River system (Warren, 1941; Waters, 1955; Tallman and others, 1981; Tolan and Beeson, 1984; Tolan and others, 1984a, 1984b; Baker and others, 1987; Pecht and others, 1987; Smith, 1988; Reidel and others, 1994). This ancestral Columbia River system drained geologic terranes as varied as Precambrian to Paleozoic cratonal sedimentary and metasedimentary rocks to the east and northeast, accreted Paleozoic· and Mesozoic oceanic terranes to the southeast, Mesozoic crystalline terranes to the north, and Late Neogene volcanic terranes to the east and west (Pecht and others, 1987). Evolution of the Late Neogene Columbia River system was influenced by many factors, including emplacement of the flood basalts of the Columbia River Basalt Group (CRBG), the evolving structure of the Columbia Basin, and uplift and volcanism in the ancestral Cascade arc (Warren, 1941; Waters, 1955; Reidel and Pecht, 1981; Reidel and others, 1989, 1994; Reidel, 1984; Tolan and others, 1984a, 1984b; Tolan and Beeson, 1984; Pecht and others, 1987; Smith, 1988).

One of the most extensive sedimentary units preserving a record of the Late Neogene Columbia River system is the late Miocene to middle Pliocene Ringold Ponnation. Ringold strata preserve an essentially continuous stratigraphic record for a period near the end of Columbia River Basalt Group volcanism, from 8.5 Ma until approximately 3.4 Ma. The Ringold Ponnation is unique within the regional Late Neogene stratigraphic record because other Late Neogene sedimentary units are repeatedly interrupted by Miocene volcanic rocks, deposited peripheral to the main tract of the ancestral Columbia River system, or less widespread.

The thickest and laterally most extensive occurrences of the Ringold Ponnation occur on and adjacent to .the U.S. Department of Energy (DOE) Hanford Site in the Pasco Basin of south-central Washington (Fig. 1). At the Hanford Site the Ringold Ponnation fonns the majority of the shallowest aquifer system generally referred to as the suprabasalt or unconfined aquider (DOE, 1988; Reidel and others, 1992; Lindsey and others, 1994a). The base of this aquifer is at the top of the uppennost basalt underlying the Ringold Ponnation. The water table within this unconfined aquifer usually is found at or very near the top of the Ringold Ponnation beneath the Hanford Site. Most of the ground-water contaminant plumes at the Hanford Site occur at least partially within saturated Ringold strata (DOE, 1988; Pacfific Northwest Laboratories, 1993; DOE, 1994; Lind~y and others, 1994a).

Data upon which this study is based were collected during post-doctoral stratigraphic and sedimentologic research in the Pasco Basin and regionally and environmental investigations at the Hanford Site. This report describes the stratigraphy and sedimentology of the Ringold Ponnation and its relationship with correlative units in the region. 124° 122" 120° 118°

N

Idaho ij 490 ~ Washington § ~ Spokane• ~ ~ ,0 C\ 00

47° CD O> C Slope C(J a:

CD Yakima ,, Fold Belt C(J ~HHH () 490 s·,mcoe -4sP Mountains \

Oregon

Basins discussed io text Structures djscu&&ed io text QB = Quincy Basin FH = OB = Othello Basin SM = PB = Pasco Basin UR = Unanum Ridge UB = Umatilla Basin TYR = Yakima Ridge gags RH = HHH = SG = Sentinel Gap CH = Columbia Hills SNG = Sunnyside Gap HR-NR = Hog Ranch-Naneum Ridge Uplift WG = H9309012.2 SP = Satus Pass RINGOLD FORMATION 3

SElTING

The Hanford Site and Pasco Basin (Figs. 1 and 2) are situated in the part of south-central Washington commonly referred to as the Columbia Basin. The Columbia Basin is an intennontane basin situated between the on the west, Okanogan Highlands to the north, Rocky Mountains to the east, and the Blue Mountains anticlinorium to the south (DOE, 1988) (Fig. 1). The Pasco Basin is located in the south-central Columbia Basin. The Hanford Site, in the central Pasco Basin, is divided into a series of areas designated the 100 Areas (in the northern part of the Hanford Site adjacent to the Columbia River), the 200 Areas (divided into 200 East and 200 West and situated in the central part of the Hanford Site), and the 300 and 400 Areas (situated in the southern part of the Hanford Site) (Fig. 2). Gable Mountain and Gable Butte divide the Hanford Site into northern and southern halves.

Structural Geology

The Columbia Basin is divided into three geologic subprovinces, the , Palouse Slope, and Blue Mountains (Fig. 1) (DOE, 1988). The Yakima Fold Belt is characterized by a series of segmented, narrow, asymmetric, generally east-west-trending anticlines that have wavelengths between 5 and 32 km (3.1 and 19.9 mi) and amplitudes commonly less than 1 km (0.62 mi) (Reidel, 1984; Reidel and others, 1989, 1994). The northern limbs of these anticlines generally dip steeply to the north or are vertical to even overturned. Most southern limbs dip at relatively shallow angles to the south. Thrust and high-angle reverse faults with fault planes that generally strike parallel to fold axes commonly are found on the north sides of these anticlines. The anticlinal ridges are separated by broad synclinal troughs or basins, many of which contain Neogene to Quaternary sediment (Fecht and others, 1987; DOE, 1988; Smith and others, 1989; Reidel and others, 1994). The main study area is in the Pasco Basin, one of the larger structural basins in the Yakima Fold Belt. A single major north-south structure, the Hog Ranch­ Naneum Ridge uplift, occurs in the western fold belt (DOE, 1988; Tolan and Reidel, 1989). Defonnation in the Yakima Fold Belt began prior to the emplacement of the Columbia River Basalt Group (beginning approximately 17 Ma), occurred throughout Columbia River basalt volcanism (which ended approximately 6.5 Ma), and continues to the present (Reidel and Fecht, 1981; Reidel, 1984; Fecht and others, 1987; Reidel and others, 1989, 1994).

The Pasco Basin (where the Hanford Site is located) is bounded on the north by a series of anticlines forming the Saddle Mountains, on the west by the Hog Ranch-Naneum Ridge anticline, and on the south by the anticlines forming Rattlesnake Mountain and the Horse Heaven Hills (Fig. 3) (Tallman and others, 1981; DOE, 1988; Tolan and Reidel, 1989). The western edge of the Palouse Slope (occasionally referred to as the Jackass monocline (DOE, 1988)) bounds the Pasco Basin on the east. The Pasco Basin is divided into a series of smaller synclines by east-west-trending anticlines that project into the western Pasco Basin. The two main synclines are the Wahluke syncline and Cold Creek syncline (Fig. 3). Each syncline is asymmetric and relatively flat bottomed, with the north limbs dipping gently (approximately 5 degrees) to the south and the south limbs dipping steeply to the north (Reidel and Fecht, 1981; DOE, 1988).

Figure 1 (facing page). Regional geographic setting of the Columbia Basin and Hanford Site, south­ central Washington and north-central Oregon showing major basins, anticlinal structures, and locations discussed in text (modified from Tolan and Reidel, 1989). 4 OPEN FILE REPORT 96-8

0 20 KIiometers

0 10 Miles

Figure 2. Geographic setting of the Pasco Basin and Hanford Site, Washington; includes study site and data collection locations.

late Neogene Depositional Framework

Late Neogene sediments (including the Ringold Fonnation) are found in structural lows and linear tracts across much of the Columbia Basin. Facies mapping in these sediments has established that a drainage system similar to the one found today existed in the Columbia Basin during the Late Neogene (Warren, 1941; Waters, 1955; Newcomb, 1958; Bak.er and others, 1987; Fecht and others, 1987; Smith, 1988; Reidel and others, 1994; Lindsey and others, 1993, 1996; Tolan and others, 1996). This Late Neogene Columbia River system consisted of the ancestral Columbia River and four main tributaries, the ancestral Salmon-Qearwater, ancestral Snake, ancestral Y ak.ima, and ancestral Palouse Rivers. The modem river names are used here following the conventions outlined in Waters (1955), Fecht and others Frenchman Hills

Palouse Slope

iOO MIies OREGON

123° 121°

0 10 MIies t t Antlcllne Figure 3. Geologic structures in and near the Pasco I I I t Syncline Basin, and Hanford Site. Map shows major structural I I f b elements in the area (modified from Reidel and 0 15 KIiometers • • • • Thrust Fault ~ others, 1989). ' ~ H940102i .:? ~ ~

VI 6 OPEN FILE REPORT 96-8

(1987), and Smith (1988). In the remainder of this paper all rivers referred to are the Late Neogene ancestral predecessors of the modern rivers, unless otherwise stated.

Throughout the middle Miocene (prior to Ringold deposition) the Columbia River flowed from north to south along the western margin of the Columbia Basin adjacent to volcanic terranes that predate the modern Cascade volcanic arc (Warren, 1941; Baker and others, 1987; Pecht and others, 1987; Smith, 1988). Throughout the rest of this paper this volcanic terrane is infonnally referred to as the ancestral Cascades. At the same time the Salmon-Oearwater and Palouse Rivers flowed to the west down the sloping paleosurface referred to as the Palouse Slope (Pecht and others, 1987). The Yakima River generally flowed into the southwestern corner of the Columbia Basin. The Snake River did not begin to flow into the central Columbia Basin until the latest Pliocene or early Pleistocene (Baker and others, 1987). Prior to this the Snake River may have entered the Columbia River system to the south, in the western Umatilla Basin (Lindsey and others, 1993, 1996; Tolan and others, 1996).

Prior to 14.5 Ma the position of the Columbia River was controlled by the west-dipping paleoslope of the Columbia Basin and west-flowing flood basalts (Pecht and others, 1987). As flood basalt volcanism decreased in intensity (during Saddle Mountains time, 14.5 to 6.5 Ma), continued uplift in the western Columbia Basin centered on the Hog Ranch-Naneum Ridge anticline, relative to subsidence in the Pasco Basin, began to displace the Columbia River to the east (Waters, 1955; Pecht and others, 1987; Smith, 1988). Near the end of flood basalt volcanism in the late Miocene (approximately 8.5 Ma) the Columbia River began to encroach on the central Pasco·Basin, and Ringold deposition began.

THE RINGOLD FORMATION

Suprabasalt terrigenous elastic sediments assigned to the Ringold Fonnation (and correlative Snipes Mountain Conglomerate) are present throughout much of the south-central Columbia Basin (Waters, 1955; Schmincke, 1964; Newcomb and others, 1972; Grolier and Bingham, 1978; Myers, Price, and others, 1979; Tallman and others, 1979, 1981; Pecht and others, 1987; Smith and others, 1989). Regionally, the Ringold Fonnation consists of interbedded, unconsolidated to cemented clay, silt, sand, and granule to cobble gravel (Newcomb, 1958; Newcomb and others, 1972; Fecht and others, 1987; Smith and others, 1989; Lindsey and Gaylord, 1990; Reidel and others, 1994). Exposures of the Ringold Ponnation are present in: (1) the White Bluffs adjacent to the Columbia River (Fig. 4), (2) on Eureka Flat north of Wallula Gap, (3) in the Quincy and Othello Basins north of the Saddle Mountains, and (4) on benches and slopes adjacent to basalt uplifts such as Rattlesnake Mountain, the Saddle Mountains, and the Frenchman Hills (Figs. 1 and 3). At and near the Hanford Site the Ringold Fonnation is largely restricted to the subsurface, and outcrops are limited to the flanks of anticlinal ridges, the White Bluffs, and Eureka Flat (Figs. 1 and 4).

Previous Studies

All post-Columbia River Basalt sediments (including strata now assigned to the Ringold) in the central Columbia Basin and in the adjacent Washington Cascades were originally assigned to the Ellensburg Formation by Smith (1901). Smith's stratigraphy was later modified by Merriam and Buwalda

Figure 4 (facing page). Generalized surficial geologic map of the Pasco Basin. Ringold outcrops are shown in the black and white mottled pattern. The White Bluffs are found where this pattern is present adjacent to the Columbia River. Significant Ringold outcrops are not present on the Hanford Site (from Reidel and others, 1992). RINGOLDFORMATION 7

GENERALIZED GEOLOGIC MAP OF THE PASCO BASIN

LATE CENOZOIC SEDIMENTS (SURFICIAL QUATERNARY SEDIMENiS) 0 5 10 KILOMETERS -D HANFORD FORMATION 0 5 MILES RINGOLD FORMATION

SADDLE MOUNTAINS BASALT

FAULT WANAPUM BASALT ;: .!. ...______

GRANDE RONDE BASALT +------ANTICLINE --+······ SYNCLINE RCP8202-51 8 OPEN FILE REPORT 96-8

(1917), who assigned the clayey, silty, and sandy terrigenous elastic sediments exposed on the White Bluffs of the Columbia River north of Pasco to a new unit, the Ringold Formation. Culver (1937) mapped the Ringold Formation across the central Columbia Basin. Merriam and Buwalda (1917) and Culver (1937) restricted their definition of the Ringold Formation to strata exposed at the surface.

With the establishment of the Hanford Site and increased agricultural activity in the early 1940s, numerous wells were drilled for water production, ground-water analysis, and geologic investigations. Data from these wells revealed a thick sequence (up to 175 m) of conglomerate with lesser clay, silt, and sand overlying Columbia River basalt in the Pasco Basin. Drilling also indicated that these subsurface sediments 'Were contiguous with Ringold exposures in the White Bluffs (Newcomb, 1958). Using subsurface data and surficial exposures Newcomb (1958) redefined the Ringold Formation to include all sediments in the Pasco Basin that overlie Columbia River basalt and underlie Pleistocene glaciofluvial deposits and Holocene surficial deposits. Age

The Ringold Formation originally was thought to be Pleistocene (Merriam and Buwalda, 1917; Newcomb, 1958; Newcomb and others, 1972). However, detailed paleontologic investigations by Gustafson (1973, 1985) established that upper Ringold strata exposed on the White Bluffs are Pliocene. Paleomagnetic studies of core samples and upper Ringold exposures indicate a Miocene to Pliocene age range for the Ringold Formation (Packer and Johnston, 1979). The Ringold Formation disconformably overlies Miocene basalt dated at 8.5 to 10.5 Ma (Pecht and others, 1987), and Miocene pollen is present near the base of the Ringold (Puget Sound Power and Light Co., 1982). On the basis of these data Pecht . and others (1987) state the Ringold Formation is no older than 8.5 Ma and no younger than 3.4 Ma, or late Miocene to middle Pliocene in age.

Stratigraphy

The Ringold Formation (Fig. 5) as currently mapped is found throughout the Pasco Basin (including Eureka Flat), north of the Saddle Mountains in the Quincy and Othello Basins, and locally on the south side of the Columbia Hills along the northeastern fringe of the Umatilla Basin. Regionally, strata correlative to the Ringold Formation and displaying many of the same geologic characteristics are found between the Pasco Basin and Portland, Oregon. The most extensive of these units are the Snipes Mountain Conglomerate between the Pasco Basin and The Dalles, Oregon (Schmincke, 1964; Baker and others, 1987; Pecht and others, 1987; Anderson, 1987; Smith, 1988; Smith and others, 1989), the Alkali Canyon Formation in the Umatilla Basin (Farooqui and others, 1981; Smith and others, 1989; Lindsey and others, 1993), the Dalles Formation near The Dalles, Oregon (Warren, 1941; Newcomb, 1966; Farooqui and others, 1981; Smith and others, 1989), and the Troutdale Formation between The Dalles and Portland, Oregon (Tolan and Beeson, 1984; Tolan and others, 1984a, 1984b).

The Ringold Formation and correlative units overlie the CRBG (and intercalated Ellensburg Formation) along a contact that is disconformable to locally an angular unconformity. Various informally named late Pliocene to Pleistocene strata overlie the Ringold Formation in and near the Pasco Basin. These strata are informally referred as the: (1) Pliocene and Pleistocene unit (Myers, Price, and others, 1979; Tallman and others, 1979, 1981; Pecht and others, 1987; DOE, 1988; Lindsey and others, 1994b), (2) pre-Missoula gravel (PSPL, 1982), and (3) Hanford formation (Tallman and others, 1979, 1981; DOE, 1988; Lindsey and others, 1994a). The Pliocene and Pleistocene unit consists of pedogenic calcium carbonate (stage III to VI of Machette, 1985), well-stratified silt (sometimes referred to as early Palouse soil), matrix-rich basalt gravel, and reworked Ringold lithologies deposited on alluvial fans on and adjacent to the Pasco Basin. Mixed lithology, gray to white, quartzose, uncemented sandy pebble to cobble gravel interpreted as a late Pliocene to early Pleistocene Columbia River deposit characterizes the RINGOLD FORMATION 9

Age Epoch Formation Oka Cl) 0 C: 0 Cl) Eolian and (.) 0 Alluvium 0 J: 13 ka Cl) C: Cl) "O 5 500ka (.) 0 o-""'·- -c: Ea:s 0 a:s ... G)- J: 0 700ka a: Pre-Missoula, Plio-Pleistocene 3.4Ma -

member of Savage Island

C: member of Taylor Flat .2as E... ~ :s! 0 Unit E -~a: member of Wooded Island

Unit D

Unit A r~~;;;;,~~- Snipes Mountain Conglomerate 8.5Ma Cl) C: Cl) (.) Saddle Mountain .2 Basalt 14.5 Ma :E ... Cl) Q. a::2-== ::J Wanapum Basalt Flood-Basalt .!:! C, Flows and 15.6 Ma .o- E ii lnterbedded ::J 0 - a:s Grande Ronde Sediments 8m Basalt 17.0 Ma 17.5 Ma lmnaha Basalt

Figure 5. Late Neogene stratigraphy of the Pasco Basin emphasizing the Ringold Formation. Column not to scale. 10 OPEN FILE REPORT 96-8 pre-Missoula gravel. The Hanford formation consists predominantly of uncemented silt, sand, and basaltic to mixed lithology gravel deposited by Pleistocene cataclysmic floods (Fecht and others, 1987; Bak.er and others, 1991).

Traditionally the Ringold Formation in the Pasco Basin has been divided into several informal units: (1) gravel, sand, and paleosols of the basal unit, (2) clay and silt of the lower unit, (3) gravel of the middle unit, (4) mud and lesser sand of the upper unit, and (5) basaltic detritus of the fanglomerate unit (Newcomb, 1958; Newcomb and others, 1972; Myers, Price, and others, 1979; Tallman and others, 1979; Bjornstad, 1985; DOE, 1988). Ringold strata also have been divided on the basis of facies types (Tallman and others, 1981) and fining-upwards sequences (PSPL, 1982). All of these stratigraphic divisions are of limited use because they are defined over large areas based on limited information or defined in detail for relatively small areas (Lindsey and Gaylord, 1990).

Methods

Studies began in 1989 to redefine stratigraphic relations in the Ringold Formation across the Hanford Site and Pasco Basin. The initial results of these studies indicated that the Ringold Formation is best described and subdivided on the basis of sediment facies associations and their distribution (Lindsey and Gaylord, 1990; Lindsey, 1991). Later studies confirmed and refined these interpretations for locations on and adjacent to the Hanford Site (Lindsey and others, 1991, 1992, 1994b; Lindsey, 1992; Lindsey and Jaeger, 1993). This report presents a compilation of Ringold Formation geologic information gathered during these studies at the Hanford Site and in much of the surrounding area. The primary data sources are: (1) 25 measured sections from the White Bluffs (Appendix A), (2) detailed lithologic logging of core from 18 boreholes on the Hanford Site (Appendix B), and (3) drill cuttings and cuttings logs from hundreds of boreholes located on and near the Hanford Site (borings studied tabulated in Appendix D). This data set is used to establish the basic geologic characteristics of the Ringold Formation, identify in detail the sedimentary facies comprising the Ringold Formation, and determine physical properties of Ringold sediments. From these data sets geologic cross-sections were constructed (Appendix C) and subsurface data compiled (Appendix D). Additional data used to understand Ringold geology include previously published reports (referenced in text), borehole geophysics, and reconnaissance studies of Ringold correlative strata across the region. The measured sections and cores also are used to establish control points for stratigraphic interpretations and define analogues to use where core and outcrops are lacking.

The basic function of the analogues is to provide a basis for evaluating drill cuttings and cuttings logs. Conditions typically interpreted from cuttings with the aid of analogues include facies type, probable mud content, extent of interstratified lithologies, cementation and compaction, and grain-size range. Analogue analysis also aids in determining how representative samples from uncored boreholes are and to better interpret lateral and vertical continuity of bedding and cementation in the subsurface. Use of analogues also allows identification of geologic properties fundamental to hydrologic interpretations. Reconnaissance studies provide additional analogues for interpreting geohydrologic characteristics as well as regional geologic history.

SEDIMENT FACIES ASSOCIATIONS

Ringold strata are divided into five facies associations on the basis of sediment facies (Table 1) (such as defined by Miall, 1977, 1978, 1985; Rust, 1978; and Rust and Koster, 1984) obseIVed in intact cores and outcrops. Sediment facies are identified from measured sections (Appendix A) and outcrop studies in the Saddle Mountains, on Y ak.ima Ridge, on the White Bluffs, and at Eureka Aat Facies data also are gathered from cores (Appendix B) and from drill cuttings and borehole geologic logs from sites across the Pasco Basin. (See Appendix D for list of boreholes having geologic logs studied for this RINGOLD FORMATION 11

Table 1. Sediment facies types in Ringold deposits. Facies codes based on Miall (1978, 1985}

Lithofacies Sedimentary Structures Interpretation

Gms massive, matrix massive debris flow deposition supported gravel

Gm massive to stratified planar to low-angle bedding 0.5 bedload deposition on to 12.5 m thick, imbrication longitudinal bars, lag deposits

Gt stratified gravel trough cross beds less than 2 m bedload deposition on thick, dominantly low angle longitudinal bars in channels

Gp stratified gravel planar cross beds 1 to 3 m high bedload deposition on linguoid and transverse bars

Sm fine to coarse sand massive rapid deposition from suspension

St fine to coarse sand, asymmetric trough cross beds dunes deposited in channels minor pebbles <1.5 m high, (av. 1 m)

Sp fine to coarse sand, planar cross beds 10 cm to 1 m linguoid and transverse bar minor pebbles high deposit

Sr fine to medium sand, ripple cross lamination current ripples minor silt

Ser fine to medium sand, climbing ripple cross rapid deposition from minor silt lamination suspension

Sh fine to coarse sand, planar bedding deposition from high velocity minor pebbles currents in shallow water

Sg silty, fine to coarse normally graded beds with sediment gravity flow deposit sand plane and ripple cross lamination

Se erosional scour less incised beds, crude cross scour cut-and-fill, channel than 3 m deep, bedding, and lateral truncations incision intraclasts common

Fl sand, silt, and clay fine plane and ripple cross deposition from suspension lamination under waning flow conditions

Fsc silt, clay laminated to massive deposition from suspension

Fr silt, clay bioturbation and pedogenic paleosol alteration present

p calcrete and silcrete bioturbation and pedogenic silica- and calcium carbonate- alteration present, calcium rich paleosol carbonate precipitates -N Table 2. Summary of the characteristics and depositional environments of Ringold facies associations. Facies codes based on Miall (1978, 1985). See Appendix A for measured sections in sediments forming the various facies associations

Facies Lithology Facies Stratification and Contacts Bed Geometry Depositional Environments Assc.

I clast- to matrix-supported Gm, crudely defined Gm and low Gm in 0.5 to I .5 m thick lenses; gravel bedload deposition on pebble to cobble gravel; fine Gp,Gt, angle Gt common; Gp locally Gm, Gt, and Gp form lenticular braidplain characterized by to coarse grained sand matrix; St, Fsc well developed; contacts bodies less than 5 m thick shallow shifting channels lenticular sand and silt dominated by low angle scour interbeds

II fine to coarse sand; locally Sp, St, lenticular Sp over Se; Sh and Sr channel fill deposits combine to sandy bedload deposition in low pebbly; silt interbeds may be Se, Sh, form planar sets and cosets; form sheet-like sand bodies 30 m sinuosity braided channels present Sr, Sm lenticular sand bodies dominated thick and 0.5 km across; by St, Sp, and Se; sheet-like sand interfingers with tabular intervals bodies consisting of Sh and Sr dominated by facies assc. III

IIIa silty fine sand to silt Sr, Sh, moderately to poorly stratified; sheet-like and low-angle tabular proximal overbank, levee, and Fl disrupted and mottled beds intervals dominated by Sr and Sh; crevasse splay deposits on fluvial common; root and burrow fills interfingeres with Facies assc. I, plain common; gradational contacts II, Illb, and Ille

IIIb silt to clay; rare silty sand; Fsc, Fr, bedding generally disrupted; laterally persistent intervals 5-I 0 distal overbank and crevasse peds and calcium carbonate p calcium carbonate forms m thick; interfingeres with facies splay; paleosols present stringers, nodules, and assc. IIIa and Ille concretions; root and burrow fills common; gradational contacts

Ille calcium carbonate rich clay, Fr,P extensive calcium carbonate; laterally persistent intervals calcic to silicic paleosols silt, and sand; silica also bedding rare; root and burrow marked by numerous internal present fills common; silcrete may be truncations; interfingers with associated facies assc. Illa and Illb

IVa clay, silt, and sandy silt, Fl, Fsc, laterally persistent strata laterally persistent geometries deposition from suspension and commonly distomaceous Sg dominated by Sg; contacts sharp forming coarsening upward sediment gravity flow of and planar sequences l O to 20 m thick; base lacustrine basin plain commonly diatomaceous Table 2. Summary of the characteristics and depositional environments of Ringold facies associations (continued)

Facies Assc. Lithology Facies Stratification and Contacts Bed Geometry Depositional Environments

IVb interbedded silt, silty sand, Fsc, Fl, fonn fining upward beds <3 m sheet-like geometries dominate; deposition from suspension and fine to medium sand Sh, Sr, thick; these combine to form grades into facies assc. !Va and II mixed with sediment gravity flow Sg coarsening upward intervals IO m deposition in front of prograding thick delta

V matrix and lesser clast- Gms, massive bedded; Gp and Gt rare sheet-like tabular geometries debris flow, sheet flood, and supported basaltic gravel; Gm,Gp dominate minor fluvial deposition proximal muddy matrix to distal subaerial fan 14 OPEN FILE REPORT 96-8 investigation.) Supplemental regional data were taken from reconnaissance studies throughout the region and from previously published reports. The five Ringold facies associations are numbered I, n, Ill, IV, and V (fable 2).

Facies Association I

Facies association I (fable 2) consists of clast- and matrix-supported, pebble to cobble gravel with a fine to coarse sand matrix and intercalated fine to coarse sand and silt lenses (Fig. 6). Although the facies association is typically well compacted, cement content ranges from none to well developed. The main cements are calcium carbonate, iron oxides, and silica. Individual cemented zones observed in outcrop generally are less than 1 m thick and rarely extend laterally more than 100 m. Cemented zones several meters thick and continuous laterally over several hundred meters were identified from drill cuttings from several wells in the northern and southeastern part of the 200 West Area (notably wells 699-48-77A; 299-W6-3, -4, -5, -6, -7, -9, -10, -11, and -12; and W299-W7-6 and -8). Evidence of cement in these wells included red coloring of samples, aggregated gravel in some samples, and low water production. Cemented gravel also is directly observed in Basalt Waste Isolation Project (BWIP) cores of Ringold gravel (Appendix B). Based on these observations cemented Ringold gravel is inferred to be present as discontinuous (less than 250 m across) lenses and zones of variable thickness (less than 1 m to 10 m). Unfortunately, subsurface characterization efforts at Hanford have largely failed to provide the infom1ation necessary to detem1ine the physical characteristics and extent of these cemented zones, their influence on contaminant migration, and their influence on well performance during pumping and injection operations. This failing is typical of geologic logs for wells drilled on the Hanford Site as well.

Sieve analyses of samples from outcrops and intact core indicate grain-size distributions for Ringold gravel typically are bimodal (fables 3, 4, 5). Generally, the facies association contains greater than 67 weight percent pebbles and cobbles, less than 5 weight percent granules, and the balance is medium to fine grained sand. Mud content is typically less than 5 weight percent, although it may locally exceed 10 percent. This trend suggests that muddy gravel lithologies typically reported on boring logs in Ringold gravel over-represent the abundance of mud in Ringold gravel samples.

The grain-size distribution described here differs notably from those reported from samples acquired by driven split spoon sampling techniques (Last and others, 1989), which typically have lower pebble-cobble and higher granule and mud contents. The increased granule and mud concenµ-ation probably is the direct result of mechanical breakage of clasts during the driving of the split spoon. The presence of broken clasts in split spoon samples directly affects analytical measurements requiring intact samples (e.g., hydraulic conductivity, density).

Gravel clasts are dominated by weathered and unweathered basalt, quartzite, and intem1ediate to felsic volcanic rocks (fable 6). Less common clast types include greenstone, volcanic and tectonic breccia, silicic plutonic rocks, gneiss, and mud rip-ups. Matrix sand typically is quartzo-feldspathic with a subordinate basalt lithic fraction (fable 7) (Goodwin, 1993).

Stratification in the association includes massive (Gms), planar bedded (Gm), and cross-bedded (Gp, Gt). Oast imbrication is common in the stratified gravel. Low-angle scours and channels less than 1.5 m (4.9 ft) deep and at least 10 m (32.8 ft) across also are found. Facies Gms generally fom1s 0.5-m to 1.5-m (1.6 to 4.9 ft) -thick lenses less than 20 m (65.6 ft) across that are interstratified with and grade Figure 6. Outcrop photo of facies association I showing large-scale cross bedding at the base of outcrop, sand interbeds next to Jacob's staff, varied cementation emphasized by the discontinuous overhanging ledges, and grain size variations from sand exposed behind staff to cobble rich zone coming across middle of outcrop. Jacob's staff is 1.3 m high. This outcrop is located on eastern bank of Columbia River opposite Wooded Island near the base of measured sections B-5 and B-6. 16 OPEN FILE REPORT 96-8

Table 3. Grain-size distributions (weight percent) from facies association I cores of unit E, member of Wooded Island

Borehole v. coarse coarse medium fine v.fine number& cobble pebble granule silt-clay sand sand sand sand sand depth (ft)

DH6/178 0 74 2 0 0 9 8 5 0 DH6/213 0 73 1 1 1 12 8 4 0 DH6/227 0 82 1 5 4 4 3 1 0 DH6/240 0 71 1 0 1 14 12 1 0 DH6/270 0 64 2 1 1 8 13 11 0 DH6/313 0 82 4 2 2 4 3 3 0 DH6/330 0 72 1 2 1 12 8 4 0 DH6/393 0 72 2 4 4 12 4 2 0 DH6/399 0 69 3 5 4 13 5 1 0 DH12/243 0 88 2 1 1 2 4 1 1 DH12/285 0 76 1 1 3 12 5 1 1 DH12/342 0 75 2 2 1 9 7 2 2

DH12/378 0 71 2 4 3 10 6 1 3

DH12/412 0 79 1 3 4 10 2 1 0 DH13/284 0 88 0 0 1 3 6 2 0 DH13/330 0 84 2 0 0 9 3 2 0 DH13/347 0 87 2 2 2 2 3 2 0

DH13/389 0 77 2 3 4 9 5 0 0 DH13/398 0 80 1 4 5 8 2 0 0 DH13/419 0 74 3 3 4 11 5 0 0 DH13/438 0 75 1 2 2 7 7 6 0

DH28/308 0 80 6 2 2 6 2 1 1 DH28/429 0 79 2 1 1 9 5 3 0 DH28/450 0 76 5 3 3 7 2 4 0 DH28/461 0 78 4 1 5 5 4 3 0 DH28/543 0 78 1 2 2 13 2 2 0

MEAN 0 77 2 2 2 9 5 2 >1 S.DEV. 5.8 1.4 1.5 15 2.5 2.9 2.3 0.8

RANGE 64-88 0-6 0-5 0-5 2-14 2-13 0-11 0-3 RINGOLD FORMATION 17

Table 4. Grain-size distributions (weight percent) from outcrops of f acies association I comprising unit E of the member of Wooded Island

v. coarse medium fine v. fine Sample# cobble pebble granule coarse silt-clay sand sand sand sand sand

SC-1 27 44 0 2 2 21 3 1 0 SC-2 17 62 0 2 2 16 3 1 0 SC-4 23 63 0 0 1 8 4 1 0 SC-5 10 71 0 1 1 15 1 1 0 SC-6 8 82 0 0 0 7 2 1 0 SC-7 0 69 1 2 3 20 4 1 0 SC-10 0 81 1 1 1 12 3· 1 0 SC-11 8 73 1 2 1 9 5 1 0 SC-12 6 79 0 1 1 9 3 1 0 SC-15 16 74 0 0 0 6 3 1 0 SC-17 26 67 1 1 1 2 1 1 0 SC-18 0 82 2 1 1 9 3 2 0 SC-20 0 87 1 1 1 8 1 1 0 SC-21 17 70 0 1 0 9 2 1 0 SC-22 33 57 1 1 0 6 1 1 0 SC-23 8 79 1 1 1 6 3 1 0 SC-24 0 86 0 1 1 7 4 1 0 SC-25 40 56 0 0 0 2 1 1 0 MEAN 13 71

Table 5. Grain-size distributions (weight percent) from facies association I core of unit A, member of Wooded Island

Borehole v. coarse coarse medium number/ cobble pebble granule fine sand silt-clay sand sand sand depth (ft)

DH6/438 0 77 2 5 6 6 2 0

DH6/448 0 78 3 3 4 6 4 0

DH6/455 0 70 5 2 2 11 7 0

DH6/464 0 67 3 4 4 12 6 0

DH6/473 0 76 3 4 3 9 3 0

DH6/503 0 78 3 4 5 7 3 0

DH13/483 0 71 0 3 3 18 4 0

DH13/498 0 63 0 5 6 11 12 0

DH13/524 0 55 2 7 9 21 4 0

MEAN 0 71 2 4 5 11 5 0

S.DEV. 7.9 1.6 1.4 2.1 5.2 3.3

RANGE 55-78 0-5 2-7 2-9 6-21 2-12 0 RINGOLD FORMATION 19

Table 6. Pebble count data for Ringold Formation f acies association I gravel exposed in the Pasco Basin. Samples are from the member of Wooded Island unit E. See Appendix A for location and stratigraphic position of specific samples

Sample bslt and fv rhy qt vq/p fv gn gnst brec cht fmet wtf msed

PLl llO 16 13 11 18 8 16 4 4 3 0 0 0 0 PL2 104 17 12 10 16 2 8 0 2 6 4 2 0 0 PL3 124 15 1 9 32 5 8 5 2 3 2 0 0 2

PL4 84 1 5 23 31 9 22 4 2 9 9 2 0 0 PL5 69 17 11 24 27 10 6 2 3 10 6 0 0 0 PL6 95 45 12 38 43 22 21 5 2 6 6 16 2 0 PL7 143 13 6 6 13 5 3 1 3 6 1 4 0 0 PL8 130 5 1 5 18 4 1 2 2 2 1 4 0 0 PL9 61 20 8 33 35 9 17 3 0 2 1 4 0 0

PLIO 86 17 5 15 32 10 27 2 4 0 2 15 0 0 PLll 33 24 3 23 10 12 17 7 1 6 2 5 0 1 PL12 39 13 4 13 32 21 17 4 1 1 1 12 0 0 PL13 47 32 4 10 24 10 7 4 4 1 0 6 3 3 PL14 35 13 4 17 22 9 11 0 0 5 0 7 0 1 PL15 58 27 13 29 32 16 21 2 1 3 4 7 1 3 PL16 118 39 5 33 33 8 11 4 1 5 6 11 0 1 PL17 53 19 3 17 20 12 3 1 1 4 3 11 0 1 Abbrev1auons used m table: Sample # - sample number or location identified on outcrop measured section. bslt - basalt and - andesite fv - felsic volcanic rocks (exclusive of rhyolite) rhy - rhyolite qt - quartzite, various colors vq/p - vein quartz and pegmatite fp - felsic to intermediate plutonic rocks gn - gneiss gstn - greenstone brec - breccia cht - chert fmet - fine-grained metamorphic rock and homfels wtf - welded and banded tuff msed - banded, fme-grained metasedimentary rock (argillite and siltite) 20 OPEN FILE REPORT 96-8

Table 7. Whole rock XRD data for sand in Ringold unit E from cores in unit E near the 100-N Area (BH numbers), the 200 West Area (DH numbers), and east of the 200 East Area (G numbers) (See Figure 1 for locations of these facilities)

Borehole#/ quartz k-spar plag carb amph mica clay min depth (ft)

BH16/60 43 10 33 0 2 2 10 BH16no 57 0 29 0 2 2 10 BH16,90 45 11 37 0 2 1 4 BH16,97 43 13 32 0 1 1 10 BH17/55 30 0 37 0 17 3 13 BH17/60 37 7 20 2 5 3 6 BH11no 38 7 42 0 3 2 8 BHI7n5 43 0 41 0 5 2 9 BH17,90 51 9 27 0 4 1 8 BH17/200 39 7 18 6 4 6 20 DH25/194.5 42 5 36 0 1 2 13 DH25/391.5 55 7 18 0 1 1 17 DH24/115.5 50 10 27 0 1 2 10 DH24/152.7 50 8 27 0 2 3 10 DH24/271.5 40 9 15 26 1 1 8 DH24/366 51 9 31 0 2 1 7 DH24/397 54 9 20 0 2 5 10 DH24/419.5 66 0 20 4 2 1 7 DH22/297 53 7 23 0 0 2 15 DH22/415.5 55 0 24 0 2 2 17 G73/302.5 69 1 10 0 0 1 20 G73/323 68 5 11 0 0 2 14 G73/348 63 4 9 4 0 3 17 G73/352 62 3 5 3 0 6 21 MEAN 50.2 5.9 24.7 2 2.5 2.3 11.8 S.DEV. 10.5 4.0 10.4 5.6 3.4 1.5 4.8 Abbrev1auons used m table: k-spar - potassium feldspar plag - plagioclase carb - calcium carbonate . amph - amphibole minerals mica - mica minerals clay min - clay minerals RINGOLDFORMATION 21 into stratified gravel (Gp, Gt, Gm). These massive and stratified gravels commonly combine to form lenticular bodies up to 5 m (16.4 ft) thick that overlie low-angle scours. Laterally discontinuous fine to coarse, cross-bedded sand (Sp, St) interbeds up to 2 m (6.6 ft) thick (Fig. 6) are intercalated in the gravel. (Fig. 7). The presence of interstratified sand in the subsurface probably is the primary cause for gravelly sand lithologies reported on borehole cuttings logs. Thin (typically <2 m, <6 ft) intercalated silty deposits displaying some mottling and bedding disruption also are present

The features displayed by facies association I are similar to those described by Miali (1978, 1985), Rust (1978), Kraus (1984), Rust and Koster (1984), and Collinson (1986) for gravelly, bedload­ dominated fluvial systems. Bimodal grain-size distribution is interpreted to be the result of sand deposition during relatively low flow and gravel deposition during relatively high flow. The rare sand interbeds found are the erosional remnants of sand channel fills deposited during relatively low flow. Rare muddy gravel horizons are the uneroded remnants of gravel bar surfaces and abandoned channels subject to mud infiltration as a result of subaerial exposure and pedogenic processes. The abundance of low-angle bedding geometries and grain-size distribution indicate facies association I formed in a depositional system characterized by rapid deposition in shallow channels shifting across a gravelly braidplain.

Deposition of facies association I was characterized by alternating periods of high and low flow. During relatively long periods of low flow sand deposition occurred in channels cut into gravelly braidplains. Subaerially exposed gravel flats and bars also underwent pedogenic alteration during low flow. Periodically, high flow events led to incision of broad, shallow channels across the gravel flats, deposited gravel sheets, low-angle gravelly bedfonns, and gravel channel fills, and reworked low-flow sand channel deposits and pedogenically altered gravel flats.

Facies Association II

Facies association II (Table 2) consists of fine to coarse (Tables 8a, 8b, 8c), generally quartzo­ feldspathic sand similar in composition to sand in facies association I (Goodwin, 1993). The facies association typically is light tan to buff; other colors observed include brown, red-brown, and yellow­ brown. Salt-and-pepper colors also may be present where basalt content is above approximately 20 percent. Intercalated silt and pebble beds may be present. Cement is notably absent in most occurrences of the facies association identified in outcrop and core. Where uncemented sand horizons are saturated in the subsurface they will typically flow into borings. The only cemented sand observed is restricted to spherical, tabular, and platy concretions found in outcrops.

Facies association II displays: (1) sandy bedforms consisting of planar (Sp) and trough (St) cross­ bedded sand lenses overlying scoured bases (Se), (2) sandy bedforms consisting of tabular sheets and lenses of plane laminated (Sh) to ripple cross-laminated (Sr) sand, (3) massive bedded fine sand and silty sand (Sm), and (4) interstratified plane and ripple laminated silt and sand (Fl). Deposits composing the association commonly combine to form channel-fill sequences 1 to 5 m (3.3 to 16.4 ft) thick and as -much as 100 m (328 ft) across (Fig. 8). These channel-fill sequences occur intercalated in facies association I and stacked together to form sand bodies that are up to 30 m (98 ft) thick and 0.5 km (0.3 mi) or more across (Fig. 9). Typical thickness to width ratios for these sand bodies are approximately 1:100.

Facies association II is interpreted to have been deposited in a sandy bedload-dominated fluvial system such as discussed by Cant and Walker (1976), Walker and Cant (1984), and Collinson (1986). The thickness to width ratios of the preserved sand bodies indicate deposition was dominantly in low-sinuosity channels similar to those discussed by Galloway (1985b). Avulsion and channel abandonment are recorded by fining-upwards transitions from this facies association to facies association III. 22 OPEN FILE REPORT 96-8

Figure 7. lnterstratified sand and gravel of facies association I. Gravelly sand reported on borehole logs probably consists of interbedded sand and gravel such as seen here. The gravelly cliff face is approximately 1O m high. This outcrop is located on eastern bank of Columbia River opposite Wooded Island at the base of measured section B-3.

Facies Association Ill

Facies association III is divided into three types (Illa, Illb, Ille) (fable 2) which grade into each other. The coarsest (Illa) consists of sheets of slightly mottled and bioturbated, brown to light-gray, laminated to massive sand and silt (Sr, Sh, Fl) and rarely gravel. Facies association Ille consists of green to black, unstratified, crumbly weathering silt and clay displaying medium to strongly developed, fine to medium, subangular to angular blocky peds (tenninology based on Birkeland and others, 1991). Soil slickensides, cohesive clay-rich blocky peds (referred to as lumps in measured sections), and calcium carbonate and silica precipitates also are found. Facies association IIIb displays features intennediate between Illa and Ille. Red-brown, massive, fine to coarse, quartzo-feldspathic to slightly basaltic sand can be found mixed with silt and clay and as thin ( <10 cm/4 in.) interbeds. Filamentous, branching root casts less than 2 mm thick to large burrows 1 to 2 cm thick (<1 in.) and 5 to 10 cm (2-4 in.) long are found in the facies association. CaC03 is rare in facies association Illa, stage I and II CaC03 of Machette (1985) is found in facies association Illb. Stage III, IV, and locally V CaC03 can be in facies association Ille. RINGOLD FORMATION 23

Table 88. Grain-size distributions (weight percent) from of sand and silty sand interbeds in f acies association I gravel. Cores from member of Wooded Island

Borehole#/ v. coarse coarse medium fine v. fine granule silt clay depth (ft) sand sand sand sand sand

DH6/269 0 2 4 39 42 9 4 0 DH6/370 0 16 18 28 16 6 13 3 DH12/258 0 2 2 57 33 1 5 0 DH12/369 0 6 5 49 32 4 4 0 DH13/263 0 1 1 15 49 15 16 3 DH13/275 0 7 7 38 36 6 3 3 DHI3/280 0 6 7 74 7 1 5 0 DH13/302 0 4 4 72 14 1 2 3 RANGE 0-1 1-16 1-18 15-74 7-49 1-15 2-16 0-3

Table 8b. Grain-size distributions (weight percent) from outcrops of sand and silt interbeds in facies association I gravel of unit E of the member of Wooded Island

v. coarse coarse medium v. fine Sample granule fine sand silt clay sand sand sand sand

SC-3 0 1 1 63 32 3 0 0 SC-8 0 12 12 64 9 1 2 0 SC-9 1 1 1 6 30 30 27 4 SC-19 0 4 4 20 50 18 4 0 RANGE 0-1 1-12 1-12 6-64 9-50 1-30 0-27 0-4

Table 8c. Grain-size distributions (weight percent) from sand and silt beds of facies associations II and Ill in the member of Taylor Flat

v. coarse coarse medium v. fine Sample granule fine sand silt clay sand sand sand sand

DH6/137 0 3 4 26 19 10 15 3 SC-13 0 7 8 68 13 2 2

.... B-4 B-6 rm rm B-3 B-2 B-1 ·-----' nn rm rm :------C: ------c- -

--... - ,,-...... __ Scou1'8d Surfaces

Top of Gravels

UJJ WJ - UlJ -- __. / _,. - ...... - Horizontal Grail Size Scale - Scale ,/ // Vertical .Vertical Exaggeration UJ.J pebble Scale 10>< 'cobb~ sand u.u fl'M..ld H9501005.13

Figure 8. Diagram illustrating interstratified tacies relationships between fluvial sands (f acies association II) and paleosol-overbank deposits (f acies association Ill) of the member of Taylor Flat. Diagram also illustrated the facies architecture typical of the fluvial sand of facies association II. See Appendix A for locations of measured sections. RINGOLD FORMATION 25

Figure 9. Facies association II (the two prominent ledges) interbedded with facies association Ill (the slopes). Each ledge consists of cross bedded sand that fines upwards and overlies a basal scour incised into underlying strata. Jacob's staff (leaning against upper sand ledge in the middle of photo) is 1.3 m (4.3 ft) high. Measured section B-1 goes through this outcrop. Outcrop lies on the eastern bank of Columbia River opposite Wooded Island above the outcrops pictured in Figures 6 and 7.

Silcrete is found in facies association Ille deposits near the top of the Ringold Formation. Although dominantly superimposed on silt and sand lithologies the features described here also are locally found

superimposed on gravel. Where this occurs the gravel has a mud-rich matrix, CaC03 is present, bedding disruption is prevalent, and clasts are typically weathered.

Facies association III formed in a floodplain-overbank environment where pedogenic alteration occurred. Facies association Illa was deposited as crevasse splays in proximal overbank. areas such as discussed in Bown and Kraus (1987), Kraus (1987) and Kraus and Bown (1988). Evidence of paleosols similar to that described by Collinson (1986), Kraus and Bown (1988), Miall (1978, 1985), and Retallack (1986, 1988) is seen in facies association lllb, which formed on floodplain and subaerial surfaces that rarely were submerged. The calcium carbonate-rich and silica-rich deposits in facies association Ille are calcic and silicic paleosols formed relatively far from active channel tracts. 26 OPEN FILE REPORT 96-8

Facles Association IV

Stratified clay, silt, and sand divided into two end members (IVa and IVb) form facies association IV (Table 2). Laterally continuous, white, diatomaceous clay gradationally overlain by gray, tan, and brown, laminated, sandy silt (Fl) (Figs. 10 and 11) dominates facies association IVa Gray, tan, and brown, plane cross-bedded sand (Sp), ripple cross-laminated sand (Sr), normally graded sand (Sg), and laminated sand, silt, and clay (Fl, Fsc) typify facies association IVb. Bedding in both end members is dominated by planar tabular sheet geometries continuous across tens to hundreds of meters of outcrop (Fig. 10). Locally, facies association IVb has primary bedding dips of 5 to 10 degrees (Fig. 10). Overall, strata in facies association IV form laterally continuous (>30 km [19 mi] across) coarsening-up sequences as much as 40 m (130 ft) thick (Fig. 12). Where the facies association is found in the subsurface, gray to blue-gray colors predominate.

Thin calcium carbonate- and iron oxide-cemented intervals are found in outcrops. Cement is not observed in core of the facies association. Subsurface occurrences and outcrops of the facies association are well consolidated.

Facies association IV was deposited in a hydrologically open lake such as described in Allen and Collinson (1986). The diatomites (IVa) record deposition in clear water, relatively distant from fluvial distributaries. Upward coarsening from IVa to IVb reflects increased detrital sedimentation as the result of fluvial-deltaic progradation into the lake.

Facles Association V

Massive to poorly stratified, weathered basaltic pebble-cobble gravel (Oms, Gm) forming sheet­ like bodies dominates facies association V (Table 2). Cross-bedded gravel (Gp) intercalated with these can be found locally. Color typically is gray to black, and matrix varies from sand-size basalt grains to clay.

Stage I and II CaC03 development can be present Campbell (1979) describes strata typical of this facies across much of the north side of the Saddle Mountains. Exposures of this facies association are rare in the Pasco Basin, although it can be found in core (most notably DH-33).

The abundance of facies Oms and Gm indicates deposition dominantly by debris flow processes such as described by Bull (1972), Rust and Koster (1984), and Galloway (1985a). These debris flow deposits are inferred to have been part of alluvial fan systems prograding into the. Pasco Basin off surrounding highlands such as described by Tallman and others (1981). Rare stratified horizons (Gp) were deposited in channel systems superimposed on fan surfaces by sheet flood and minor stream flow processes. Local pedogenic carbonate indicates subaerial exposure.

FACIES ASSOCIATION DISTRIBUTION

The Ringold Formation is divided into three informal members· that are designated the member of Wooded Island, member of Taylor Flat, and member of Savage Island (Fig. 5). Each is characterized by different facies associations. Data upon which the following discussion is based are found in Appendix A (outcrop measured sections), Appendix B (corehole logs), Appendix C (basin-wide cross-sections), and Appendix D (structure contour and isopach data).

The member of Wooded Island is dominated by fluvial gravel (facies association I) and forms the majority of the lower half of the Ringold Formation (Appendices B and C). The member of Taylor Flat forms most of the middle part of the Ringold Formation and is dominated by fluvial sands (facies association II) and overbank-paleosol deposits (facies association III) (Fig. 8 and Appendix A). It interfingers with the member of Wooded Island in the northern Pasco Basin where fluvial gravel pinches RINGOLD FORMATION 27

Figure 10. Two lake-fill sequences of facies association IV found on measured section B-11. The lower haH of the slope (the darker colored area below the band of sagebrush in the middle of the slope) consists of paleosols of association Ill. The upper half of the slope consists of well stratified silt and sand of facies association IV. Topographic relief between bottom and top of photo is approximately 130 m (426 ft). This outcrop is located on bluffs east of the Columbia River and approximately 1 km north of Savage Island.

out (Appendix C). Strata dominated by lacustrine deposits (facies association IV) fonn the upper member, the member of Savage Island (Appendix A).

Informal member of Wooded Island

The lowennost fluvial deposits of the member of Wooded Island are fluvial gravel and lesser fluvial sand referred to as unit A. Unit A ranges from Oto approximately 41 m (0-134 ft) thick and is found in the subsurface in an elongate belt from Sentinel Gap to the east end of Rattlesnake Mountain (Fig. 13A) (Appendices C and D) (Lindsey, 1995, plate I). This belt crosses the anti­ cline west of Gable Mountain. Fl.uvial sand is common directly overlying basalt in the lower part of the unit in much of the western Pasco Basin (Appendix B: DH-20, DH-22, DH-25, DH-33). Basalt is overlain by similar sand exposed in Sunnyside.Gap in the southwest corner of the Pasco Basin. In the northern Pasco Basin unit A gravel interfingers. with paleosols and overbank deposits of the member of Taylor Fl.at. Unit A is younger than 8.5 Ma, the age of the youngest CRBG flow underlying the Ringold Fonnation (Pecht and others, 1987), and older than 6.7 Ma, the approximate age of a tephra horizon 28 OPEN FILE REPORT 96-8

Figure 11. Closeup of well stratified diatomite (facies association IVa) at the base of one lake fill sequence near measured section B-11. Darker colored strata (marked by unlabeled arrows) in upper haH of photo are sand interbeds that mark the beginning of the coarsening upwards transition from the diatomaceous (IVa) (labled A) into elastic lake deposits (IVb). Jacob's staff is 1.3 m (4.3 ft) high. Outcrop is located on the bluffs along the east side of the Columbia River approximately 2 km north of Savage Island. RINGOLD FORMATION 29

8-14 8-11A Figure 12. Measured sections in strata typical of facies association IV. Sections show the vertical trends and characteristics of the association. See Appendix A for detailed measured sections and ;: CD I C,) locations of measured sections. CD C .E CD .:: ::, fl) C" ::, CD C,) fl) !!

Lggea!;I Grain size scale, indicates dominant grain size in interval CD C,) C ITT1 CD ::, uu i" 8-11 ~Boulders fl) rm Pebble/cobble ;: I Sand CD C Silt/clay ;;: ui ::, C,) IVb !! ---- Ripple cross-lamination ~''''",,,,,,,, Planar cross-bedding IVa "''""

~ Trough cross-bedding IVb ;: CD ~ Low angle bedding d, C,) cC -.:: ::,CD fl) tr -- Planar stratification ::, CD IVa -- C,) fl) !! Scours - - ...... __ interbedded Facies contacts fluvial "T"..,.-r sands 'T..,. Pedogenic calcium carbonate and overbank- paleosol xl Peds and other soil structures deposits ',',' Strong cementation a0a Burrows

Lil.l ~ >r- Root castes

xx IV Intervals dominated by X different facies associations X X X Vertical scale X 5 meters X I X WJ 30 OPEN FILE REPORT 96-8

Frenchman HIiia B.

Pasco Pasco Basin Basin Boundary~~- Boundary ~ ~ ) )

~===::;---'10 20 KIiometers Cl...,.,... = 25 m 10 Thrust Fault · D.

Pasco Pasco Basin Basin Boundary Boundary ~ ~ ) )

0 10 10 20 KIiometers Cl = 25 m .···. •\ •.. ~===::;---'20 Kilometers Cl=...,.,... 10 m CZ2! Unit 0 ~=====:;-, _, ...,.,... ·~ ·- 0 5 10Mlles Thrust Fault c:s3 Unit B 5 10 MIies Thrust Fault

H9309012.3,4,5,6

Figure 13. Simplified isopach maps for the main units forming the member of Wooded Island in the subsurface of the western to central Pasco Basin: A) fluvial gravel-dominated unit A, B) lacustrine and paleosol-dominated lower mud unit, C) fluvial gravel-dominated units B and D, and D) fluvial gravel­ dominated units C and E. Modified from plates in Lindsey (1995) and based on data presented in Appendix D. RINGOLD FORMATION 31

Table 9. 40Arf9Ar radiometric dates from tephra beds in the lower mud unit, member of Wooded Island. Data are from an unpublished report provided by Lewis Hogan, College of Oceanography, Oregon State Univ., Corvallis, OR, to Rockwell Hanford Operations in 1984

Borehole #/depth (ft) Isochron Age Geologic unit

GE19/621.7 6.79+0.13 Ma lower mud unit 073/173.9 6.62+0.09 Ma lower mud unit DH18/504.9 6.67+0.18 Ma lower mud unit

(Table 9) in deposits overlying unit A. Quartz-feldspar-lithic (QFL) plots for unit A show higher quartz contents than the other gravel units (Goodwin, 1993). In addition, volcanic lithics are less abundant (Goodwin, 1993).

Unit A is interpreted to have been deposited in a Columbia River braidplain that existed from approximately 8.5 Ma to 7 .0 (?) Ma. It extended from Sentinel Gap across the area now occupied by Gable Butte and into the western Cold Creek syncline. This fluvial system exited the Pasco Basin at both Sunnyside Gap and around the eastern end of Rattlesnake Mountain. Floodplains and upland subaerial surfaces flanked the main channel belt in the northern Pasco Basin (Figs. 14A and 14B). The distribution of this unit and its mineralogy (described in Goodwin, 1993) indicate Salmon-Clearwater River deposits are not present in unit A.

Unit A is overlain by a basinwide sequence of paleosols (facies association III) and lacustrine deposits (facies association IV) referred to collectively as the lower mud unit (Appendices B and C). The lower mud unit is the only unit containing widespread lacustrine deposits in the lower half of the Ringold Fonnation. The lower mud unit is found throughout most of the Pasco Basin and is much as 25 m (80 ft) thick (Fig. 13B). Paleosols are rarer in the lower mud unit in the south-central Pasco Basin than in the western Pasco Basin (Appendix B: G-1, G-78, G-E-19/E-l, DH-18). The extent of interfingering between the lacustrine and overbank deposits is not known. Sandy deposits of facies association IVb present in the lacustrine strata in the east-central Pasco Basin become thinner and less common to the west (Appendices Band C). The lower mud unit underlies almost the entire Hanford Site and Pasco Basin (Lindsey, 1995, plate 2). The only localities where it is absent are the northern part of the 200 East Area, locally just north of the 200 West Area, and in the area between the 200 Areas and Gable Mountain. The absence of the unit is because of post-depositional erosion and not non-deposition. Three 40Ar/39 Ar detenninations from tephra in lacustrine deposits in the central Pasco Basin yield ages of 6.62+0.09 Ma to 6.79+0.13 Ma for the lower mud unit (Table 9). The lower mud unit was deposited in a lake and on an adjacent subaerial surface that filled most of the Pasco Basin. Intercalated sands are interpreted to have been deposited by sediment gravity flows derived from Columbia River and Salmon-Clearwater River distributaries entering the lake from the west and east, respectively.

The lower mud unit is overlain in most areas by two fluvial gravel-dominated (facies association I) units, B and D, and intercalated overbank/paleosol deposits (facies association III) (Appendices B and C). Unit B is a westward-thinning unit in the eastern to east-central Pasco Basin ranging from Oto 20 m (0-66 ft) thick (Fig. 13C) (Lindsey, 1995, plate 3). Unit Dis an eastward-thinning unit found in the southwestern Pasco Basin and ranging from Oto 20 m thick (Fig. 13C) (Lindsey, 1995, plate 3). Where units B and Dare absent (in the central Cold Creek syncline) laterally equivalent overbank deposits and paleosols (facies association III) containing thin, indistinct, fluvial sands (facies association II) overlie the lacustrine lower mud unit (Appendix C; Q-Q'). The area where units B and Dare absent corresponds to 32 OPEN FILE REPORT 96-8

Frenchman HIiia \.....---- A. Frenchman Hfffa '------B.

Pasco Basin Boundary

,_6:••• ...... -:.-::--::--:;. ,.~\· Sal mon- ,,.•• ...... : •• : ...... ~ ...... Cl earwate r•.·•rl'•a' ··" System L"-":."-:...... ~;.~ .. ~ \ ...... , -...... :::: - ··~":.::\~":.,. Wallula Gap_--~f···

Frenchman HIiia " ---- Frenehrnan HIiia " ---- D.

Pasco Basin Boundary

10 20 Kilometers

5 10Mllas

Hll3CIII012.10, 11,12,13

Figure 14. Distr.ibution of main depositional systems in the member of Wooded Island in the Pasco Basin during deposition of: A) sands at the base of unit A (<8.5 Ma), B) gravelly part of unit A approximately 7.5 Ma, C) fluvial gravel of units B (east) and D (west) approximately 6.5 Ma(?), and D) fluvial gravels of units C and E approximately 6.0 to 5.0 Ma. RINGOLD FORMATION 33 an area of thinning in underlying basalt described by Reidel and Fecht (1981) and to the easternmost extent of the sand-rich intervals in the underlying unit A. Unit D is interpreted as having been deposited by the Columbia River as it flowed from north to south across the western Pasco Basin (Fig. 14C). Unit B is interpreted to have been deposited by the Salmon-Oearwater River as it flowed across the southeastern comer of the Pasco Basin (Fig. 14C). The area separating the two units is interpreted to have been a paleotopographic high because of the apparent pinchout and separation of the two units and thinning in the underlying basalt

Units B and D are differentiated from overlying gravel-bearing units (C and E) by a locally thick (> 10 m [33 ft]) paleosol sequence typical of facies association IIlb. This paleosol sequence is referred to as the. sub C+E interval in Appendix D. In the eastern and westernmost Cold Creek syncline and the Wahluke syncline the sub C+E interval can be traced over distances of several kilometers in core holes and closely spaced wells (Appendix B: G-1, G-73, G-78, G-E-19/E-l, DH-18, DH-20, DH-22, DH-33; Appendix C: B-B', F-F', G-G', H-H', 1-1', K-K', L-L', M-M', N-N', 0-0', P-P', Q-Q'). Where the sub C+E interval is absent units B and D are not differentiated from overlying gravel of units C and E. In this case the C+E interval directly overlies the lower mud unit.

The uppermost fluvial gravel-dominated units, C and E (Appendices B and C), are separated in the eastern Pasco Basin by an unnamed, but widespread paleosol sequence (Appendix C: F-F', G-G', H­ H', 1-1', N-N', 0-0', P-P', Q-Q') similar in character to the paleosol sequence overlying units Band D and referred to as the sub E interval in Appendix D. In the western Pasco Basin the sub E interval is absent and units C and E are not differentiated (Appendix C: A-A', B-B', C-C', D-D', E-E', 0-0', Q-Q'). Combined, the C and E interval fonns a northwest-to-southeast-oriented subsurface linear body as much as 100 m (328 ft) thick and stretching across the Pasco Basin from Sentinel Gap to Wallula Gap (Fig .. l3D) (Lindsey, 1995, plate 4). The gravel outrops at Taylor Flat are of unit E. Basalt-rich gravel (facies association V) is found locally in units C and E. Unit C and E gravel interfingers with muddy paleosols (facies association Illa and b) around the fringe of the Pasco Basin, especially to the north where units C and E pinch out (Appendix C: J-J', K-K', M-M') (Lindsey and Jaeger, 1993). Units C and E are older than the 5.0 Ma age of overlying strata detennined by Packer and Johnston (1979). Strata near the top of unit E also have been assigned a late Hemphillian age (6.7 to 4.8 Ma) on the basis of vertebrate fauna (Gustafson, 1985). Units C and E are interpreted to have been deposited by the Columbia River which flowed into the northwestern comer of the Pasco Basin at Sentinel Gap and by the Salmon-Oearwater River as it flowed into the eastern Pasco Basin across the Eureka Flat area (Fig. l4D). The confluence of the two ancestral rivers is thought to have migrated across the area between Taylor Flat and Wallula Gap because of the presence of gravel and sand displaying lithologies indicative of both rivers (Goodwin, 1993). This depositional system is estimated to have existed approximately 6.5 to 5.5 Ma

Pluvial gravel, sand, and overbank fines typical of the member of Wooded Island are found in the easternmost Pasco Basin at and east of Pasco, Washington (Brown, 1979). These strata are not directly correlated to the units described above because of gaps in the borehole coverage of the eastern Pasco Basin, the lack of clearly defined marker horizons in the borehole logs from the area, and the quality of the drillers logs that comprise the vast majority of the data available for the eastern Pasco Basin. However, the presence of facies association I in the eastern Pasco Basin does indicate that fluvial systems like those that deposited the member of Wooded Island in the central to western Pasco Basin also occurred in the eastern Pasco Basin.

Informal member of Taylor Rat

Approximately 90 m (295 ft) of interbedded fluvial sand (facies association II) and overbank fines (facies association Ill) (Fig. 8) fonn the member of Taylor Flat (Appendix A). Outcrops of the member extend the length of the White Bluffs and are found on Eureka Flat (Fig. 4). West of the White Bluffs (in 34 OPEN FILE REPORT 96-8 the central to western part of the Pasco Basin) most of the member was removed by post-Ringold erosion and only a thin (<15 m [50 ft]), discontinuous section remains (Lindsey, 1995, plate 5) (Appendices B and C). This thin erosional remnant has been referred to as the Ringold upper unit (Myers, Price, and others, 1979; Tallman and others, 1979, 1981; DOE, 1988; Lindsey and others, 1991, 1992). The member of Taylor Flat fines from south to north, with sand being rare north of Ringold Coulee and Gable Mountain. Although the member is now absent from much of the Pasco Basin, the distribution of erosional remnants indicates the member once extended across the entire basin.

On the basis of vertebrate fauna (Gustafson, 1985) and paleomagnetic data (Packer and Johnston, 1979) the base of the member is approximately 5.0 Ma where it overlies the member of Wooded Island south of Ringold Coulee and Gable Mountain/Gable Butte. Where the member of Wooded Island is absent in the north.em Pasco Basin, the member of Taylor Flat consists almost entirely of facies association III deposits; it extends downwards to the top of basalt (Appendix C, M-M'), and the two members interfinger. Where this occurs, the member of Taylor Flat may be as old as 8.5 Ma (youngest basalt underlying the Ringold Formation).

The member of Taylor Flat records deposition in sandy fluvial channels and on adjacent floodplains and overbank areas that formed between 5.5 and 4.5 Ma. The change from the underlying gravels of the member of Wooded Island to this member indicates a change from fluvial gravel depositional systems to fluvial systems characterized almost exclusively by sand deposition. During deposition of the member the Columbia River followed a northwest-to-southeast-oriented path (Fig. 15) similar to that followed during deposition of units C and E of the member of Wooded Island. The presence of Salmon-Oearwater sand is yet to be detected in the member of Taylor Flat, but its presence is suspected because of west-directed paleocurrent indicators in the eastern Pasco Basin that are consistent with a Salmon-Qearwater drainage.

Informal member of Savage Island

Lacustrine deposits (facies association IV) dominate the uppermost part of the Ringold Formation, the 90-m (295 ft) -thick member of Savage Island. The member's age is approximately 4.8 to 3.4 Ma on the basis of paleomagnetic studies and vertebrate paleontology (Packer and Johnston, 1979; Gustafson, 1985; Fecht and others, 1987). Three successive lake-fill sequences are present in the member in the east­ central Pasco Basin (Fig. 12). Each of the sequences has a basal diatomaceous interval (facies association !Va) that grades upwards into interstratified silt and sand (facies association !Vb). The member has been almost completely removed by post-Ringold erosion from the central and western Pasco Basin (Appendix C). Small outcrops are locally found in shallow ravines along the northwest base of Rattlesnake Mountain.

The lower or first lake-fill sequence is the most laterally restricted of the three sequences, being found only in the north.em to central White Bluffs (Appendix A: B-11 to B-22). Comparing measured sections from north of Ringold coulee (Appendix A: B-11 to B-22) to those from south of Ringold Coulee (Appendix A: B-1 to B-10) indicates the lowest lake-fill sequence interfingers to the southeast into fluvial and overbank deposits (facies associations II and Ill) of the member of Taylor Flat. These fluvial and overbank deposits in tum occupy a stratigraphic position similar to that of fluvial gravel (unit E?) of the member of Wooded Island found on Eureka Flat in the easternmost Pasco Basin. The basal diatomite for the first lake sequence is 0.5 to 1.0 m (1.6-3.3 ft) thick. The first lake appears to have been restricted to the north.em and western Pasco Basin, forming adjacent to a fluvial braidplain and adjacent floodplain system located in the southeastern Pasco Basin (Fig. 16). The fluvial system and associated floodplain record progradation of a Salmon-Qearwater generated fluvial and deltaic(?) systems into the basin. RINGOLD FORMATION 35

Frenchman HIiia ~--~

Sentinel Gap ~/ -~e~

0 10 20 Kilometers

0 5 10Miles

HQ30II01:Z.7

Figure 15. Distribution of depositional systems in the Pasco Basin during deposition of the member of Taylor Flat approximately 5.0 Ma.

Deposits fonning the second and third lake-fill sequences are found in outcrops across most of the eastern Pasco Basin. The second lake-fill sequence is distinguished by a thick (2-6 m [6.5-19.5 ft]) basal diatomite (facies association !Va) and a capping fluvial-paleosol system (facies association II and III) (Fig. 12). The diatomite is present throughout the eastern, central, and western Pasco Basin. It coarsens upsection into sandy, well-stratified lacustrine deposits (facies association Ivb), which are in tum capped by a well-developed sandy fluvial and paleosol system (facies associations II and III). The paleosol is a readily identified marker horizon characterized in outcrop by red resistant ledges of sand and silt displaying pedogenic calcium carbonate and silica development (facies association Ille) and bioturbation extending as deep as 6 m (19.5 ft) into underlying strata. The fluvial deposits at the top of the second lake-fill sequence record complete filling of the lake with sediment There is no evidence of post­ depositional incision into the fluvial-overbank cap overlying the second lake-fill sequence. The lake in which the second lake-fill sequence was deposited appears to have inundated much, if not all of the Pasco Basin (Fig. 16).

The third lake-fill sequence is found in Ringold outcrops across the central and eastern Pasco Basin above an elevation of approximately 274 m (800 ft) above sea level. The basal diatomite (facies association !Va) is less than 1.5 m (5 ft) thick and grades up-section into well-bedded lacustrine sand and silt of facies association !Vb. Deposition of the third lake-fill sequence appears to have tenninated with basinwide incision. 36 OPEN Fll..E REPORT 96-8

Frenchman HIiia '-- ~--- A.

Sentinel Gap -..;;:::: I --~e~ Pasco Basin Boundary ~

0 10 20 Kilometers

Frenchman HIiia I.. ~---- B.

Pasco Basin Boundary I

0 10

0 5 10 Miles

HlllilOII012.II. g

Figure 16. Distribution of depositional systems in the Pasco Basin during deposition of the member of Savage Island: (A) first lake-fill sequence approximately 4.6 Ma and (B) the second lake-fill sequence approximately 4.0 Ma. RINGOLD FORMATION 37

Top of the Ringold Formation

Post-Ringold stage IV and V pedogenic carbonate (of Machette, 1985) overlies and truncates the Ringold Fonnation member of Savage Island along the length of the White Bluffs and on Eureka Rat (Appendix A). These carbonates are interpreted to be correlative to calcium carbonate- and silt-rich strata(referred locally as the Plio-Pleistocene unit) beneath the 200 West Area and to multilithologic gravel (referred to locally as the pre-Missoula gravel) southeast of the 200 East Area which overlies the lower part of the member of Taylor Rat and upper part of the member of Wooded Island beneath the Hanford Site (Lindsey, 1995, plate 6; Appendix C). This stratigraphic relationship is described further in Lindsey and others (1994a, 1994b). Locations in the central Pasco Basin where the "Plio-Pleistocene" unit and pre-Missoula gravel overlie the Ringold Fonnation correspond to where approximately 120 m of Ringold section is absent. Late Pliocene incision by the Columbia River is the cause of this. This post­ Ringold erosion represents a fundamental change within the ancestral Columbia River drainage system, which was dominated until the end of Ringold deposition by regional aggradation. Erosion by Pleistocene cataclysmic flood waters also has removed part of the Ringold section. This erosion is interpreted to have occurred where "Plio-Pleistocene" strata are absent and cataclysmic flood deposits (of the infonnal Hanford fonnation) directly overlie the Ringold Fonnation.

Ringold Correlatives Outside the Pasco Basin

Strata assigned to the Ringold Fonnation also are found north of the Pasco Basin in the Quincy and Othello Basins. These strata consist of basaltic gravel, paleosols, lacustrine deposits, and minor fluvial sand (Packer and Johnston, 1979; Reidel, 1988; Smith and others, 1989; N. P. Campbell, unpub. data). Packer and Johnston's paleomagnetic data indicate these strata are correlative to the member of Savage Island. The basaltic gravel is thought to have been deposited on alluvial fans fonned adjacent to active faults bounding the north side of the Saddle Mountains during the Pliocene (Tallman and others, 1981). Lacustrine deposits younger than 4.7+0.3 Ma (making them correlative to the member of Savage Island) also are found near Yakima, Washington (Smith, 1988).

Quartzose sand and gravel, similar to that fonning the member of Wooded Island, are found overlying the CRBG in a linear belt stretching from the western Pasco Basin to Hood River, Oregon (Warren, 1941; Schmincke, 1964; Anderson, 1987; Fecht and others, 1987; Reidel, 1988; Smith, 1988). These elastic deposits, now known as the Snipes Mountain Conglomerate (also referred to as the Hood River conglomerate by Warren [1941]), are younger than 10.5 Ma, the age of the youngest underlying basalt, the Elephant Mountain Member of the Saddle Mountains Basalt (Anderson, 1987; Fecht and others, 1987). South of Satus Pass the Snipes Mountain Conglomerate is overlain by the 4.5 Ma to 1.0 Ma Simcoe Volcanics (Anderson, 1987), indicating it is older than the lacustrine deposits of the member of Savage Island. Sand mineralogy and clast types in the Snipes Mountain Conglomerate are similar to those in unit A of the member of Wooded Island (Goodwin, 1993). The Snipes Mountain Conglomerate is interpreted as having been deposited in a Columbia River channel tract that extended from the western Pasco Basin, across the area now occupied by the Horse Heaven Hills, to the position of the modem Columbia River west of The Dalles, Oregon (Warren, 1941; Waters, 1955; Fecht and others, 1987; Smith, 1988). The Snipes Mountain Conglomerate is interpreted to be at least in part correlative to unit A of the member of Wooded Island because they have similar mineralogy and petrology, they overlie the same basalt unit, and they appear to be contiguous along the western side of the Pasco Basin.

An additional quartzo-feldspathic elastic unit correlative to the Ringold Fonnation is found west of Snipes Mountain outcrops. Throughout the late Miocene and Pliocene the Columbia River cut a series of canyons through the ancestral Cascade Range between The Dalles and Portland, Oregon (Fig. 5) (Tolan and Beeson, 1984; Tolan and others, 1984a, 1984b). The Troutdale Formation (<12 Ma to 2 Ma) fills one of these paleocanyons (Tolan and Beeson, 1984; Tolan and others, 1984a, 1984b). Tolan and Beeson 38 OPEN FILE REPORT 96-8

(1984) divide the Troutdale Formation into an informal lower member dominated by quanzose Columbia River silt, sand, and gravel (similar to the Snipes Mountain Conglomerate and Ringold Formation) and an upper informal member dominated by ancestral Cascade-derived volcaniclastic sediments. An early Pliocene age of approximately 5 Ma is placed on the contact between these two informal members. This age makes the lower member correlative to the member of Wooded Island and the upper member correlative to the members of Taylor Rat and Savage Island.

At The Dalles, Oregon, as well as south and east of The Dalles, Oregon, a sequence described by Newcomb (1966), Farooqui and others (1981), and Smith (1988) as largely locally derived andesitic to dacitic volcaniclastic detritus overlies the CRBG. These deposits, referred to as the Dalles Formation, originally were described as containing pebble lithologies foreign to the region, including quartzite, at the base of, as well as within the unit (Warren, 1941). The Dalles Formation overlies CRBG basalt (Priest Rapids Member of the Wanapum Basalt at 14.5 Ma) and underlies and interfingers with younger lavas dated at 5.1 to 8.0 Ma (Farooqui and others, 1981; Smith, 1988). This indicates that at least the upper part of the Dalles Formation is correlative with the Ringold Formation member of Wooded Island.

Ringold-age sedimentary rocks also are found in the Umatilla Basin (and adjacent areas) south and east of a line defined by The Dalles, Oregon, and Wallula Gap. They are the Alkali Canyon Formation in the Umatilla Basin and the Mackay Creek Formation near Pendleton, Oregon. Locally derived basaltic gravel dominates the Alkalai Canyon Formation in the eastern Umatilla Basin and the Mackay Creek Formation (Farooqui and others, 1981; Lindsey and others, 1993). However, quartzite­ bearing mixed lithology gravel is common in the Alkali Canyon Formation in the western Umatilla Basin, although a quartzite-rich lithology indicative of the Columbia River is not present (Lindsey and others, 1993; Lindsey and Tolan, 1996). Reconnaissance studies in the Klickitat Valley between Satus Pass and The Dalles, Oregon, indicate Alkali Canyon-like gravel underlies the Snipes Mountain Conglomerate (T. Tolan and K. A. Lindsey, unpub. data). In addition to exotic clast-bearing gravel, Hodge (1932, 1938, 1942) described as much as 30 m of stratified sand, silt, and diatomite overlying and interstratified with Alkali Canyon Formation gravel (referred to by him as the Shutler Formation) in the western Umatilla Basin. Later investigators (Farooqui and others, 1981; Dames and Moore, 1987; Smith, 1988) did not report the presence of diatomite-bearing strata. Reconnaissance of the western Umatilla Basin (T. Tolan and K. A. Lindsey, unpub. data) confirms the presence of at least two diatomite intervals. One is as much as 4 m thick and interstratified with mixed lithology gravel near the base of the Alkali Canyon Formation. The other is approximately 2 m thick, consists of laminated fine facies similar in appearance to Ringold facies association IV, and directly underlies thick (>2 m) pedogenic CaC03 that caps the Alkali Canyon Formation. The Alkali Canyon Formation ranges from less than 14.5 Ma (age of underlying Priest Rapids Basalt) to at least late Hemphillian age (6.7to 4.8 Ma) (Martin, 1979; Farooqui and others, 1981). This indicates that at least a part of the Alkali Canyon Formation is correlative with the members of Wooded Island and Taylor Rat. The diatomaceous lacustrine deposits at the top of the Alkali Canyon section that directly underlie thick pedogenic carbonate mimics a stratigraphic relationship similar to that found at the top of the member of Savage Island. This suggests the possibility that the uppermost Alkali Canyon Formation also may be correlative to the uppermost Ringold Formation.

CONCLUSIONS

The Miocene-Pliocene Ringold Formation in and around the Pasco Basin and at the Hanford Site in south-central Washington consists of a variety of interstratified alluvial-lacustrine sediments. These sediments comprise the majority of the suprabasalt "unconfined" aquifer at the Hanford Site. Previous work in the Ringold Formation was too generalized or too localized to adequately document the character of these sediments across the entire region This report presents a stratigraphic interpretation for the Ringold Formation filling that gap. The data presented in this report show that Ringold sediments can be grouped into five facies associations, which are grouped together into three informal members. This report RINGOLD FORMATION 39

also briefly discusses Ringold correlatives throughout the region, setting the stage for future regional sedimentologic interpretations.

Ringold Formation facies associations I, II, III, IV, and V are summarized as follows:

I. Auvial gravel-Cast-supported and lesser matrix-supported pebble to cobble gravel with a sandy matrix characterizes the association. Localized intercalated sand and mud also are found. Clast composition varies, with basalt, quartzite, porphyritic volcanic rocks, and greenstone being the most common types. Sand in the association generally is quartzo-feldspathic. Low-angle to planar stratification, massive bedding, wide, shallow channels, and large-scale cross-bedding are found in outcrops. The association was deposited in a gravelly fluvial braidplain characterized by shallow, shifting channels. Calcium carbonate, iron, and silica cements are present. Variations in the amount and distribution of cement probably account for much of the variation seen in aquifer properties.

II. Auvial sand-Quartzo-feldspathic sand displaying cross-bedding and cross-lamination dominates this association. Intercalated strata consist of lenticular silty sand and clay beds up to 3 m (9.6 ft) thick and thin (<0.5 m [1.5 ft]) gravels. Fining-upward sequences less than 1 m to several meters thick are common in the association. Strata comprising the association were deposited in wide, shallow fluvial channels.

III. Overbank-paleosol-This association consists of laminated to massive silt, silty fine sand, and paleosols containing various amounts of pedogenic calcium carbonate. Overbank-paleosol deposits occur as thin (<0.5 to 2 m [1.5-6.4 ft]) lenticular interbeds in the fluvial gravel and fluvial sand associations and as thick (up to 10 m [32 ft]) laterally continuous stratigraphic sequences. These sediments record deposition on floodplains and the formation of paleosols.

IV. Lacustrine-Plane laminated to massive clay with thin, ripple cross-laminated and normally graded silt, silty sand, and sand interbeds displaying some soft-sediment deformation characterize this association. Coarsening-upward packages less than 1 m thick to 10 m thick (<3-32 ft) are common. Strata of the association were deposited in lak~s under standing-water to deltaic conditions.

V. Basaltic alluvium-Massive to crudely stratified, weathered to unweathered basaltic sand and gravel dominate this association. These basaltic deposits generally are found near the basin periphery. The association records deposition by debris flows in alluvial fan settings and in sidestreams.

Sediments comprising the Ringold Formation are divided into three informal members. The lowest member, the member of Wooded Island, contains five separate stratigraphic intervals, designated units A, B, C, D, and E, dominated by fl.uvial gravel (facies association I). Units A, B, C, D, and E, are separated by fine-grained intervals consisting largely of paleosol-overbank deposits (facies association III) and lesser lacustrine deposits (facies association IV). The lowermost of these fine-grained intervals overlies unit A and is designated the lower mud unit. The lower mud unit extends across most of the .Pasco Basin and is the only one of the fine-grained intervals within the member that is typified by lacustrine deposits. Although generally widespread, the other fine-grained sequences in the member of Wooded Island are not given names because of a lack of other distinguishing features. The member of Wooded Island is overlain by the member of Taylor Aat, which is dominated by interbedded fl.uvial sand and overbank-paleosol deposits. Around the periphery of the Pasco Basin and in the northern Hanford Site the member of Wooded Island pinches out, interfingering with the member of Taylor Aat. The third 40 OPEN FILE REPORT 96-8

member, the member of Savage island, consists dominantly of lacustrine deposits that are basinwide in extent Lacustrine strata in this member generally sharply overlie underlying deposits.

Strata correlative to the Ringold Fonnation exist in many basins across the region. These correlatives, found from Portland, Oregon, to north of the Pasco Basin, include the Troutdale Fonnation, Snipes Mountain Conglomerate, Dalles Fonnation, and Alkali Canyon Fonnation. These units display fluvial, paleosol-overbank, and lacustrine facies relationships and lithologies similar to those typical of the Ringold Fonnation. The distribution of these strata indicates Ringold deposits found in the Pasco Basin were part of a regional drainage system extending across the Columbia Basin region, into and through the area now occupied by the Cascade Range.

The data and interpretations presented in this report are the result of an integrated study of outcrops, cores, cuttings, borehole logs, and the geologic literature. Such studies are necessary for accurate and realistic interpretation of both regional and local geology. Locally, these data and insights are central to understanding the geologic characteristics that influence ground-water flow in the suprabasalt aquifer at the Hanford Site. Regionally, these data can be used to address many of the fundamental issues related to the timing of subsidence and uplift in the Yakima fold belt, paleodrainge history of the ancestral Columbia River system, and the uplift and unroofing history of source terranes adjacent to the Columbia Basin throughout the Late Neogene.

ACKNOWLEDGMENTS

Discussions with Terry Tolan, Steve Reidel, Karl Fecht, Bruce Bjornstad, Pat Spencer, Dave Gaylord, Shannon .Goodwin, and Gary Smith about local and regional geology were invaluable. This report benefitted from reviews at various times by Steve Reidel, Karl Pecht, Newell Campbell, Terry Tolan, Eric Schuster, Kitty Reed, and Leslie Brown. The line drawings in the text and Appendix C where drafted by Denise Dillon, Jeff Ammennan, and Gary Hammond. Research and manuscript preparation was supported in part by a Post-Doctoral grant from the Northwest College and University Association for Science (Washington State University) (now Associated Western Universities, Northwest Division) under Grant DE-FG06-89ER-75522 from the U.S. Department of Energy and DOE grant DE-FG06-91ER14172 to S. P. Reidel at Washington State University.

REFERENCES CITED

Allen, P.A.; Collinson, J. D., 1986, Lake. In Reading, H. G., editor, Sedimentary environments and facies: Blackwell Scientific Publications, p. 63-94.

Anderson, James Lee, 1987, The structural geology and ages of deformation of a portion of the southwest , Washington and Oregon: University of Southern California Doctor of Philosophy thesis, 283 p.

Baker, V. R.; Greeley, Ronald; Komar, P. D.; Swanson, D. A.; Waitt, R. B., 1987, Columbia and Snake River plains. In Graf, W. L., editor, Geomorphic systems of North America: Geological Society of America DNAG Centennial Special Volume 2, p. 403-468.

Baker, V. R.; Bjornstad, B. N.; Busacca, A. J.; Pecht, K. R.; Kiver, E. P.; Moody, U. L.; Rigby, J. G.; Stradling, D. F.; Tallman, A. M., 1991, Quaternary geology of the Columbia Plateau. In Morrison, R. B., editor, Quaternary nonglacial geology-Conterminous U.S.: Geological Society of America DNAG Geology of North America, v. K-2, p. 215-250.

Birlceland, P. W.; Machette, M. N.; Haller, K. M., 1991, Soils as a tool for applied Quaternary geology: Utah Geological Survey Miscellaneous Publication 91-3, 63 p. RINGOLD FORMATION 41

Bjornstad, B. N., 1985, Late-Cenozoic stratigraphy and tectonic evolution within a subsiding basin, south-central Washington [abstract]: Geological Society of America Abstracts with Programs, v. 17, no. 7, p. 524.

Bown, T. M.; Kraus, M. J., 1987, Integration of channel and floodplain suites, I. Developmental sequence and lateral relations of alluvial paleosols: Journal of Sedimentary Petrology, v. 57, no. 4, p. 587-601.

Brown, R. E., 1979, A review of water-well data from the unconfined aquifer in the eastern and southern parts of the Pasco Basin: Rockwell Hanford Operations RHO-BWI-C-56, 63 p., 19 plates.

Bull, W. B., 1972, Recognition of alluvial-fan deposits in the stratigraphic record. In Rigby, J. K.; Hamblin, W. K., editors, Recognition of ancient sedimentary environments: Society of Economic Paleontologists and Mineralogists Special Publication 16, p. 63-83.

Cant, D. J.; Walker, R. G., 1976, Development of a braided-fluvial facies model for the Devonian Battery Point Sandstone, Quebec: Canadian Journal of Earth Sciences, v. 13, no. 1, p. 102-119.

Collinson, J. D., 1986, Alluvial sediments. In Reading, H. G., editor, Sedimentary environments and facies: Blackwell Scientific Publications, p. 20- 62.

Culver, H. E., 1937, Extensions of the Ringold Formation: Northwest Science, v. 11, no. 3, p. 57-60.

Dames and Moore, 1987, Geologic and hydrogeologic site characterization report for the Chem-Security Systems, Inc., Arlington Facility, Arlington, Oregon: Dames and Moore, Inc., Portland, Oregon, 1 v.

Farooqui, S. M.; Beaulieu, J. D.; Bunker, R. C.; Stensland, D. E.; Thoms, R. E., 1981, Dalles Group-Neogene formations overlying the Columbia River Basalt Group in north-central Oregon: Oregon Geology, v. 43, no. 10, p. 131-140.

Pecht, K. R.; Reidel, S. P.; Tallman, A. M., 1987, Paleodrainage of the Columbia River system on the Columbia Plateau of Washington State-A summary. In Schuster, J.E., editor, Selected papers on the geology of Washington: Washington Division of Geology and Earth Resources Bulletin 77, p. 219-248.

Galloway, W. E., 1985a, Ancient alluvial fans and fan deltas. In Flores, R. M.; Ethridge, F. G.; Miall, A. D.; Galloway, W. E.; Fouch, T. D., Recognition of fluvial depositional systems and their resource potential: Society of Economic Paleontologists and Mineralogists Short Course 19, p. 127-143.

Galloway, W. E., 1985b, Meandering streams-Modem and ancient. In Flores, R. M.; Ethridge, F. G.; Miall, A. D.; Galloway, W. E.; Fouch, T. D., Recognition of fluvial depositional systems and their resource potential: Society of Economic Paleontologists and Mineralogists Short Course no. 19, p. 145-166.

Goodwin, S. M., 1993, Petrography of the coarse-grained facies of the Miocene-Pliocene Ringold Formation, south-central Washington State: Western Washington University Master of Science thesis, 96 p.

Grolier, M. J.; Bingham, J. W., 1978, Geology of parts of Grant, Adams, and Franklin Counties, east-central Washington: Washington Division of Geology and Earth Resources Bulletin 71, 91 p.

Gustafson, E. P., 1973, The vertebrate fauna of the late Pliocene Ringold Formation, south-central Washington: University of Washington Master of Science thesis, 164 p.

Gustafson, E. P., 1985, Soricids (Mammalia, Insectivora) from the Blufftop local fauna, Blancan Ringold Formation of central Washington, and the correlation of Ringold Formation faunas: Journal of Vertebrate Paleontology, v. 5, no. 1, p. 88-92.

Hodge, E.T., 1932, Geological map and report of north central Oregon: University of Oregon Publications, v. 1, no. 5. 42 OPEN FILE REPORT 96-8

Hodge, E. T., 1938, Geology of the lower Columbia River: Geological Society of America Bulletin, v. 49, no. 6, p. 831-930.

Hodge, E. T., 1942, Geology of north central Oregon: Oregon State College Studies in Geology 3, 76 p.

Kraus, M. J., 1984, Sedimentology and tectonic setting of early Tertiary quartzite conglomerates, northwest Wyoming. In Koster, E. H.; Steel, R. J., editors, Sedimentology of gravels and conglomerates: Canadian Society of Petroleum Geologists Memoir 10, p. 203-216.

Kraus, M. J., 1987, Integration of channel and floodplain suites, II. Vertical relations of alluvial paleosols: Journal of Sedimentary Petrology, v. 57, no. 4, p. 602-612.

Kraus, M. J.; Brown, T. M., 1988, Pedofacies analysis; a new approach to reconstructing ancient fluvial sequences. In Reinhardt, Juergen; Sigleo, W.R., editors, Paleosols and weathering through geologic time-Principles and applications: Geological Society of America special Paper 216, p. 143-152.

Last, G. V.; Bjornstad, B. N.; Bergeron, M. P.; Wallace, D. W.; Newcomer, D.R.; Schramk:e, J. A.; Chamness, M. A.; Cline, C. S.; Airhart, S. P.; Wilbur, J. S., 1989, Hydrogeology of the 200 Areas low-level burial grounds-An interim report: Laboratory, [Battelle Memorial Institute], Richland, WA, PNL-6820, 2 v.

Lindsey, K. A., 1991, Revised stratigraphy for the Ringold Formation, Hanford site, south-central Washington: Westinghouse Hanford Company WHC-SD-EN-EE-004, 12 p.

Lindsey, K. A., 1992, Geology of the northern part of the Hanford Site-An outline of data sources and the geologic setting of the 100 Areas: Westinghouse Hanford Company, Richland, WA, WHC-SD-EN-TI-011, 27 p.

Lindsey, K. A., 1995, Miocene- to Pliocene-aged suprabasalt sediments of the Hanford Site, south-central Washington: Bechtel Hanford, Inc., Richland, WA, BHI-00184, 42 p., 4 appendices.

Lindsey, K. A.; Gaylord, D.R., 1990, Lithofacies and sedimentology of the Miocene-Pliocene Ringold Formation, Hanford site, south-central Washington: Northwest Science, v. 64, no. 3, p. 165-180

Lindsey, K. A.; Jaeger, G. K., 1993, Geologic setting of the 100-HR-3 Operable Unit, Hanford Site, south-central Washington: Westinghouse Hanford Co., WHC-SD-EN-TI-132, 53 p.

Lindsey, K. A.; Tolan, T. L., 1996, Rediscovery of late Neogene lacustrine deposits in the western Umatialla Basin-Implications for basin evolution and paleodrainage history, north-central Oregon and south-central Washington [abstract]: Geological Society of America Abstracts with Programs, v. 28, no. 5, p. 85.

Lindsey, K. A.; Bjornstad, B. N.; Connelly, M. P., 1991, Geologic setting of the 200 West Area-An update: Westinghouse Hanford Company, Richland, WA, WHC-SD-EN-TI-008, 52 p.

Lindsey, K. A.; Bjornstad, B. N.; Lindberg, J. W.; Hoffman, K. M., 1992, Geologic setting of the 200 East Area"An update: Westinghouse Hanford Company, Richland, WA, WHC-SD-EN-TI-012, 47 p.

Lindsey, K. A.; Tolan, T. L.; Reidel, S. P., 1993, New insights into the origin of late Neogene sediments in the Umatilla Basin, north-central Oregon and south-central Washington [abstract]: Geological Society of America Abstracts with Programs, v. 25, no. 5, p. 70. ·

Lindsey, K. A.; Reidel, S. P.; Pecht, K. R.; Slate, J. L.; Law, A.G.; Tallman, A. M., 1994a, Geohydrologic setting of the Hanford site, south-central Washington. In Swanson, D. A.; Haugerud, R. A., editors, Geologic field trips in the Pacific Northwest: University of Washington Department of Geological Sciences, v. 1, p. IC 1-16. RINGOLD FORMATION 43

Lindsey, K. A.; Slate, J. L.; Jaeger, G. K.; Swett, K. J.; Mercer, R. B., 1994b, Geologic setting of the low-level burial grounds: Westinghouse Hanford Company, Richland, Washington, WHC-SD-EN-TI-290, Rev. 0, 82 p.

Machette, M. N., 1985, Calcic soils of the southwestern . In Weide, D. L.; Faber, M. L., editors, Soils and Quaternary geology of the southwestern United States: Geological Society of America Special Paper 203, p. 1-21.

Martin, J.E., 1979, Hemphillian rodents from northern Oregon and their relationships to other rodent faunas in North America: University of Washington Doctor of Philosophy thesis, 187 p.

Merriam, J.C.; Buwalda, J.P., 1917, Age of the strata referred to the Ellensburg Formation in the White Bluffs of the Columbia River: University of California Publications, Bulletin of the Department of Geology, v. 10, no. 15, p. 255-266.

Miall, A. D., 1977, A review of the braided-river depositional environment: Earth Science Reviews, v. 13, no. l, p. 1-62.

Miall, A. D., 1978, Lithofacies types and vertical profile models in braided river deposits-A summary. In Miall, A. D., editor, Pluvial sedimentology: Canadian Society of Petroleum Geologists Memoir 5, p. 597-604.

Miall, A. D., 1985, Architectural-element analysis--A new method of facies analysis applied to fluvial deposits: Earth Science Reviews, v. 22, no. 4, p. 261-308.

Myers, C. W.; Price, S. M.; and others, 1979, Geologic studies of the Columbia Plateau--A status report: Rockwell Hanford Operations RHO-BWI-ST-4, 541 p., 53 plates.

Newcomb, R. C., 1958, Ringold Formation of Pleistocene age in type locality, the White Bluffs, Washington: American Journal of Science, v. 256, no. 5, p. 328-340.

Newcomb, R. C., 1966, Lithology and eastward extension of The Dalles Formation, Oregon and Washington: U.S. Geological Survey Professional Paper 550-D, p. D59-D63.

Newcomb, R. C.; Strand, J. R.; Frank, F. J., 1972, Geology and ground-water characteristics of the Hanford Reservation of the U.S. Atomic Energy Commission, Washington: U.S. Geological Survey Professional Paper 717, 78 p., 3 plates.

Packer, D.R.; Johnston, J.M., 1979, A preliminary investigation of the magnetostratigraphy of the Ringold Formation: Rockwell Hanford Operations RH(?-BWI-C-42; Woodward-Clyde Consultants, 60 p.

Puget Sound Power and Light Company, 1981, Skagit/Hanford nuclear project, preliminary safety analysis report: Puget Sound Power and Light Company, 7 v.

Reidel, S. P., 1984, The Saddle Mountains-The evolution of an anticline in the Yakima fold belt: American Journal of Science, v. 284, no. 8, p. 942-978.

Reidel, S. P., 198.8, Geologic map of the Saddle Mountains, south-central Washington: Washington Division of Geology and Earth Resources Geologic Map GM- 38, 5 sheets, scale 1:48,000, with 28 p. text.

Reidel, S. P.; Pecht, K. R., 1981, Wanapum and Saddle Mountains Basalts of the Cold Creek syncline area. In Myers, C. W.; Price, S. M., editors, Subsurface geology of the Cold Creek syncline: Rockwell Hanford Operations RHO-BWI-ST-14, p. 3-1 - 3-45. 44 OPEN Fll..E REPORT 96-8

Reidel, S. P.; Pecht, K. R.; Hagood, M. C.; Tolan, T. L., 1989, The geologic evolution of the central Columbia Plateau. In Reidel, S. P.; Hooper, P.R., editors, Volcanism and tectonism in the Columbia River flood-basalt province: Geological Society of America Special Paper 239, p. 247-264.

Reidel, S. P.; Lindsey, K. A.; Pecht, K. R., 1992, Field trip guide to the Hanford site: Westinghouse Hanford Company WHC-MR-0391, 50 p.

Reidel, S. P.; Campbell, N. P.; Pecht, K. R.; Lindsey, K. A., 1994, Late Cenozoic structure and stratigraphy of south-central Washington. In Lasmanis, Raymond; Cheney, E. S., convenors, Regional geology of Washington State: Washington Division of Geology and Earth Resources Bulletin 80, p. 159-180.

Retallack, G. J., 1986, soils as grounds for interpreting long~tenn controls on ancient rivers: Journal of Sedimentary Petrology, v. 56, no. l, p. 1-18.

Retallack, G. J., 1988, Field recognition of paleosols. In Reinhardt, Juergen; Sigleo, W.R., editors, Paleosols and weathering through geologic time-Principles and applications: Geological Society of America Special Paper 216, p. 1-20. .

Rust, B. R., 1978, A classification of alluvial channel systems. In Miall, A. D., editor, Pluvial sedimentology: Canadian Society of Petroleum Geologists Memoir 5, p. 187-198.

Rust, B. R.; Koster, E. H., 1984, Coarse alluvial deposits. In Walker, R. G., editor, Facies Models, 2nd Edition: Geoscience Canada Reprint Series 1, p. 53-70.

Schmincke, H.-U., 1964, Petrology, paleocurrents, and stratigraphy of the Ellensburg Formation and interbedded Yakima Basalt flows, south-central Washington: Johns Hopkins University Doctor of Philosophy thesis, 426 p.

Smith, G. A., 1988, Neogene synvolcanic and syntectonic sedimentation in central Washington: Geological Society of America Bulletin, v. 100, no. 9, p. 1479-1492.

Smith, G. A.; Bjornstad, B. N.; Pecht, K. R., 1989, Neogene terrestrial sedimentation on and adjacent to the Columbia Plateau; Washington, Oregon, and . In Reidel, S. P.; Hooper, P.R., editors, Volcanism and tectonism in the Columbia River flood-basalt province: Geological Society of America Special Paper 239, p. 187-198.

Smith, G. 0., 1901, Geology and water resources of a portion of Yakima County, Wash.: U.S. Geological Survey Water Supply Paper 55, 68 p.

Tallman, A. M.; Pecht, K. R.; Marratt, M. C.; Last, G. V., 1979, Geology of the separation areas, Hanford Site, south-central Washington: Rockwell Hanford Operations RHO-ST-23, 134 p.

Tallman, A. M.; Lillie, J. T.; Fecht, K. R., 1981, Suprabasalt sediments of the Cold Creek syncline area. In Myers, C. W.; Price, S. M., editors, Subsurface geology of the Cold Creek syncline: Rockwell Hanford Operations RHO-BWI-ST-14, p. 2-1 - 2-28.

Tolan, T. L.; Beeson, M. H., 1984, Intracanyon flows of the Columbia River Basalt Group in the lower Columbia River Gorge and their relationship to the Troutdale Formation: Geological Society of America Bulletin, v. 95, no. 4, p. 463-477.

Tolan, T. L.; Reidel, S. P., compilers, 1989, Structure map of a portion of the Columbia River flood-basalt province. In Reidel, S. P.; Hooper, P.R., editors, Volcanism and tectonism in the Columbia River flood-basalt province: Geological Society of America Special Paper 239, plate, scale 1:500,000. RINGOLD FORMATION 45

Tolan, T. L.; Beeson, M. H.; Vogt. B. F., 1984a, Exploring the Neogene history of the Columbia River-Discussion and geologic field trip guide to the Columbia River Gorge; Part I, Discussion: Oregon Geology, v. 46, no. 8, p. 87-97.

Tolan, T. L.; Beeson, M. H.; Vogt, B. F., 1984b, Exploring the Neogene history of the Columbia River-Discussion and geologic field trip guide to the Columbia River Gorge; Part II, Road. log and comments: Oregon Geology, v. 46, no. 9, p. 103-112.

Tolan, T. L.; Lindsey, K. A.; Beeson, M. H., 1996, Neogene paleodrainage implications of exotic clast lithologies in the Chenoweth (Dalles) Formation, Oregon-Rediscovery of old truths about the Dalles Formation [abstract]: Geological Society of America Abstracts with Programs, v. 28, no. 5, p. 118.

U.S. Department of Energy, 1988, Consultation draft site characterization plan: U.S. Department of Energy DOE/RW-0164, 9 v.

Walker, R. G.; Cant, D. J., 1984, Sandy fluvial systems. In Walker, R. G., editor, Facies models, 2nd ed.: Geoscience Canada Reprint Series 1, p. 71-89.

Warren, C.R., 1941, Course of the Columbia River in southern central Washington: American Journal of Science, v. 239, no. 3, p. 209-232.

Waters, A. C., 1955, Geomorphology of south-central Washington, illustrated by the Yakima East quadrangle: Geological Society of America Bulletin, v. 66, no. 6, p. 663-684.

APPENDIX A. OUTCROP MEASURED SECTIONS

Explanation of Symbols and Abbreviations used on Measured Sections

Grain Size Scale, indicates dominant grain sizes I I I I I I I I ~ boulder gravel ~~~cobble gravel pebble gravel coarse sand medium sand fine sand silt clay

Sedimentary Structures ~... ~ large-scale trough cross-bedding

small-scale trough cross-bedding

large-scale planar cross-bedding

''"'''''''''',,,,,,,,,,,, small-scale planar cross-bedding ''''''"'''' _..-c«-__._ ripple cross-lamination

~ climbing ripple cross-lamination

.=::::--.==- planar bedding

~ wavy bedding

~~.r: clay/silt rip up clasts

"" ~ load casts and deformed bedding

mottled bedding

soil peds and slickensides

clay balls and lumps

A-1 I 1[ I I I 111 lI ll well indurated ( cemented)

, --.--. .-- calcium carbonate

~ petrified wood

tflPIJ:llpSgo pebbly sand

paleocurrent directions, 0° is straight up to page

PL sample point for pebble count samples

small (

large (> 1 cm diameter) root and burrow trace

Abbreviations bn - brown; bk - black; bslt - basal; carb - calcium carbonate; cmt - cement; concr - concretions; dk -dark; Fe - iron stains; frags - fragments; gn - green; gy - gray; lo ang - low angle bedding; It - light; ol - olive; or - orange; rd - red; rp - rip-up clast; slicks - soil slickensides; tn - tan weath - weathering; wh - white

Vertical scale on left side of each column is in meters above base of measured section. Elevation above sea level is given for bottom of sections in feet and meters.

Locations of Measured Sections

Sec. Quadrangle - Location Description B-1 Wooded Island 7.5' and Matthews Corner 7.5' - SEI/4 SWl/4 sec. 12, Tl IN, R28E, 1st ravine N of Baxter Cn. B-2 Wooded Island 7.5' and Matthews Corner 7.5' - NWI/4 SWl/4 secc 12, Tl IN, R28E, next ravine N ofB-1. B-3 Wooded Island 7.5' and Matthews Corner 7.5' - NEI/4 SWl/4 sec. 12, Tl IN, R28E, next ravine N of B-2. B-4 Wooded Island 7.5' and Matthews Corner 7.5' - NWI/4 SWl/4 sec. 12, Tl IN, R28E, next ravine N ofB-3. B-5 Wooded Island 7.5' and Matthews Corner 7.5' - SWI/4 NWI/4 sec. 12, Tl IN, R28E, slope W of Baxter BM. B-5A Wooded Island 7.5' and Matthews Corner 7.5' - SWl/4 NWI/4 sec 12, Tl IN, R28E, slope SW of Baxter BM. B-6/6A Wooded Island 7.5' and Matthews Corner 7.5' - NWI/4 NWI/4 sec. 12, Tl IN, R28E,

A-2 slope W of Baxter BM. B-7/7A Wooded Island 7.5' and Matthews Comer 7.5' - SEI/4 SWI/4 sec. 1, T11N, R28E, ravines S of Parsons Cn. B-8 Wooded Island 7.5 - NWI/4 SEI/4 sec. 25, Tl IN, R28E, ravine W ofBluffBM. B-9 Wooded Island 7.5' and Matthews Comer 7.5' - SWl/4 NWI/4 sec. 1, Tl IN, R28E, slope N of Parsons Cn. B-10 Wooded Island 7.5' - SWl/4 SEl/4 sec. 25, Tl IN, R28E, ravine SW of Bluff BM. B-11 Hanford 15' - SEI/4 NEl/4 sec. 33, Tl3N, R28E, ravine N of Savage Island landslide. B-1 IA Hanford 15' - SWI/4 NEI/4 sec. 33, Tl3N, R28E, open slope N ofB-11. B-12 Hanford 15' - NEl/4 SWI/4 sec. 3, TI2N, R28E, slopes E of Savage Island. B-13 Hanford 15' - NEI/4 SWl/4 sec. 3, TI2N, R28E, Send of Savage Island landslide. B-14 Hanford 15' - SEI/4 NWI/4 sec. 33, T13N, R28E, ravines N ofB-11 and B-1 lA. B-15 Hanford 15' - SEI/4 NEI/4 sec. 14, Tl2N, R28E, slope W ofRingold BM. B-16 Hanford 15' - Wl/2 SEI/4 sec. 29, Tl3N, R28E, ravines N of bluff B-17 Hanford 15' - NWI/4 SEl/4 sec. 11, Tl3N, R27E, slope above road S of gate. B-18 7.5' - SEI/4 NWl/4 sec. 21, Tl4N, R27E, bluffs S ofLocke Island. B-20 Hanford 15' - NWl/4 NWl/4 sec. 24, Tl3N, R27E, bluffs opposite old Hanford. B-21 Hanford 15' - SEI/4 SEI/4 sec. 3, Tl2N, R28E, bluffs S of Savage Island landslide. B-22 Hanford 15' - SWl/4 SEl/4 sec. 19, Tl3N, R28E, bluff NW of Savage Island. B-Dl Hanford 15' - NEl/4 NEl/4 sec. 30, Tl3N, R28E, bluff S of Savage Island. B-D2 Hanford 15' - SEl/4 SEI/4 sec. 9, Tl3N, R28E, bluffE of Savage BM

A-3 Sec B-1 Top Elev 640 ft (195 m)

II ll II II llllllll 201=:==::i 40 or-rd

poor outcrop

.150m 170m I I I J_ silt rp gybn wh-gy It gy bn

10 30 crumbly sand float

mbr of Taylor Flat mbr of Wooded Is. rd-bn crumbly banding dkgy It gy dk gy crumbly bn 140m crumbly dkgy clay balls 9Y. dkgy

gy popcorn weath o~~~ ox ·135 m/443ft 20 ol bn crumbly 11111111 llllllll

A-4 Sec B-1 ( cont}

llllllll 60. ~)( f-r- '(-{. -.-{ ( "i y. X.

" 'I. ;,( ~ x~ 190m X X ~ '( /\ ----- 50 ---:::.£ ...... - , ...... ,,'-,: ~ :'.'

ashy

scoured contacts

40 60 11111111 111\\lll

A-5 Sec B-2 Top Elev 640 ft (195 m)

11111111 ll II II II 20 40 dip to N 1l. {). dkgy 140m )( 'J.. 160m +++ + + ash + +H""++

'f. { _J dkgy 'f. X i- bn-tn-gy X ~ , ~ 1 I 10 30 I bngy ~ I ...._____ \ ~ popcorn weath 130m. 150m ------~ I

wh-gy

~ poor outcrop ~ ~ mbr of Taylor Flat ~ PL3 mbr of Wooded Is.

0 ~ 121.5 m/399 ft

A-6 Sec B-2 (cont)

11111111

Fe mottled 180m

cmt

mottled rd gy

..,.. ... massive -,- ...... - ...... -.- ......

50 70 ,;" { darkens sand float ). 170m f.. 190m

X f. ,({ ,f 1- dkgy crumbly -l- bn-gy-tn 'S.- l T, 1- popcorn weath gybn -~ gybn

dkgy xf.' i

A-7 Sec 8-3 Top Elev 640 ft (195 m)

11 I I I II 1111111 1111111 40

gybn poor outcrop dkgy

tn crumbly

gy poor outcrop

ltgy

150m 170m 190m

-- dkgy 10 -::: ..:::"'-- 30 -..-:a-=-- - dkgy ---- ..,,;,,,:------:::::::- ''~- ,,, ++H reworked ash "''''''' ~

gy-bn

sand float

gy 1 float

140m 160m 180m r--===c.1..-~t tn bn mbr of Wooded Is. gy-ol 0 138 m/453 ft 40 1111111 1111111 I I II I I I

A-8 Sec 8-4 Top Elev 661 ft (202 m)

lllllll llllltl 40

ash poor outcrop

whgy

wh dkgy

dk 9Y 150 m 170m tn dkgy crumbly Fe 10 30

mottled I

sand float

dkgy tn ,poor outcrop tn · mbr of Taylor Flat mbr of Wooded Is.

PL10 140m 160 m

0 138.5 m/454 ft 20 \lllllll 11111111

A-9 Sec B-4 (cont)

60 """'

float

nodules and conct

dkgy

crumbly

wh-gy 190m concr s1Fc~s dkgy ------

180rn 200m float 40 60 11111111 11111111

A-IO Sec 8-5 Top Elev 653 ft (199 m)

1 I 11 11 II 11111111 40 20 ~ ,,,, 'J. 'I~ gy '{ ,t gy-ol ...... nodules . tn crumbly

Y. 'f 1 Fe and carb cmt 'f- 'i' dkgy 140m 160m ---- tn crumbly

~ rd ol ~q ...... ___ 30

--- --«' poor outcrop ------___, ------mbr of Taylor Flat / mbr of Wooded Is. 130m 150m ·---

0 125 m/411 ft 20 \ll\11\I

A-11 Sec B-5 (cont)

11111111 II 11 I 111 60

180m

massive

50 70----'....

-,-.,.."..,...... nodules ...... ,_.,.." -r gy 170m 190m tn bn

gy gyol

tn bn bn tn crumbly

dkgy 40 60 llllllll lllllll(

A-12 Sec 8-SA Top Elev 686 ft (209 m)

llllllll 11111111 11111111 20 40 -x_ 60

j""'l ..,.. dkgy 'j; 'f.nl/. 'lf sand float t../ mottled l/'1 popcorn weath ) ___.,,, ~o& clay balls ------·~\ '\ ( I ;; I 130 m ~ ( 150 m 170m ~ J mottled mottled

-- dkgy 10 30 50 __....._ ·mottled ------

poor outcrop mbr of Taylor Flat

mbr of Wooded Is.

mica ·gyol popcorn· Weath 120m 140m 160 ITI float

'l.('I.,. dk gy 1,. 'I, .,. 0 117 m/385 ft 20..____ .... 40 ll II II II llllllll llllll\l

A-13 Sec B-SA (cont)

· 80 '"'"''"

sand float

,J.. '$. {.'(. dkgy xti ',x 'id popcorn weath -L I -- ~ i. t 190m "-"{ :1. ... 1c clay balls ~ :i:_, 't .... J -:_ 1.,.. dkgy t- 70 'l 90

I!:: sand float --- " -- ...... ,. massive

'I.. J ( popcorn weath :r IJI 1y f} "~~ sand float '- t" mottled

180m 200m

60 80 1\11111\ llllllll

A-14 Sec. 8-6 Top Elev 796 ft (243 m)

11111111 lllllltl llllllll 40 60·

PL9

140m popcorn weath 160m

\ f ) rd gy ~ mottled poor outcrop popcorn weath

C: :->

~ ~y{i(i It gy PL11 '/. '/. dkgy 50 'J. 't.,.: 10 30 l It gy lx'nl popcorn weath '{ '1 gy poor outcrop hi ang. 130 m 150m '<\ '1. PL8 40% bslt carb cmt mottled gy-bn \ x/} gy I mottled· 'l( I I poor outcrop I mbr of Taylor Flat mbr of Wooded Is. ,ti/ It gy I '11 I popcorn weath i--- y.,:<

f/ gy } ~ dkgy 0 122 m/ 400 ft 40· 1~\ 11111111 11111111 11111111

A-15 Sec B-6 ( cont)

11111111 rtu,11 n- 80 100 ..,- f. ~ 1 I 180m -::_(.,. It gy-bn 200m 220m ( j+ popcorn weath ~ ...... ' I poor outcrop ~-

l.~·· clay balls ~ 0 ••/,> -r-...,...... {'J'. I I gybn ..,..-- popcorn weath ...... I y\ of ...... f

loang y. '{. 70 90 ,,..... __ ...,..

~-- poor outcrop 170m 190m ~ 210m It bn

- wh-gy dkgy 'f.i.../.1. -- i _,.. ...-'f 'I. " t,{,.. clay balls '{ t carb concr " -r-J 'i. " XI{ ~\ -t:--~ 'J. 60 80 11111111 11111111

A-16 Sec B-6 (cont)

llllllll

...,.. 243 m/796 ft ...,...-,- . -r

fissile . --=-- -::::::::. .~-;;;-----=- -- . -=- -=- -:;;_ .=-=- .--"":::..- . -=- alt rd-bn and wh-gy ---- fissile . -- 230m ,__ -

crumbly wh-gy . 2nd lake+ . . mbr of Wooded Is . mbr of Taylor Flat .

11111111

A-17 Sec. B-6A Top Elev 675 ft (206 m)

11111111 20 '-'--'-'-~"- ~-/~.,.,,.,,.,,,,,.....,.,.,)...... _, .. . - , .....,,

. ,,...... , poor outcrop ,,,,, . ,,,,, l

140m

llllllll 10.Ji' I

130m 150m

0 I I I I I II I 11111111

A-18 Sec B-6A (cont)

llllllll 50 "'"'" 10--- gy p9pcom weath tn bn gy clay balls tn bn poor outcrop gy sandy

dkgy pebbly float

f 170m 190m poor outcrop ash rp bn/tn ash popcorn weath absent 50 M to S

40 80I• 60. wh-gy gy loang ash transfe_r pt for sec. B-6 X-y-1. .... iy dkgy

'{'rf......

. poor outcrop 'Li< Fe 'f._f '( - IX I - I tn bn popcom.weath I 160m 180m I 200m ~;::::;~::::>""-mbr of Taylor Flat 'y. mbr of Wooded Is. I I bn tn dkgy 301------­ 50. 70 ,i.4 lll lllll l I I II I I I I I II I I I I

A-19 Sec 8-7 Top Elev 712 ft (217 m)

11111111 11111111 ~ ~

''" mbr .of Taylor Flat mbr of Wooded Is. popcorn weath gy

140m bn tn

PL6 "-ti;.{ dkgy 1.,1 t t t bn dkgy 1.,.11 clay balls ..,.{...... -,T nodules

'{ gy 10 30 f mottled rd-tn-gy -

130m - -- 150m ------poor outcrop ------s.: ------loang. mud partings :i ,,,,, ---- ;· \ ,,,...... poor outcrop 0 --- 123 m/404 ft 20 -----11111111 ll II II II . I

A-20 Sec B-7 (cont)

111\1111 11111\\\ 60 80

,~-1 popcorn weath

I 'J-· Ir

180m 200m

sandy float

clay balls tn bn: dkgy'

ash absent 50 m to S

popcorn weath dkgy

gy 170 m 19om

---- It gy -- dkgy

loang

mottled bn rd to tn bn 40 60 ,.,,1111 11111111

A-21 Sec B-7 (cont)

11111111

slope wash

90

~--

poor outcrop 210m ...... -- diatomaceous - - - ~ndlakef mbr of Savage Is. ~,f ,J dkgy mbr of Taylor Flat y :L°' ..,. .,. ... nodules

\ I I bn rd to tn gy

'r1 mottled t ) ,{ / popcorn weath 80 11111111

A-22 Sec 8-7 Extension Top Elev 567 ft (173 m)

11111111 20 ,,,,,,,, :-,..,~ 40 .... I I '"''"' l...,.. gy 140m 160m rd-bn-gy I \ mottled float \\ '1 I I gy I I

rd-bn-gy

, I base of Sec. B-7 A poor outcrop \l•~ gyrd \ \ • 1 dkgy ,C.f..• I • i 'l(.'" I° gybn 10 30 crumbly 50 w; dkbn fissile 130 m 150 m 170m

rd mottled

crumbly fissile float

rd

mbr of Taylor.Flat mbr of Wooded Is. PL7 0 20 40 11\lllll 121 m/398 fl llllllll t\111111

A-23 Sec B-7A Top Elev 742 ft (227 m)

illlllll I 11 I I I II 20 40

drape

covered 190m 210 m

sandy cover

.

==-­ gy-wh 'i1- " -=- ~ ): - ....,._diatomaceous -=-- gyol i\ I - /wh-gy I - - 2 ndlake lC I mottled + - contact dips to N 1 l\' P(?PCOrn weath - "'-.mbr of Savage Is. I - mbr of Taylor Flat 10 l 30 covered 50 - ----"'=--- ) X :::.?--- \ ( mottled -- '- I.... --=--- - dkgy 180m 200m \ -( 220m /" l... .,,..., mottled _...... ~-~ __,,,_..::::e wavy bedding gybn float .i---::::;.------:::=:- ~-- wavy bedding ~ ' -- IBash ---;1111#' ----.,d(':- .;111111,l!f!JIIP ~,,,,, 0 173 m/568 ft 20 40 I I I I fl I I 11111111 I II I I I I I

A-24 Sec. B-8 Top Elev 879 ft (265 m)

I II I I I I I 111 II I 11 11111111 20 40 '60 -i-.•...... • dkgy '\.''\. '\. '\. \...... - crumbly \ \ I. ( Fe a~hol gy I' sand float ;H'' crumbly _,I 1,r:1:( 01gy ,,_ fissile 'J.,J'l:y; -, popcorn weath gy 1'- )< /'f. ;,)/i. dkgy 150m 170m olgy 'I. \, poor outcrop 190 m bn q.( crumbly gy \ < popcorn weath I dkbn bands ... mottled crumbly --~{_, L ;: , rd ltgy popcorn weath bn gy 30 50 ....." _., bn

.... crumbly ...,.. sm caner

poor outcrop sand float

140m 160 m 180m poor outcrop

gy mbr of Taylor Flat float , ol-bn mbrof Wooded ls. 0 .....-======136 m/446 ft 20 , 40 l I I I I 1, I I 11111111 lll\1111

,. . A. . ) Sec B-8 (cont)

11111111 11111111 II I II I I I

tubes 240m rd massive 80 I 'f..­ i I diatomaceous y..- .,- ....-;-v 1 \ dk gy )-... 260m fissile 2nd lake f 1( """T" popcorn weath wh mbr of Savage Is...... ,.. mbr of Taylor Flat 100 ....-_...... - ...... - rd-gy ,1,u. I'\ - .-.111 dkol bn 210m

silty =--=­ olbn --

=- --=- gywh 230m .,, '£ 70 u ,.,,, rd silty gyol dkgy 250m

90 -- weath alt gy or --- alt rd gy ,,,,,

200m wh-gy ,,,,, diatomaceous poor outcrop --

fissile 220m

60 llltllll 1111 fl II 11111111

A-26 Sec. 8-9 Top Elev 600 ft (183 m)

llll\111 11111111 20 40 ~~ '{ siltier 'f '{.,

~L!.,_,,....,, mottled -'-"""'

'"'''' poor outcrop ''''"' low silt ,,,,,~''''"' rdbn

rd bn peblenses 140m 160m :Jft -y·r·.- gy :·:1·f: 10 30 ~)'.·,::..... ;r~.;: ...,... •)·~--~··. .. 'f. ..,. gy '1.··.~~,: ...... ,. k mbr of Taylor Flat k.' mbr of Wooded Is. 1(~ gy ) t A t .,_, f.. float .(£< Ii gy l, ( ~ 1 f clay balls '{::::..,. 'f. l- tn-rd

rd-bn PL4 130m 150 m

loang 0 128 m/420 ft 20

A-27 Sec B-9 ( cont)

11111,11

-'>-.x ~ gy f. Y. ~ '\. - ~ rd bn '{.- - ,- 180m - \ - rd bn 50 - - - - - sandy IB's - - - - .... -t. + ...... wh "'yl.,rl' "- \t ( \ t\ '( I lt-dk gy ,:P'\ 170m \ '( '{ (J..~Y. popcorn weath ld yty l 40

A-28 Sec. 8-10 Top Elev'879 ft (265 m)

1111 II II lflllll I 11111111 20 40 60

'"""'""'' I ''"'"'''-- float """''-- -'''"'''""'- carb layers float I(~ " dk ol-bk ''''''""- 1tl< mbr of Taylor Flat - X tn ol mbr of Wooded Is. ( tuff?

PL1 ~ It ol-lt tn ¥ 170 m 130m ..... gy-lt ol 150m carb concr 10 30 50 ..... rd bn gy .... It gy crumbly ·,I I poor outcrop i. ltgy '( 'f '( gy ·gy >30% bslt "x•t soil slicks ...... '{ ,.,.. I hi qtzite rd-gy-bn I ~ <:\ crumbly I dish and pillars rd bn float I PL2 wood frags fissile 120m 140m 160 rr

0 119 ml 390 ft 20 40 11111111 llllllll 111,1111

A-29 Sec B-10 (cont)

11111111 II II II II 11111111 ,, ... 80 ..... 100 120· ------\ ------+- diatomaceous - J'1 wh float ' - fissile - -- . - - cmtzones - t - 2nd lakef - mbr of Wooded Is. -- t)\. -~ (f/1' dkgy mbr of Taylor Flat =:!:'"- ~ =­--­_..,.._ ':/.. ~-- -....-- ~.,..{"( gy --=...,.._- ...... :( . _-.,-_-­ 190m . 21 Om ~~ 230m poor outcrop . 110 70 rd bn 90 dk bn -- "J.(,i J( l . -- i. 4 -- It tn-gy - or-gy - banding . --- t ./ gy - - ( -- ( ( . It gy - r'> - 'J._

It tn

,rd-bn - fissile -- . 20Om 220m --- 180m 60 80 -- 100· lr\11\11 '"""' llllllll

A-30 Sec. B-10 (cont)

\\\1111\ 140·-----

float

250m

265m (-r- {~,-\ ..,... I / \ I ( \ I rd silcrete -r -:L .,...-.-..,...... _ ...,.. ..,...--r --r- -r- -- -.- -r -======~...... -=-== 240m 260m --~==---- 120 140 11111111 '"""'

A-31 Sec. B-11 Top Elev 754_ft (230 m) - ,,1_,1111 11111111 I I I I I I I I 20 40 60 ,,,,, 10-15% bslt - It bn-gy "-

A-32 Sec 8-11 (cont)

11111111 11111111 80 -----===------I::==~_- alt rd bn to gy_ i===-1--

massive rd-bn \ ...,.._. diatomaceous

}fissile 210m 9 traverse 0;25 mi north to B-11 A wh l 2nd lake'!' - poor .outcrop ------;:;.._-- ~=----- 60 200m.ao 220m 11111111 11111111

A-33 , Sec. B-11A Top Elev 920 ft (281 m)

11111111 l I nl 11 I I 40 20 =-= diatomaceous 3rd lake 1' -:. --resso~------s.,? ! s gy rd ~...--> "It S S 55 SI y -'-?...... s s s~-;, ~ hi bslt rd 1 1 rd silcrete 1ull!J.. I ...-iju-.- 1111-::;.. -

250m 270m

pinches out in 50 m 10 30 - - fissile

--- '>;'... ( mottled -=-- -- - =- --- ==-- - rd bn-gy ""I'"" Plio-Pleistocene unit -:.. ~--_,..-r- ...... - 280m 240m 260m fissile -, gy-rd bn - top of B-11 ------hd 236 m/774ft 0 20 - 40• . I :UJ..1-1,, 111 11111 1u1,111

A-34 Sec. B-12 Top Elev 669 ft (204 m)

tlll1111 11111111 . 11111111 ;'(.;<>,

4 ~" I i, < ...,..

20 " ~ I ,( ..... dk gy diato"\aceous 1st lake t 0 " .....,.. mbr of Savage Is . 0 0 ..,.. carb stringers mbr of Taylor Flat 0 40 t ~ 0 0 .... 0 wh-gy fissile 0 ...... --- .... It gy-ol crumbly ...,...... gy carb nodules 160m 60 " i .,...,...... rd bn crumbly "' ( ..... gy ':I. , ...... carb nodules ltgy 180m gy-lt gy ) ( 'l,( (.< { bk ) ( ( rd bn mottled ( i l ) f ., <,l,,< (~ 200m { \ dkgy f gy-lt rd mottled It gy crumbly " ,( " fissile f. dkgy gn

It gy crumbly ( 30 clay balls gy

150m -I:.-­ 50 It ol gy popcorn weath < - I gy clay balls ---- Fe I -- • It ol gy crumbly 170m. poor outcrop -- or - - micaceous ----- < 190m -- ....._ .... carb veinlets ---""!!..-- ,( 139 m/456 ft2 l v ,c 0 -- 11111111 11111111 I I I I II I I

A-35 Sec. 8-13 Top Elev 900 ft (274 M)

I I II I I I I ,1111111 20 40 _._.-s..- popcorn weath I I a, mottles drapes ~ =~---=-- =2' :::------covered --~ flaser bedding '""==---~ drapes 220m 240m drapes

covered

10 30

drapes -- cemented ------=------drapes

210m 230m rd-or ------ylgy ---- yl-gy --- 0 206.5 m/677 ft 20 --- 11\11111 1 I l I l l I I

A-36 Sec B-13 (cont)

11111111 60

--

poor outcrop It gy fissile 260m

,/tomaceous i 50 3rd lake' 1' 70 1----'-s-..s .,..~ ------..-_'"{-s-$, ~ ...... bsltic J=-~

float 250m 270m

ltgy massive 40 111,,,11 I I I I II I I

A-37 Sec. B-14 Top Elev 920 ft (281 m)

11111111 I I I II 111 ·Jllltlll 20 4 -~ 60 =-- ~~ sco ured 1-2 m deep - - -=--=------...... - ..... -=-=------"'{ -- =- ..... ---:=!" '< carb nodules .... ( -r . dk gy .:::;;.=: ..,... -;::....- '/.. ~===- -r- -==-...:; silt ib's 'I.. ...,.. -=--- --::;.- • D'•• ·:.· ~~:::~· ... $0· clayb alls .•) i,: :• gy - - gy gy-or - 1st lake'f 190m 210m. tn -diatomaceous wh mbr of Savage Is. ~ .. ;) mbr of Taylor Flat ~wh-gy I crumbly \:~.\ i.::: diatomaceous 10 . 30 << ~( (' popcorn weath: 50 I ' ::::;.- gy-ol ~-= crum bly -- wh 2nd lake f ,,,,,,

-'''''" ,,,,, ,,,,,,- ·- - WO od frags ·i, 1 ..,.. 'jl y' .... bk ,,,,, rd stained X 'i 'I. ,,,,, poor outcrop _..,.,. 160m 180m --- 200m . ,,,,, -=-- ,,,,, poor outcrop popco m weath bn-gy flaser bedding 0 20.1------. 40 11111111 I I I II I I I I I I I I I 11

A-38 Sec B-14 (cont}

fl 1111 II II 11 11 11 11111111 80 _.,,,,,. 100 120 -- ---=- ---=---=-- ~diatomaceous l -=---- wh . 3rd lake f - J::=i.... ------•t ...,.. -r} /f 1 ~\ '"t" --- 1 rd-bn blocky 1Jkf...,.. -.-, l11!ft I II I ..... gy 230m 250m 270m =­ ,...... :::--:._------...... 70 - 90 110

poor outcrop poor outcrop ' - - ,< 1 -f•,-- hd ox crumbly ---=- -=--::. =--- alt gy-or

~-=--1 fissile -­.------= ..,... ..,..... 220m 240m 260m ..,...... 280n .. -::.~-'}-- ---=--::: I

60=~i 100 120. 11111,11 ''""" 11111111 \ I II I I I I

A-39 Sec. B-15 Top Elev 840 ft (256 m)

llllllll 11111111 )111111' 20- 40 flaser bedding ~- ~ - wh . ----- fisJl --,,.... ,, .... ~.sSS; ~,.,,,,.::,,_.._.... bslt gns rd bands sfs, rd bn, ------..-s..,.. f -r'...... r~..,... -,-_,.. covered -.-y ifJ ..,..I 210m 230m gy-rd bn 250m fissile ft¥ --n- ..,... II ---'l!::;;._ crumbly -'Dr 11..,.. -= - ...- lf, __.__,..__..,.., drapes I I carb weath 1.I..,..

gy-rd 10 30 50 - popcorn weath gy -..,-

-=--- ,.,..._ -- tn gy -=- "a,. - - weath I - =-- ~ - -- covered ..!::.':!!!' \ 220m - fissile 200m ...,._ diatomaceous 240m ------::.-_ ----- {n - - ~"> or wh-lt gy - -- fissile ------,J 2nd lake~ /----'---- -=--- drapes --.-- / drape w/ 1 m relief -- gy i,,,;;;:,;:-_ ...,.. .' --- - caner 0 ---- 643fV1.96 m 20 :::..-=-1 :40 I I I I I I I I f I I I I I I I -••••••••

A-40 ...... Sec. B-16 Top Elev 920 ft (2S.1.m)

111111\I i I I 1 I I I I I 11111111 ~--J 1~~~T~ 60 - .::..,. \ -- .ox wh-lt gy mbr of Savage Is. -- '1:..:J '(-r mbr of Taylor Flat - --- .;y:{ carb veinlets - =- ~\:?}: - - 'J.7~ -- -==- -T'" ( ...:;;;--- )( " -=-- rd-bn gy --.1- gy -- 180m 200m . 220m mottles

' -----'S!!::. poor outcrop :::- sjlt rp -=:!!: crumbly ------=- 10 - 50 landslide deposits

2nd laket poor outcrop ---- ?------?

+---~covered contact 170 m 190m 210m - -= gy-bn Fe - - rd - 0 165m/541 ft 20 40· 1,111111 l I I I I l II 11111111

A-41 • Sec B-16 (cont)

111\1\1\ ! 80 -=- diatomaceoMs 1' 100 "''"'' :::= -""""" __ w -gy 3rd lake

fissile -- -= - S5SsS -=-- S5~ S weath -::::!!-- -s,.ss5 > ---- ~ rd-bn 'x'1'( / IJ'J '{I{ 240m 260m 280m {fl I gy 'II '/

la, bioturbated - ...... _...,.. :j:_-±f. a, mottled -.- .....---- ...... 70 90 110· - = ---- ~ poor outcrop -- - . -- ~ - s==iiii'" ------;;;;;;;;;a --- --==------'230m - 250m 270m ;;;;;;;; - \ - - --..::;;;- ~- ...:::::!""--- - :::; ------=------I 60 80 -- 100 -- I - --11111111 11111111 111111 II

A-42 Sec. B-17 Top Elev 890 ft ( 268 m)

11111111 11111111 20

-- 250m

-- \ 1 - diatomaceous -.- -• / gy-rd ...,.....,.. _ gy-wh 3rdlakef ..,...... ------...,.. S5~5 5 -.­ s; s ...... ,.. -.-...,.. rd bi:, ....,..-

carb stringers

10 crumbly rd fissile ltgy deformed 240m 260m gy-ol -- popcorn weath gy flaser bedding · rd

fissile crumbly I Fe -:... I ox -- 0 -- 232 m/761 ft 20 -- 11111111 \1111111

A-43 Sec. B-18 Top Elev 620 ft (189 m)

11111111 11111111 20 40 "fy'J. ( tn/bn {'ly' -{ clay balls dk ol ~/ 'l,; { wood frags ) :Lt olgy "{ ...... ol :1."" mottled ~v,.'-~<· ""'!!t clay balls t,{ 140m 160m y; f. t dk gy-bl '" f '{ i popcorn weath " "' gy/tn " fissile

i \0 30 )t. - -- poor outcrop slope wash

gy 150 m 130m mottled

ltgy popcorn weath

bk popcorn weath 0 gy-bn 126 m/413 ft ,,111111 11111111

A-44 Sec 8-18 (cont)

1111111\ 60

bk

dkol ('(. j .:!-{i or : ioj f·~ 'I. ;5 tt, 180m 'lo • .. I 11 >f. dkol-gy iii .'{..,. carb concr :I."

popcorn weath rd-gy ,mottled

Fe

I .. --i ::; _, ltol~~ I crum y t 170m { '{ gy ...~ ~ .: :-_.... : .. -... It ol-gy ox -=-- banded 1st'lakef wh mbr of Savage Is. 9Y mbr of Taylor .Flat 40 I I I I II I I 11111111

A-45 Sec. B-19 Top Elev 600 ft (183 m)

11111111 11111111 20 40 I i. I I rd-gy 'x ... ..,...... 1i,"'1 gy y rd-bn rd .i...l;-Jr .:t:' -.-..,.....,.. tn .,...... - ..... ""'T""-,- -=- Fe I - rd-bn i - I\ wh - - I crumbly rd-bn gyol llJt', crumbly ~...... ::- -.-_,.. :;:.- I -,-...... carb -=:::?:: rd-bn -,...... -,- :::!:.-..,... fissile 130m slope wash 150m -.- . 10 ...... - 30 rd-bn

I 20% bslt J10-15% bslt dkgy rd-bn

\(J/ Fe f:.{: dkgy w{~ rd rd bn :.1j·· . mottled dkgy i"i·-l. :-J 120m 140m \(: 0 ... } : llllllll 11111111

A-46 Sec B-19 (cont)

11111111 6 ...,..,.,.. ..,...j.-,- \ j..,.. \ ~ ..... i.. It gy-ol

:I l' Ir- bn ,, i\

\i I I I It tn \~ J I .1.: .J dkgy mottled

crumbly

170m bn 50 \ '{

')( ~ \ x

i I ' 't {

~ rubble \ wh-gy \< 160m 180m yl 40 ''"'"' 11111111

A-47 Sec. B-20 Top Elev 720 ft (220 m)

1111\111 11111111 II \I II \I 20 40 Ji(•1 60 0 1.. 1' f ol gy -- = or-gy ---=-

landslide deposits - -- or-gy 140m 160m 180 m -- 1st lake f mbr of Savage Is. ? ? and slope wash mbr of Taylor Flat

gy

# s \ gybn 10 30 50 crumbly -----

rp

130m 150 m 170m -~'" 1 ...... _,, 1~ 1 1, ol gy 1,'i1 , .... ~ Fe Fe I 1~< lh l ...... ,.. carb nod ''"' 'J IJ.I .,.. ..,... ~''''' 1 bk P1' bn-tn 'I{ I O 126 m/415 ft 20 11111111 11111111

A-48 Sec 8-20 (cont)

II 11 1111 80 .::;-_ ==--=---=- --- =-- -- \ diatomaceous - /fissile - wh 11111111 - - -==--- 2nd lake t .200 m ---=------=---=-- 219 m --=----=-- - ::..:=.:::;;.--- - 70 ---- 90 1':f------poor outcrop --=--= ---=------~- ·- -- -=- 190m - 210m -:::;;,_-=------=­ ---- -=------~ 60 -- 80 _..__ 11111111 11111111

A-49 -Sec B-21 Top Elev 820 ft (250 m)

11111111 11111111 11111111 20 60 40 =­-- bk -==---- 180m --...... -==-. 200m 220m :::::=- dkgy -=:::--- rd bn ~-=-=-~ tn gy ---=-=-- --1-- poor outcrop clay balls -- cover 1st lakef mbr of Savage Is. ol gy bn l mbr of Taylor Flat ... • ...0 tn gy rd bn ... ! -rd mottled 30 50 10 mica gybn \ :=.- 170 m 190m diatomaceous 210m -- PL13 wh - fissile rd mottled gy-or -- --- ·=- ~- 2nd lake+ bn tn cover .. \ {' ,, rd olgy { I "If olgy dkgy ' { < -==- Jly -=::..-=:- - --:::;.. 1.,:1"9" -=--==- ' . =~- I I I gybn -- ...... crumbly 0 1. ------a­ .1 ...... bngy -::::...- 0 161.5 ml 529 ft 20 40 =- """" 11111111 11111111

A-50 Sec B-21 ( cont)

11111111 80

240m

sandier

I 1 poor exposure

70 90

230m ..,.. \ • rd ...... I ...... I .rd ' J:.."fi~ silty rd H,-i 0_--r- gy y~ fi { ..,.. l"T"' "( 1.S

-,._,..-,- I -r-_-.--.-...,,..,...... __ - -,. -- -T \

I I sandier I I I 60 80 • llllllll ''"''''

A-51 Sec. B-22 Top Elev 920ft (281 m)

11111111 20 --

--=- ---=------~- --- -.._. - 270m - - _...,..- -

10 thin graded beds

drapes

- ---=----= -=-- - 280m 260m loang

-- muddy -=-- _i,;;;;:..;;;..-+- _ gradational =- -- drapes 0 --·--­ 842 fU257 m 20 -- --11111111 I I II- II I I

A-52 Sec B-[?1 Top Elev 685 ft (209 m)

11111111 11111111 20 40--- ylbn bn gy

cover

150.m 170m gybn It gy

I 10 30 I

I I

.,.. 0 "t 0 ,J 7o bn gy ,.,... I ltgy 11 I gy 1, Fe It gy bn 140 m 160m

poor outcrop ltgy It gy bn ) Fe 0 ~ 37 m/450 ft 20 I I I I I II I ti I II I I I

A-53 Sec 8-01 (cont)

11111111 60 --= ::;. -.:::. .=;:" ----

-::::..---- =--- ·=;-- -= ----

Fe 2nd lake+ --- 190m slump block ---==- dis :>lace to B-D2 ,_-- -- 50 =:::.:- 70 -=- - stacked fining upwards -- sequences ,_--= yl gy-gy bn ,--

, _-=- diatomaceous l _ £ 1st lake 1' - !tgy 180m 200m ~ mbr of Savage Is. j ...,... mbr of Taylor Flat j ::: X mottled ---- . '( _:: It gy-wh -- -t ..:=::::-::::::!'- -:?::.. --, 40 60 -- ..... 11111111 11111111

A-54 Sec. B-D2 TQp Elev 920 ft (281 m)

I I I I 11 I I 11111111 20----.-- 40

ltgy 250m 270m ylgy gy powdery 3rd lakef •."D·-. .;, ------~.. :::,,;··.· 'gy-wh ':P.. ~: ....-\...... _ ...... -::;.- ·rd bn ....-o ..,.. gy ..::::::-=-~ .-.- ...,... -- ..,... _.,... ..,.._..... bngy 10 -.,-::-. 30 -=-~- 50 _-,. -- I•_ _..... ---.- ...... -=-- -:_...-- ltgy ..,.. ..,...... ,.. --=.=...... ,...... -__ ...,... - - 240m -- 260m 280m -- ...... -- It gy bn -- - '...,._ =-...,.. coatings - ..... --...... - -- - Fe _ ...... ------...... ---- - 1..-,~--~_. 0 234ml767 ft,20 --=--- 40 11111111 11111111 11111111

A-55

APPENDIX B. CORE GEOLOGIC LOGS

Explanation of Symbols and Abbreviations used on Core Geologic Logs

Grain Size Scale, indicates dominant grain size

I I I I I I I I - boulder gravel cobble gravel pebble gravel ~ coarse sand medium sand fine sand silt clay

Vertical scale is in feet below ground surface.

Sedimentary Structures and Subordinate Lithologies

"'''''''''''''""'"""''" sm all -scal e p1 anar cross- b e dd.mg

---~ ripple cross-lamination

_ plane bedding

~ ~ ~ root and burrow trace fossils

X X soil peds and slickensides -r:_-.-_;;::::r- calcium carbonate silty

silt and clay rip up clasts

pebbly

ty:;;>ga' pebbly to cobbly

v.,... -, ""' "~~£. basa It

---- member and formation boundary B-1 ----- mappable informal unit boundary within a member, arrows indicate direction named unit extends --

bk - black; bn - brown; bslt - basalt; carb - calcium carbonate ( caliche ); cl - clay; cmt - cement present; cmted - cement well developed; deer - decreasing; dk - dark; dom - dominated; Fe - iron stains; Frag - fragments; gn - green; gy - gray; hd - hard; hi - high; incr - increasing; lith - lithology; lt - light; lo - low; N - normal magnetic polarity; ol - olive; orgs - organic debris; por voles - porphyritic volcanic clasts; R - reversed magnetic polarity; rd - red; rp - rip up clasts; tn - tan; weath - weathered; wh - white; wood grags - wood fragments; z - silt

Locations of core holes (locations surveyed at U.S. Dept. of Energy Hanford Site in Washington State Coordinate System, WSC82S).

Corehole # Hanford well number Northing (WSC82S) Easting (WSC82S) Golder 1 699-40-13 135649.9 585939.4 Golder 73 699-42-30 136213.8 580785.9 Golder 78 699-30-25C 132593.5 582358.4 Golder E-19/E-l 699-17-26 128581.9 581882.4 DH-6 299-Wl 1-26 135563.7 567044.7 DH-9B 699-54-18C 139998.7 584471.6 DH-11 299-W15-14 135647.9 566092.9 DH-12 299-Wl4-7 135654.5 567034.2 DH-13/13A 299-Wl4-8/8A 135688.0 568012.0 DH-17 299-E19-1 135085.9 572819.9 DH-18 699-26-15C 131330.3 585472.4 DH-19 699-70-17 144960.8 584592.0 DH-20 699-29-83 132372.6 564510.1 DH-22 699-37-92 134597.4 561920.7 DH-24 699-43-84 136656.5 564184.7 DH-25 699-40-84 135751.6 564246.2 DH-28 699-50-96 138598.9 560496.9 DH-33 699-34-98 unsurveyed, located west of state route 240 at base of Yakima Ridge

B-2 G-1 699-40-13 Elev 507 ft (155 m)

I.I I I 111 I I II II I 1111\11 . . ..,.. • • • Fe ""i::.. "' • • • -,-.,•,<;:.... ,•. ••••••• I e, t) c:;:, paleosol rp unit J bsltic .... ash unit C t unitB + as lower mud . -- . tn hd - - unit t - \ 10% bslt . · ...... , .... tn ol Febk ol gy 5-10% bslt --· "' -= I 25 -,--- gy j ':..,..... '( - -r-:1- -- 350 . . -- j ..,.'I -- gy

'I.. 450 - . . - gy - unit Bt woodfrags - . - ...,. 1 ...... ~ gy ' -...... _ . bk gn - .... I -,-...... -- ...... _... '\-,...... ash 300 ·gyol - - I · mbr of Wooded ·Is. I dom bslt I and por voles ..... ';:' ...."'-"" """.:. '°.r.J weath - '-"-)4,...... , -- gy Fe 1".....,,'-_£:: - - ...... ,_ ._... -, .. --- Elephant Mountain Member . - 400 ---

gy It Fe 500 . -==-- \ . I II II I I I I II 11 I I I I I I I I

B-3 G-1 (cont)

I II 111 I

quartz gniess 150 . and granitics comm on

. pre-Missoula gravel ...,...... mbr of Taylor Flat ...... '{. ..,..-.- . ...,... ..,.. ..,.. 'I "r ...... ::?:.. '). . ~n mica mbr of Taylor Flat I mbr of Wooded Is. .. . • ••T unit Et .

200 . .

. 130 ·

I unit Ef ~~) I I I 11 I I 111 I I I I

B-4 G-73 699-42-30 Elev 481 ft (147 m)

1111111 1111111 -~-Fe

wood frags 350 units C& Ef

- - lower mud unit f unit At 1-4. 1 %-" ~ 1 y» .\. ~ .,. ol .... '.( \_

..... 1 1 ..... gngy '( ..... 1 .,...... 300 ..,... X ...- ..,.. y

~ j S.ll 400. _unit Bt - olgy

ol

,,,,,,,,, ',,,,,,,, unit A+ units+ wood frags mbr of Wooded Is. , lower mud unit t ....-,..-<-,-,..-,-,. ... 7- weath '-"'','-"" 430 ., Elephant Mountain Member 1111111 If l H II

B-5 G-73 (cont)

II I I II I

170

Fe

tn

tn gy

Fe

,,,,,,,

,,,,, Fe bngy

.. ,,,,,,,, ,,,,,,,, 250"---­ ltlllll

B-6 G-78 699-30-25C Elev 543 ft (166 m)

1111111 1111111 111 1111 200· . ---

wh

I .

wh wood bslt, qtz, ' gniessic • ~ 1"1 --- frags I .::;..~C.t1,,• ...... ,·· . . - ---=-- bsltic --

pre-Missoula grave1f y . gybn =- rd bn Fe mbrof t --,:::: -- crumbly· Taylor Flat - rd bn --=-- It gy bsltic .,,,,, - -1 350 . 0 ~ .. ;-- ...... ·.. 250· .: .. \ .. ;. -·:... ,,,.;., 45 gy orgs • =-I I I bsltic :.• ·--·'·":.·" .·# Ji.. I poor record. . - unite f crumbly -- :1 bsltic gytn ol I I woodfrags • - . --- ...... · ...... gy ol wh - - . ... : .... olgy

, bsltic org gn gy olgy I gyol mbr of Taylor Flat f mbr of Wooded Is. -,, :tlQQg fcags unit Et unit Et I unit Ct , 300 1111111 400 500 """' ll(llll

B-7 G-78 (cont) 1111111 1111111

.... .:. :. ·..... ~ l,:lf \:t~ -,. l gygn J. ~1 t.1- .,.. y.i> 'I A. '4 ~ ,_- . banding ltgy 6 tngy --- unit et orgs

gy

lower mud unit t bslt unitA t olgy

ol gy Fe ltgy

5501==':#===>.----__;u::.n:::it.=B..!f_ .650 lower mud unitt

gy

It gy

gy multi lith

orgs ~ ~" )[ ~ >' ,\. ~ orgs mbr of Wooded Is. 690i::::::::::::::!:::::==i.._-~__:.;.~::.:..!!~~:?.:-~ l ),. I.,... "'",...... weath ,._1..' J... .._ gy-wh .. Elephant Mountain Member 1 1 1 1 1 1 1

orgs 600 lllllll

B-8 G-E-19 and G-E-1 699-17-26 Elev 525 ft (est.) (160 m)

1111 I I I II I 111 I 11 I I I II

}...... x l It gy ..... ~ 650 gy org f X lower mud unit wavy bedding X unit At org wavy bedding X mixed lith gy

<10% bslt org >50% bslt org org ----- ol ----- bk Fe 500 org -- woodfrags org unit Bt 5-10% bslt mica mica 600 ----- org >5% bslt .. ,•.;,~-- ...... :. ... •....

>10% bslt f gy unit A 700 -r- ~ ,I... -r- ash (BNB sample) .,....1"' 1' '1'.-,- ~1 -,-- ~ t ..... l. missing ash mbr of Wooded Is. bsltic ~L..._\,.f~~I..~...,~.., '-.t:/~1- .... ":::;.,...... weath ...__ _.,,. Elephant Mountain Member org <5% bslt unit sf -=--- Fe lower mud unit t 730 550 l I I 111 I I I II I II II I 11 I I

B-9 G-E-19 and G-E-1 (cont} 11 I 11 I l I I I I 11 1 I l II I l I 280 . massive - hd -- unit Ct

<<5% bslt. -

300-

400 - I cl rp l

• • mica . • • I \ <10% bslt l==::::::3--- Fe '"''''''''\.._ top of E-19 -, Fe

,· unit c+ 5% bslt l unite+ ..,.. - -- bsltic ......

mixed lith 35 -..::--, dk O· Fe - 1 .,, b:r::;;:-·\ .:.... Fe Y...... 'I. 1 . unit E + '/. - 1:1-xr '{. massive .J-i:;­ hd '( ::;:t ) y.-:;_'f. ~ bottom of E-1 - 11 I I JI I I 11 I I 11 I I l I I 11

B-10 G-E-19 and G-E-1 (cont}

II I I I I r

200 pre-Missoula gravel mbr of Taylor Flat

ashy?

gy

gy y.-,;. 'of mottled 130· - - .. ,....- - .

1-2ft graded beds

150· - -

5% bslt . wood Fe 'L .\. f i. hi qtz ~ ix . lo bslt ~

.mbr of Taylor Flat mbr of Wooded Is. . unit Et

. . I I I I II I I I I II II

B-11 DH-6 299-W11-26 Elev 694 (212 in)

. lllllll ll 11111 . 111111\ ( unitsC & E - --i R lower mud unit -· •--. al.•• •• .

"\' gy ...... ,.. :. ..:.: _.,.'I>.:: ... .!\. lower mud unitf unit At ,, .. - 41 mudrp . - "" mud rp silty -- - 450 . 3 50· 250.. Fecmt hd

. . .

'"'" s.,.Pe R? I

>25% bslt - -.... rd bn . - ~ - - >25% bslt

. It bn-rd . - - - .

>25% bslt

00 .,______, 500 . 4 300 . dkgy unit Af cmted mbr of Wooded Is ~'-.,.4-~A~'°' .c.111it."""°" ' bedded Elephant Mountain Member 510 . ' I II I II I 1111 If I 1111111

B-12 11 I 1111 1111111 DH-6 (cont} ..... ,...,.. mica -,. I

~

! 0 c:,01 -,-_-,- I . :":": .:... : ...... ~ Plio-Pleistocene un it r~rb 90 -_-:::::.;:-J bslt >25% ; :.-,- ---~d: :..:.:- :. .. >25% bslt -::i::.....J... mbr of ...... J> • ._.:.:··~ 20% bslt Tay lor Fl at bn . 100, --r' mbr of Woode d I~. bn units C & E i------,..1 bsltic t -r-....._,.., bn 15O· lllllll

incrbslt j

. deer bsl

.

incrbsit

200·

\11\111

B-13 DH-9B 699-54-18C Elev 404 ft (123 m)

lllllll lllllll 1111111 olgy

tngy - >5% bslt unit Bt ;:;:.:..>-·.. ·,.

N ...... 100 •: •• f • ., ·.: ....•,

N? 0 O

0 O

2 00 ---- unit Ct hd .... ----=:..;;;...:.-_ ....,.. gy hd

300 ash? rd bn It gy

unit st gy ol lower mud unit t mottled

gytn

,r~ 150 'X"'" gy ..... k mbr of Taylor Flat f lower mud unit t mbr of Wooded Is. mbr of Wooded Is. unit ct - ..,...- ..:--r-'\.:-,. ,"'w:::, -,:,...=-"" gytn -::::.- .., ~ - ... :: "' Elephant Mountain Member "'\ .c...... ' 1 "'- c.. ... "' < ... "'\ ~., , ~

350 1111111 1111111 I I 111 I I

B-14 DH-11 299-W15-14 Elev698 ft (212 m)

-1111111 . 11 11111 111 It 11

400 '

. - -=- l gybn gy I

lower mud unit - - rd bn unit A . I rd bn

10% bslt

. ·350 . - >10% bslt - 450I• . ,__ ---r- I units C & E lower mud unit 550 . - - -- unit A mbr of Wooded Is. -- woodfrags - -- ...... ,._"" -- -J:.--­...... _ -===== ash ';,_~°:Elephant Mountain Member Crumbly _,, ...... -,

B-15 DH-11 (cont) . 1111111 1111111 120 - -- -

. . bsltic

\ elastic dike .I ...... -·-=-.\ :;.~

bn

150· _

bn ,_,] Hanford fm r"""..,..... I ...... -- -r-1 250 ...,...:;:-.- ...... , Plio-Pleistocene uni ...... ,_ ..,.. l .....-_...... I caliche --...,...... ,' ..,... -.- J

I I I \ . :~ ....; .. =·:. -:••. • mbrof ' Taylor Flat I >15% bslt I tn mbr of Wooded Is. units C & E

. >50% bslt

. 200·

300· .J

B-16 DH-.12 299;.w14-7 Elev. 677 ft (206 m)

11111111 I I fra°l U IIIISlll . .... · .. ·· . l( I x gy 5-10% bslt rd-bn . :.:.:.: ,,;.- .. -·· \ ash .ol gy lower mud unit f -- I unit At >10% bslt matrix 300 .

. .

I dkbn

0 O bsltic muddy .. :..· -·· ·.. ,. .. . rd bn weath <10% bslt

---..-• XB? I .

5-10% bslt bslt incr

. 500 bslt sand unitsC & E f ] · lower mud unit t gran -- -= 350

unit A+ mbr of Wooded Is. y 1. j Fe 520 ,. <- .... ,. ~ .. ,,. ,. weath . . . I I I I I I I I Elephant Mountain Member 11111111 11111111

B-17 DH-12 (cont)

11111111 11111111

more bslt

Plio-Pleistocene unit mbr of Wooded Is. - units C &Et

150

bslt incr.

250· __ , bsltic

bsltic more bslt 200 llllllll 11111111 111\llll

B-18 DH-13/13A 299-W14-8/8A Elev. 725 ft (221 m)

11111111 1111 II II ll \I II ll .. DH-13 DH-13A

400 . -

. . - It gy - .::::- -:::: -- cl/z matrix bsltic 500 mud matrix

. 0 " .. .. 0 >5% bslt - 350 - - Fe -- ( units C & E - - lower mud unit -- - - ash? wh - -- lower mud unit unitA 450 - ' t unit A+ 1.:'"""~\.. ;·,. ·:~ -~-.:.. bn mbr of Wooded Is I •• ,:.~-. rd-bn gy '- " .. <- " <- " weath 4\<.'-1..1"" 4 Elephant Mountain Member 540 I I I II II I .

. I I I I I I I I lllll\11

B-19 DH-13/13A {cont)

. llllllll llllllll

250

. . tn

\ ( I ( ' ' ' ' . hd 190

I

\ \ \ bk hd ·--- I gy 200· >75%bslt

Plio- Pleistocene unit ? --===a::.? mbr of Wooded Is. unitsC & Et . - bsltic

300 . ' - . ll ll II ll 11111111

B-20 DH-17 299-E19-1 Elev. 7;J6 ft (224 m)

11111111 I I I I I- t-1 I - 360

. - units C & E R lower mud unit t . . - R . It gy-ol ' R

wood frags 400 · R

N?

: 500 .

>5% bslt R?

' . Fe

lower mud+ dkgy N? unit ....., .. :.,.,.~\ wo~d frags unit A t ' unit A+ . X. XI mbr of Wooded Is. 1,,,r..:,_,,..,..."" (. ,.. weatherd bslt (.. "' Elephan t Mountain.Member bslt dom II I I I I I I 530 .....

11111111

B-21 . DH-18 699-26-15C Elev. 444 ft (135 m)

llllllll llllllll - llllllll - - - gy-bn unit c+ 350· --,- R - -.- --~ -,- ·~~-.. :-.. :; ..: 'I. ··- N y.. - bn . - It gy 4 50 - gy orgs· ,,,,, - ..:, ,,,,,,,,,,, ...... ~ crnt -- .... , .. -· .. - 550 -~ gy orgs ··-·---~--~ tn/gy - N gy unit sf - gywh - It gy N - - -- bn . -- (Ash?) R - - ltgy - gy - wavy 0 0 bn . - 400 ashy R ! - - lower mud unit 1' wavy -~~-=.\ R --• .; •• i • ••• ·., orgs N t--.. -0--0,,...., ___,'--..,__ Fe unit Bt gy

600 . unit A f mbr of Wooded Is. woodfrag fo------gy ..: ••:: .. :: ElephanCMountain Member -- -'-,-=. ..:-c...... ·~~ 6...... ,£.."'c.("\<."'I .,. 4 ... L &. 610 11111111 · II II II II

B-22 DH-18 (cont)

11111111 . 11111111 11111111 X >. bn -,- i .....~

. . ~ >i- N R 1------.:::----...... , ...... t .- • ..• ••~ - ( t l- bslt . .\. g y-ol t weath , mb~of Taylor Flat f . . mbr of Wooded Is . unitE t

.. 200 110

Plio-Pleistocene unit - mbr of Taylor Flatt 300· ---

bsltdom -- 5% bslt

N

. 150

- --1...,.... y-,- f( R ...,.... 'i '( R 250 I R ...... 'i ...... N 11111111 \1111111 llllllll

B-23 DH-19 699-70-17 Elev 875 ft (est.) (267 m)

11111111 I 11111 I I llllllll . 500·

gy

...-:.: .. ~ ..... gy .,.. - '( .,.. N 600 . . ica r R :::6 m -- -,- ..... unit Bf 'L,...... - gy lower mud unit t 700 . . Y: dkgy burrows ...... ':( '£ ""T" R gy ..... -~ ...... N wavy bedding - - -- b n ..,.. '( R - y -,- -- ...... ,.. -r-..,..-,-- - .,- -,- -.-'(_ ..,....,.. -,- R '"'T"" ....- gy ...... -.- N ...-..,... -.- -,- gy Fe .·.:./JO ••• . , g ytn . -,- N - .....,.. - - Fe - - -r R - -r- . - -,- N wh - - 550· .,... - - .,... - ...... -1 ..-::.:·-:. .... : ,~.::.~ \ ;gy Fe .,.. bedding 1 -,- wavy burrows R 650 ...... ,..~ wh-gy . ..,_ N '1,-- -r1- ...... 'I gy .x...- -,- )( d kgy /.. ( -,- ..,... cru mbly ...... 750 '( ""T"'" -,- -,- )( g y ..,... 'I -,- ...... ,. 'j. -,- -r- ..... '{ '1..-r- -r--r'!!!...... crumbly ...... wh-gy "-- ....."{, ...... -r- -r-.,.. "$ unit B t gy ! \ rdbn lower mud unit 1' -- rdbn .. mbr of Wooded Is. ···-~·-··' ..: ;_ -::.. .:; gy I Elephant Mountain Member rd bn 770 . \ llllllll llllllll 11111111

B-24 DH-19 (cont)

11111111 11111111 llllllll dkgy blgy ·-· 'j. J. gy l - wh 'l'. ~1- . olgy - 'i --- gy ,. - dkgy tnbn tn it 'i ..,... poor recovery . ..,. 250 ltgy gy gy ..,.. - woodfrags 350 . R N -- tn bn crumbly gy . gy . -- gy 450 --- mbroff gy Fe N Taylor Flat I av B -~I I mbr of Wooded Is . .. ..: .. :.:.•,."'. :. : gy N tn gy massive R -- rdbn N R -.- -- It gy _-..- gy - ---- g!atomaceous unit"ef . N It gy R ltgy 'I. mbr of Savage Is. f . woodfrags . 300 ?. ? mbr of Taylor Flat t 1 _,.. gy '/. 4 -.- Y-r"- --'i.- woodfrags ..... '"T'" l( ..,. R ..,.. 40 0 . j 'j. i. N ~'). gy } X _-, l. X: ol tn . I woodfrags . l $- '/.. 11111111 11111111 IIIIIUI

B-25 DH-19 (cont)

llllllll 11111111 111111 fl 50 ·

Fe

150· -- orgs .

- . ~--- - -~-.-- . - . ------N - - ..,.. - - Fe ..,.. R -- . ..,.. silcrete -- ..,... _) ..,.. -,- Fe -.- --L...... ?, ...,.. 100· ~

burrows 200· .

- gytn . "'- wh -- diatomaceous /

R N

.. -- I 11111111 111\1111 11111111

B-26 DH-20 699-29-83 Elev. 623 ft (190 m)

ll\lllll llllllll 11111111 . . _:._. :· ·..:.~._ i. ... :"... '\ <5% bslt

...... :, : ... ·: .. .,__ __,_ .... ] Fe lam -- ash . unitsC & gy Ef

dkgy bn It gy . dk gy-ol hard - ...... ~,__ muddy hard gy bkol Fe Fe gy , . olgy dkgy -:-:- _. -:-.... ~ I

,, ~ ...... : •• 1i olgy __,...... :=.. --·t·-~ .. -:..- ~ ·Fe - .. mudcmt orgs 550 450 gy orgs 350 unit D unit A f mbr of Wooded Is. I,. .. -,.._,.. , '.. _ -: .t. "":. Elephant Mountain Member "1 ::-=_., _,. "",..:;.. :. gy . ":---..., -,...,... :-: wood frags : ..... '"' I,.. ... 11111111 Fe <5% bslt 570·

It gy ash? lower mud unitt

gywh weath Fe

rd bn

hi org dk gy rd bn Fe 500 400 I I I l I If I 11111111

B-27 DH-20 {cont) 11111111 11111,11 11111111

. Hanford fmf

r >25%bslt mbr of Taylor F lat

.. ~.~ ..,...... _ ...... --2' , ... .>40% bslt mbr of Wooded Is. unitsC& Et .

Fe

150 . . 250 ------muddy matrix

<10% bslt .

l

70 · bslt deer >25% bslt > 20% bslt dk gy>25% bslt bk

>75% bslt carb rinds . - .... :..:.. -:., Fe ...... -: ... bk Fe >15% bslt

300 200 . 100 11111111 llllllll 11111111

B-28 DH-22 699-37-92 Elev 645 (197m)

11111111 11111111 I --\ I muddy gy rd bn bn muddy -- gy ------orgs It rd bn -- rd bn olgy <5% bslt Fe bn 1----t-- muddy weath bn - ( 1 unit Dt " 1 - dk bn bn cmt 500 "- 'f ..,, 400 1---....----' - 'I ~ bn -J:- muddy gy l- -_v.. crumbly muddy bn

wh ,. __ .- bn ---.• :.: .. :-::r: ... : ,· wh hd

5% bslt lo bslt gy ashy unitof : ~ ··.: .... Fe --- reworked ash lower mud unitt Fe ltgy -- ash lower mud unitf unit gy-tn ,; .. : .: : .•. ~.:. At Fe scour It gy Fe

wh-gy --- .wh-lt gy 650 550 450

f

gy

o•o:•.,o unitA+ o •o • • mbr of Wooded Is. ~~'-....,... ~~ weath ...,,.. ... Elephant Mountain Member \.-t- ... ..- ... ,.. 0 680 &I II II II l&llllll --, l \ I I I I I

B-29 DH-22 {cont) 11111111 llllll I 80 11111111 top at 54 ft

.

carb rinds

300 200 100·

bsltic muddy

. I

---;_---1 muddy ------bn .

.

bsltic

.

Pli o-Pleistocene unit f

350 250 150 . mbr of Taylor Flat

mbr of Wooded Is. units c & Et . bslt incr

units c& e+ ...... ,...,, ,,_. ,._ ---"'"'" 11111111 lltl\1\1

B-30 DH-24 699-43-84 Elev 634 ft (193 rr :

11111111 11111111 + . 11111111 . ·.~· ,.·. '·· gy bn lower mud ... ·... ·.. :.-.. ·,~ • unit At 0 • gy t nbn 0 • 400,. • 0 Fe

}i-:D.\... ·:.. .. -... , .. ·.

500 . .

I . I

. .

woodfrags units C "' ~ Ef mica - Iower mud unit t . - - 350 - - -- wavy bedded t 1 'I t '{. 450i.. -,- -.-_,.. . . f. 'i i • rd bn 7.C::t 1 -,- -r-1 i .,.." 550 ...... 'l bsltic 'C;:1 bu rrows I Fe ....,....t..,...... - ' woodfrags 'ii~ olgy .....,....'( ~ " -,- . mottled wh-gy unit A f ..._ ____...... ,,..mbr of Wooded Is.

1- " .. :; EIEtphanfMountain Member LL.•~.-- . 570 "\ II. Y' ,; ,.. t.. llllllll 11111111 I I I I 111 I

B-31 DH-24 ( cont)

11111111 llllllll 111~1111

I

. . bsltic

. 150 .

I

bsltic 250 . . -

-r- ....,_ . 80

- - bslt incr . I ,...... ·1 ::=....,.. Plio-Pleistocene unit -.- ~ bn 'J..:;.:.T.. ":· ... ·: . 100 .,... ..,... bsltic ...... ~--:---·; ..- ...... --=~ ...... mbr of Taylor Flat bsltic bn

. -"1 200 ------~ mbr of Wooded Is. t bn

300 . bslt deer 11111111 11111111 1111\111

B-32 DH-25 699-40;.s4n Elev 638 ft (1 ~ 4 m)

11111111 ''"""gy - mottled rd bn - - -- . - -- - , gy - -- 1------· >10% bslt ------I - wavy bedding gy org - - ball and pillow -- 450 ·-- gy ' olbn c, Oe o o I 'I, 'o woodfrags j t ash woodfrags bn muddy 5501===·===- Fe

. . . \ ':. . : .. .. wood frags ...... \~· ... : •...... ' gyol -' gyol bn

lower mud unit f unit At

...... •::· ...... :• .... .,. ·\.. <5% bslt

500·

unitA f mbr of Wooded Is. I ~ ~--;.~ ~ ~ weath -'--... '-....._ ... _-... . 600 "'.,..... Elephant Mountain Member I ""'"' 11111111

B-33 DH-25 (cor.t),

. 11111111 1111\lll

. 250

350

J

I

>15% bslt . 300

400 unitsC & E+ -- lower mud unit t -=--1 - gy-rd tn -:. j mottl ed ....-- .... - -=--- -_,- f mottied flllllll llllllll

B-34 DH-25 (cont)

\1111111 llllllH

.>25%bslt

.

80 Plio-Pleistocene unit sand and gravel ...,.. -..- -,- ..,...... ,- -,- -,- >15% bslt --r- -,- -.- --,- -,- mbr of Wooded Is. - - _ I un its .._. -. C &E 100 j t I \ >10% bslt

•a'" ,o ..., .. •... : 200 . . -·-

.

. l . >50% bslt

. 150A 11111111 . ..,,,111111

B-35 DH-28 699-50-96 Elev. 800 ft (245 m)

1111111 I 11111111 111111\1

18 bslt > 10% N lower mud unit+ unit At Fe \ I \ \ 5-10% bslt N

crumbly N weathered .. ··-··.·.· .. buff N hi bslt 650 550 450

<5% bslt mixed litho I I Fe units c & ef hi porvolc ---~ lower mud unit t Fe R N ~...,... N dkgy ...... ,... -,- '{ ...,...... ,... N R '1.-r- gy ...,.. wavy N R -r- 'I. alt It and med gy ..,.yr -r- T_'f...,.. _....-_ crumbly ...,... dkgy rd-bn R 700 500 e O;:;> weath N ol-gy R -,-I 'I -::::., ,,_ ,,_ ,_ ,._ -_,...._. :::: weath .....- gy ----- voles 'J.7-,- 0 • • 0 N 'j -r" -r" V '4-"3" R • carb stringers N - - low·bslt 1-----..J...-mixed lithounit A+ 4 ... ,._ ..... ,._ ,:: 4 ~ mbr of. 720 Wooded Is. 11111111 11111111 11111111

B-36 DH-28 (cont) 11111111 111 ll I 11 11 II Ill I I 120----- =--=- I rd bn ) >50% bslt I 1------,. >35% bstt ... ···:··,·· . J . mbrof Taylor - Flat ------silty ------15-20% bstt __l R ~bslt rdbn

mbr of Wooded Is. units C & ° • • 350 . 250· Et150

I lo qtz

>50% bslt .

-.-""T" -,--:-r- massive

bslt N - <5% bslt R ,.._ ------. - - -- 10-15% bslt - - R - deer bstt bsltic -,_,. - 400I• 300· 2ooi;;;=:;;:::J Plio-Pleistocene 5-10% bslt unit l bslt 1'

bn hi bslt gy-bn

I >60% bstt

. 11111111 llllll\l l\lll\11

B-37 DH-33 699-34-98 Elev 670 .ft (204 m)

11111111 11111111 -11111111 ~!:.. 7, .. _ bn minor Fe unit Dt - - bsltic bsltic " • 0 . I hd -- <5% bslt .... ~,, - - bsltic gy 450 - -

I It gy ! lower mud unitf bsltic 550 unit At gy cmt bn ..... Fe 650 ,.., ..... - - muddy Fe -..,...,,._ ,..._ <5% bslt unit of Fe cmt lower mud unit t wh ash?

tn gy Fe It I Fe dk

Fe 500 Fe Fe wh-gy dkgy .=1 dkgy Fe unitAf matrix sup 1----...a.--~/Jl-dk gy 600 ,__, ,..._, ,._ .... ,... - .r:.- -- .. --- mbrof :: ;: ._ '"'.._-.... Wooded Is. dkgy :-- Elephant Mountain Member ""' "' &...... ,...,..,.. 700 I 111 I I I I 111\llll llllllll

B-38 DH-33 (cont}

11111111 11111111 '"""' 160

bslt >10% 350. . .

J

.

It gy

unitsC&Ef .

dkgy bslt incr 300·

bslt deer 400·+--

wh

'!::..Y..-:,:: bn 250 Jlllllll llllllll llllllll

B-39 DH-33 (cont) llllllll 60

bn

bsltic

bsltic

Plio-Pleistocene unit

bn

bsltic l=:=:!'!!!!;=:.~0% bslt mbr of Taylor Flatt elastic dike tn

tn

It bn . -~·-•. ·- ......

150

>15% bslt ! , .. ~ mbrofTaylorFlat1' 160 :.·. .-. . :., ..-:, mbr of Wooded ls.t , , a , 1 1 1 I units c & E

B-40 APPENDIX C. GEOLOGIC CROSS SECTIONS SHOWING DISTRIBUTION OF RINGOLD FORMATION STRATIGRAPHIC UNITS.

Locations of cross sections are shown on inset maps of the Hanford Site on each cross section page.

Explanation of Symbols and Abbreviations used in Cross Sections

Grain Size Scale, indicates dominant grain size

1111..,_ ~ cobble-boulder gravel ~ granule-cobble gravel fine to coarse sand clay and silt

699-72-92, example of typical well number for geologic logs used in cross-section.

Subordinate lithologies and other lithologic symbols

0 oo~O O · 0 oO o bouldery ·.·-::·-~:-: pebbly /\/:( sandy

silt-rich ..:::::--.....- - _...... _ clay-rich

\( 'I: 'I "" x )( X ~JC,)( paleosols

_,...-.--.- calcium carbonate -,- -.-

...... •• ash (tephra)

1' V 7 f ';. 7-.~ basalt

X no record

unit contacts, ? where inferred

C-1 Depths on individual geologic logs on the cross sections are in meters bel<:>w the surface.

Stratigraphic unit abbreviations

PM - pre-Missoula gravel of Plio-Pleistocene interval

EP - early Palouse soil

PP - Plio-Pleistocene unit

UR- upper Ringold, Ringold Formation member ofTaylor Flat

E - unit E, Ringold Formation member of Wooded Island

C - unit C, Ringold Formation member ofWooded Island

B - unit B, Ringold Formation member of Wooded Island

D - unit D, Ringold Formation member of Wooded Island

LM- lower mud unit, Ringold Formation member ofWooded Island

. A - unit A, Ringold Formation member of Wooded Island

(?) - unit uncertain

P.S. - paleosol, unassigned

C-2 A A'

Elevation Above Elevation Above Mean Seo Level Meon Seo Level feet Meters North -"'O> ....I South feet Meters 250 ,,, ,,, 250 800 I'> I 800 I o, s! 700 H 700 Approximate ~ocotion of Cross Section 200 200

600 600 EP+PP UR 500 150 E 500 150 I 400 400

100 100 300 l.·· E(?) 300 46°32'30" :\l" ?~---i I ti I 1---==::::::?--? 0 200 200 50 LM 50

100 A 100

2640 ft 1111~

0 0 0 0 100 ft I VE=26.4x ?...... __?_? 1111 120°00' Cold Creek S)'lcllne -100 -100 KAI. \031893A1

(j wI A' A -co "'I Elevation Above "' 0 Elevation Above J, CX)"' • Mean Seo Level N I Mean Sea Level I I en "'O> Meters North South feet Meters feet "'co a! 250 250 800 800

700 H 700 Approximate location of Cross Section 200 "' 200 "'I 600 "' EP+PP 600 "I "'co 500 150 E 500 150 I

400 400

100 Umtonum/ 100 300 300 Gable Mtn. Structure -?~--..,• 45°32•::io· ?~ ------1-----i~-o~~~~~~P.!'i'~~~ 200 200 LM 50 50

100 A 100 2640 ft ,;~.~ 1 0 0 0 0 100 ft I YE=26. 4x '----1-1 1111 120°00· Cold Creek S)'lcline -100 -100 KAL \OJl8?JAI B B'

Elevation Above Elevation Above Mean Sea Level Mean Seo Level ~ ~ feet Meters North South F'eet Meters ,.,""I I 250 ""0 ¥ ...... , 250 800 8 .. , ..., o!?l I o, .. NI I o, I o, Rotllesnoke ~I a.e Mtn . O> a! s! $ 700 1111 1111 1111 '200 0 Hanford fm. 600

Yakima 150 500 Ridge

400

100 300

200 Benson Ranch 50 Syncline 100

1111 0 1111 0 0 JJ40 ft Cold Creek Vertical Syncline -100 200 ft Exaggeration 16.7X Approximate Location -50 -50 of Cross Section -2 -200 KAL\011693-A

(i I V, C' C 200 West

Elevation Above 1o' Elevation Above Mean Seo Level N i::- s Mean Sea level 'j J. I North U) 'j Meters Feet Meters f'eet .. South ~ ; "' I u, I ; 250 250 I°' ~¥ ,._ I "'~ 1"' 800 800 ae :,:~ I°' o- a; 1111 1111 R 1111 1111 I 700 700 1111 .... 'j '200 200 0 0 O> O> 0 U) 600 600 0 Honford fm. 500 500 150 150

400 400

100 100 JOO JOO

200 200 1111 50 50 Benson Ridge Syncline 100 100

1111 1111 0 0 0 0 Approximate L?cotion 3340 ft of Cross Section Cold Creek Vertical Syncline -100 -100 200 ft Exon~;~tion -50 -50 KAl.\121492-C

(") I 0\ m D ci D' x South £hwoUon N>ov• North y Elewlion >J;,.(w• Mff:n Seo Level § 7 Meon Seo level r.. t Meters i * § Met111rs Feet 250 g 1111 1111 :! 250 800 ;!; 800 J. I ~ 'i .., !:I I .. 'i I 700 § $ 700 § Rotuesnoke 200 200 ~ 1111 Mtn. § 1111 1111 600 600 0

Hon,ord fm. 500 ISO ISO 500 50 400 400 1111 100 100 300 300 1111

200 200 50 100 ft 50

100 100 Cold Crttk Syncline 0 0 0 0 46" 32•JO'

~proximote loeotion KM.\t22392•A of Cross Section 200 East

E T E' Elevation Above O> 18 Elevation Above Mean Sea Level ,_i'.:i_, Me

Hanford fm. 150 500

400 E 400 100 300 100 50 300

Yakima Ridge 200 200 50 ? Benson Ridge 50 Syncline 100 100

0 0 0 0 Cold Creek -100 Syncline -100 JiW..\020893-C ~proximate location of Cross Section

(') I 00 F F' Elevation Above Elevotion Above Mean Seo Level Mean Seo Level

Feet Meten North "'...I South Meters Feet i::; I 600

100 300 300

200 Yakima Ridge 1111 200 50

100 Approximate location 100 of Cross Soetion

100 ft 0 0 0 0

1111 Cold Creek -100 Syncline -100 ' ""-\021193•A

(j I \0 G G' Honh M' South Elrvallon Above N .., ElevaUon Above Mean Seo Level ..,0 I co .. .., Mean Seo Level N .. I g I ~ I f"eet Meters Ill J. N Meters reel 5! co I -;;.- I 200 I ,._ .. "j .. I • 200 I a, i:i .. .. g: I .. 600 .. <> I irj co $1111 "' 1111 600 "' 1111 1111 <> 1111

500 150 Hanford rm. 500

400 400 50 100 300 300

200 100 200 50 50 100 100

0 0 0 0

:-100 -100 -so -50 -200 -200 Cold Creek -300 1670 fl Syncline -300 -100 -100

KN.\020tt:S-C

('i ....I 0 H H' North .,. South Elevation Above Elevation Above Mean Seo Level ... j" la .,, ....~ Mean Seo Level feet Meters "' -1,., Meters Feet 300 "'I d xm 300 "' -.s o~ 900 "' 1111 900 250 250 800 ~ 800 j" §' ... 700 j" 700 200 j" a> 200 600 "'"'"' m 600 x"' 500 -·oe'"' 150 500 150

400 400 100 300 300

200 200 50 50 100 100

0 0 0 0 3340 ft LM -100 Vertical -100 200 fl Exaggeration -so 16.7X -A--- -50

Approximate Location KN..\021093-A of Cross Section

(i ...... I ...... I'

~levation Af>ove ~levation Af>ave eon Seo level eon Seo level North South feet Meters Meters feet 700 ;i1i 700

200 I() 20

'O> O> 600 600 ~ El "'' I I I ti I

100 100

0 0 2750 ft 0 0 Approximate L . I 00 ft Vertical of Cross Sect~~at1on Exaggeration -100 -100 200 27.SX

-50 -5 -200 -200

K.AL\011993-C

(i I -N J North South J' .., 0 wN ., wN EJevoUon .Above i ~ I w I Elevation Above Meon Seo Level i I ii I 0 Mean Seo Levtl " I i Ffft Meters .,:; v Meter, o,I I ! "i ISO<) I '"t ISO<) 150 ,g; $ 1111 $ g; ! 150 i!ie ii 1111 .. 1111 1111 1111 ,j{)() 0 ,j{)()

Monford Fm. 100 100 300 UR 300

50 200 200 50 lM 50

100 100 100 lllf

Vertical 1111 1111 Exoggerotion 0 0 Wohtuke 100 ft 0 0 Synelino 27.5X l'J,(,,\120211-A Approximate location of Cross Section

(") I -w K K' SoulhwH\ ....,, .... 01\'0Uon Nxrt• Wton S.O Lrn1 a Meon S4IO UVII FHt ...... :a 7 ,...... 200 I N 9 ll i I I I 8 --200 7 i g i t:"i .,i!i I • ""' i I ""' 1111 ! i! li !00 0 I ti I 1111 ! 150 ISO !00 1111 400 Honford fm. 400 so 100 100 300 - 300 200 Umtonum/CobM 200 so -1--1-s-?---""1--s-?-..x--1--r--- __,,-- Mountain Struc;tur-. ~ ~ ~ so 100 __,,_ -r- ? __...-1 _..--? ----- ? _....-? __.,..- lM 100 100 1111

0 0 0 0 200 ft 150 -100 -100 ·:::. - - -.r-·__,.- ---r-~ _r- - - ....r- 1111 -so -so -200 -200

-300 -300 -100 -100

(j I -.j::,,. ;;; I Northwest lo Southeast L I L' ~ $ Elevation Above I Elevation Abovs Mean Seo Level ".; 1111 1111 Mean Seo Level I o, F'eel Meters me-· Meters F'eet 500 150 1111 500 • 1111

400 400 E

50 u.u 300 1111 300 ---,, ,~ __..- ___:r-? _.r- ....s-- 1 C 200 100-_s-- 200 1-1- 50

100 ------1--- -1 100

8 ?-?---1--

--1-- -1 B 0 0 0 LM ?--?-- -?------A-- --1--1 __1 LM -200 -200 1111

-50 Wohluke 940 ft -100 -100 Syncline Vertical Wahluke 100 ft Exaggeration IQJ.\121192-A 9.4X ,;----!---Approximate Location Syncline of Cross Section

(i I -Vl M' Etevotion >bov · Mean Seo lev:I Meter, F'eet 900

Southwut

.,

J 1111 200

eoo

1111

-._ ~proximate Loe of Cross SeetionaUon ------8 ~?-?--1-1-?- - --r-1- 1-r- 1-?----- 46" 32' u., -100

-50

Wahluko Syncline K>L\02

50 5 400 A(?) + E(?) ? ? 400 50 _r- ~? 100 --,? 100 ? 300 A Rattlesnake 300 100 1111 100 ln~~~&:d 1111 1111 200 200 1111 50 50 Approximate Location 3340 ft of Cross Section Vertical 200 ft Exaggeration 16.7X N' Elevation Above Elevation Above Mean Sea Level ,;;- Mean Seo Level feet Meters 600 ~ I "'I I I O> I a, ~ O> 1111 $ 1111 0 0 500 150 1111 1111 $ 0 150 500 "' Hanford fm. 0 0 --? ?- 400 PM 400 50 100 E 100 300 300 1111 C 200 1 200 ?­ 50 50 ?------100 1__ ----- 100 ....._ LM Moy Jn -- Fault 150 0 0 1111 1111 0 0 1111 KAL\020l9l-A

() I --..J 200 West 200 East

0 ,;- ;:::­ \o' 'i ! a, Elevation Above \o' l ! ..,; Elevation Above Mean Seo Level a, ,.; ~¥ Meon Seo Level I _, I a, I a, :: ij: I a, Meters Feet Meters ..,;:,; I a, ::r: a, Feet l'l I st!-· 11 II a~ 200 I a, c~ 1111 1111 250 800 se 11 fl 800 a! 1111 0 1111 700 700 200 Hanford tm. 200 600 600

500 500 150 150

400 E 400

100 100 JOO 300

200 200 so 50 100 100

0 0 3340 It 0 0 Vertical Exaggeration Approximate Location -100 -100 200 It 16.7X of Cross Section -so -50

N' O' "'... .. n' Elevation Above Elevation Above I ..,I 12CT 00' Mean Seo Level .., 'i N' Mean Seo Level .. 0 I I il Feet Meters a, I a, .. O> Meters Feet I 200 mIt 11 a! a7 200 0 1111 11 I g; 600 600 "~1111 .,e 1111 500 500 150 150 50 400 400 100 100 300 300 Goble Mtn. Anticline 1111 200 200 1111 50 50 (Southeost Anticline) 100 100

0 0 0 0

-100 -100 -50 -50 ICAl..\020493-E

(') .....I 00 WHt p

DMrtlon ~ Mt

Ilk) !IOO 46" J2'30"

100 --1-- --1--1-- JOO

200 1111

100

12

Eott p•

Devotion N>

400

100 JOO

200 50

100

0 0

A ""' It i~ -100 200 It E,i:;:,;,°tkn -ll

-100 -100 1111 -W -200 -200

East Q' EJevoUon J.b<:lve El~ Ab

600 IW 1W 600

m m

100 100 JOO JOO

200 200 w ------w 100 100 ------0 -- _..- _,,--1W 0 0 200 -100 -- -100 ---- -50 -w ---- -200 -200 KM.\123092-9

(") I N 0 R R' Etevotion Above Elevation Above Mean Seo level Mean Seo Level f"eet Meters West East Meters Feet.

600 600

500 ;s a, 500 150 w ... 150 I w I ;;; co I "'I 0 a, '"co "'co 400 1111 1111 400

100 100 300 300

200 200

50 2750 ft 50 46" 32'31)" Vertical Approximate location 100 ft Exaggeration of Cross Section 100 27.5X 1111 100

120' 00' 0 0 KA.L\021493-A 0 0

(i I -N s s· Elevation Above Elevation Above Mean Seo Level Mean Seo Level F"eet Meters West East Meters F"eet 700 700

200 Approximate location 200 of Cross Section 600 1111 600

?

500 150 150 500 UR 0 Hanford fm. 400 400 E(?) + C(?) + B{?) 1111 100 100 300 JOO

100 ft 200 200 50 50

100 IQ.L\0211593-C 100

("') I N N Elevotlon Above Elevation Above Meon Seo level T Mean Seo Level Feet Meters West Feet Meters 700 700 200 19-58 Motchllne tor 600 600 Hanford=i""im::------....:.17,--j7µ0~------,...:'r':..':...' fm. ______.:_1:_1-_:4:;5lA Below

500 150 E(?)+ 500 150

400 400 A(?)+ 100 100 300 300

1111 1 111 Benson Ranch S)f'lcline 200 200 50 50 2640 ft 100 100 100 ft I'<£a26.4x 46' 32'30"

Elevotlon Above Elevotlon Above Mean Seo Level T' Mean Seo Level f"eet Meters Approximate Location +---' f'eet Meters East 600 11-~~~. of Cross Section 600 2-33 S3-25 1111 120· oo· 1111 S14-20 500 150 1111 500 150 Hanford fm. S24-19

400 400

100 100 300 1111 300

200 200 50 50

100 100

1111 0 0 0 0 Benson Ranch/ Cold Creek S)f'cline KAL \031893-B

(i I wN

APPENDIX D, ISOPACH AND STRUCTURE CONTOUR DATA FOR THE RINGOLD FORMATION FROM THE HANFORD SITE.

Explanation ( all elevations are in feet above sea level)

Borehole # - Borehole designation using Hanford Site well identification terminology Easting - east coordinate in Washington State Coordinate System (WSC82S) Northing - north coordinate in Washington State Coordinate System (WSC82S) Top Bas - Elevation of top of uppermost basalt unit in boring Top Sub A- Elevation of top ofpaleosol sequence locally underlying unit A Iso Sub A - Thickness of paleosol sequence locally underlying unit A Top A- Elevation of top of unit A Iso A - Thickness of unit A Top LM - Top oflower mud unit Iso LM - Thickness of lower mud unit Top BD - Top of units Band D combined Iso BD - Thickness of units B and D combined Top Sub C - Top ofpaleosol sequence locally underlying unit C Iso Sub C - Thickness of paleosol sequence locally underlying unit C Top C - Top of unit C Iso C - Thickness of unit C Top Sub E - Top ofpaleosol sequence locally underlying unit E Iso Sub E - Thickness of sequence locally underlying unit E Top E - Top of unit E Iso E - Thickness of unit E Iso C+E - Thickness of units C and E combined, included Sub E interval where it is present Top UR- Top of upper Ringold (e.g., member of Taylor Flat) Iso UR- Thickness of upper Ringold (e.g., member of Taylor Flat) Top PMPP - Top of redefined Plio-Pleistocene interval (including early Palouse) Iso PMPP - Thickness of redefined Plio-Pleistocene interval (including early Palouse) Top Hf-Top ofHanford formation Iso Hf - Thickness of Hanford formation Iso Eo - Thickness of Holocene eolian and alluvial deposits and backfill Elev - Surface elevation at the borehole (feet above sea level)

D-1 Borehole # Easting Northing Top Top Jso Top lao Top lao Top lao Top lao Top !so Top ho Top !so lao Top lao Top Ito Top lao lao Elev Baa Sub A Sub A A A LM LM BD BD SubC SubC C C Sub B Sub B B B C+B UR UR PMPP PMPP Hf Hf Bo 1-18 584529.90 123948.86 217 >30 412 195 195 412 0 412 0 532 120 5 537 10-54 513591.40 126572.00 360 343 >27 420 77 77 420 0 420 0 507 87 9 516 10-E12 593515.00 126577.00 72 0 90 19 170 80 205 35 220 15 260 40 295 35 330 35 15 350 20 350 0 426 76 4 430 ll-45A 576279.00 126808.00 203 0 268 65 353 85 353 0 353 0 353 0 353 0 408 55 55 408 0 408 0 578 170 0 518 11-E4E 590984.65 126738.23 -25 -25 0 25 50 115 90 145 30 145 0 145 0 205 60 330 125 125 330 0 330 0 440 110 0 440 II-E8B 592319.31 126746.12 64 0 89 25 129 40 212 83 212 0 249 37 259 10 344 85 122 344 0 344 0 449 105 0 449 13-2B 589353.85 127336.16 -62 0 -26 36 29 55 149 120 149 0 149 0 179 30 319 140 140 349 30 349 0 439 90 0 439 13-64 570416.00 127309.00 390 0 390 0 390 0 390 0 390 0 390 0 390 0 443 53 53 443 0 443 0 552 109 0 552 14-E3E 590678.16 127637.80 8 0 55 47 125 70 165 40 165 0 165 0 216 51 325 109 109 345 20 345 0 450 105 0 450 14-E6P 591593.89 127703.47 0 98 43 153 55 178 25 178 0 178 0 203 25 323 120 120 323 0 323 0 458 135 0 458 15-15A 585353.58 128023.99 -160 2 -105 55 5 110 60 55 120 60 160 40 190 30 290 100 140 330 40 395 65 545 150 0 545 15-26 581875.98 128254.88 243 291 54 398 101 508 110 15 523 15-E13 593789.00 128200.00 104 7 170 56 204 34 243 39 245 2 293 48 341 8 341 48 104 341 0 341 0 404 63 6 410 16-E4A 591005.01 128299.37 155 0 174 19 246 72 296 50 296 0 332 36 342 10 370 28 64 370 0 370 0 459 89 0 459 17-26 581930.00 128750.00 -178 22 -132 46 -23 109 26 49 94 68 148 54 164 16 255 91 145 320 65 393 73 523 130 0 523 17-26A 581882 128582 -199 -In 22 -131 46 -23 108 26 49 94 68 148 54 164 16 255 91 161 320 65 408 28 523 115 0 523 17-47 575490.00 128765.00 243 0 250 7 276 26 295 19 295 0 295 0 358 63 398 40 40 398 0 398 0 571 173 5 516 17-70 568576.00 128647.00 313 18 333 20 353 20 353 0 353 0 353 0 443 90 524 81 81 524 0 524 0 563 39 0 563 17-93 561565.00 128629.00 0 736 0 736 0 736 0. 736 0 736 0 736 0 736 0 0 736 0 736 0 165 29 0 765 19-58 572153.00 129252.00 368 0 368 0 383 15 383 0 383 0 383 0 383 0 424 41 41 424 0 424 0 573 149 0 573 19-88 563168 129299 295 295 0 295 0 3(0 15 310 0 310 0 310 0 310 0 580 270 270 580 0 580 0 630 40 15 645 2-3 588910.91 124096.21 382 >51 0 382 0 382 0 469 87 8 477 2-33A 579919.00 124047.00 84 0 116 32 191 15 231 40 345 114 371 26 381 10 412 31 51 412 0 412 0 531 119 536 20-39 5n999.00 129729.00 0 -54 15 56 110 70 14 146 76 155 9 210 55 380 170 179 380 0 430 50 525 95 15 540 20-82 564812.00 129506.00 269 0 269 0 309 40 309 0 309 0 309 0 309 546 237 237 546 0 546 608 62 6 614 20-El9 564812 129506 225 225 0 225 0 270 45 270 0 270 0 303 33 340 37 34 0 0 340 0 34 3 430 90 0 430 20-El2 593573.00 129718.00 112 15 112 0 182 70 246 64 246 0 287 41 287 0 352 65 106 357 5 372 15 437 65 0 437 20-E2 590665.00 129722.00 -13 0 II 24 91 80 153 62 161 201 40 224 23 311 87 127 334 23 398 64 466 68 0 466 22-70 568800.00 129504.00 492 0 492 0 492 0 492 0 492 0 492 0 492 0 492 0 492 492 0 614 122 0 614 23-33 579924.00 130629.00 -77 13 90 58 45 113 55 168 55 188 20 203 15 318 115 135 353 35 403 so 553 150 0 553 24-IP 589494.53 130705.15 39 10 39 0 114 15 149 35 193 44 234 41 254 20 324 70 111 333 9 404 71 474 70 0 474 24-33 579752.75 130750.99 0 390 >30 390 0 454 64 507 53 17 524 24-46 575888.00 130790.00 -79 0 -14 65 96 110 106 10 106 106 196 90 381 185 185 381 0 431 so 591 160 0 591 25-26 582044.00 131062.00 -95 0 -20 15 40 60 95 55 125 30 190 65 190 0 300 110 115 320 20 405 85 515 110 0 515 25-31 580460.00 131176.00 -54 0 II 65 81 70 126 45 196 70 261 65 266 5 351 85 ISO 351 0 391 40 5ll 120 0 511 25-55 573083.35 131206.06 406 >45 406 0 456 so 657 201 19 676 25-70 568544.00 131172.00 184 > 15 184 0 184 0 184 0 184 0 442 258 258 474 32 499 25 599 100 30 629 25-80 565675.00 131106.00 505 0 515 10 515 0 515 0 515 0 515 0 515 0 515 60 60 575 0 582 7 600 18 15 615 26-15C 585472.44 131330.29 -160 -160 0 -138 22 -35 103 37 72 95 58 182 87 195 13 258 63 163 330 70 330 0 442 112 2 444 26-89 562m.60 131375.20 162 0 197 35 233 36 303 70 303 0 303 0 343 40 513 170 170 544 31 544 0 643 99 10 653 28-23 582807.00 132004.00 -172 0 -107 65 -32 75 18 50 58 40 133 15 153 20 263 110 185 308 45 418 110 528 110 0 528 28-30 580816.00 131991.00 0 -48 135 32 80 32 0 32 0 32 0 32 0 262 230 230 322 60 437 115 532 95 0 532 28-40 577621.40 131932.13 112 >22 182 70 182 0 182 0 209 27 247 38 379 132 159 379 0 449 70 559 110 0 559 28-52A 574188.00 132111.00 0 99 100 274 175 274 0 274 0 274 0 274 0 420 146 146 420 0 439 19 684 245 0 684 29-78 566212.00 132414.00 58 81 23 153 72 208 55 228 20 217 0 217 0 299 71 458 159 159 483 25 483 0 647 164 0 647 29-83 564510.00 132373.60 67 67 0 183 116 250 67 298 48 0 0 311 13 490 179 179 503 13 551 54 66 623 623 3-45 576205.00 124401.00 373 373 0 373 0 373 0 373 0 373 0 373 0 373 0 373 0 0 373 0 373 0 504 131 0 504 3-8-5C 593386.00 116574.00 202 202 0 206 0 234 32 263 29 263 0 301 38 325 24 333 8 70 333 0 333 0 391 58 398 30-25C 582358.41 132593.SI -147 -135 12 -92 43 95 23 20 80 57 129 49 129 0 250 121 170 304 54 398 94 543 145 543 31-31 580550.00 132974.00 -71 >50 -36 35 104 140 154 50 159 5 274 115 165 329 55 409 80 519 110 10 529 31-53A 573754.SO 132962.41 281 >51 423 142 423 0 423 0 706 283 0 706 31-65 569981.00 132m.oo 256 > 15 291 35 291 291 291 291 471 180 180 471 0 471 0 676 205 5 681 31-8 587396.00 132928.00 -64 -64 0 -34 30 II 45 81 70 116 35 216 100 226 10 276 so 150 321 45 401 80 466 65 10 476 32-22 583196.71 133257.40 358 > IO 358 0 358 518 160 0 518 32-26 581891.00 133144.00 -140 -115 25 -90 25 25 115 55 30 90 35 165 15 165 265 100 175 315 50 460 145 510 50 10 520 32-32 580297.00 133206.00 -200 -200 0 -60 140 15 15 15 0 15 0 140 125 140 285 145 270 285 0 440 155 505 65 15 520 32-42 576961.37 133385.38 397 397 0 397 0 492 95 25 517 32-62 571009.41 133217.69 302 >97 302 0 302 0 302 0 302 0 482 180 180 482 0 505 23 105 200 0 105 32-72 567943.00 133363.00 96 96 217 Ill 257 40 257 0 251 0 257 0 257 0 427 170 170 472 0 469 43 668 200 0 (,61 33-14 585534.00 133607.00 -77 -77 -27 50 3 30 83 80 113 30 228 115 238 10 298 60 175 338 40 423 85 463 40 10 473 33-21A 583372.00 133474.00_ -115 -115 -65 50 -25 40 60 85 80 20 115 35 145 30 285 140 175 330 45 435 105 485 50 15 500 33-42 577020. 24 133484. 28 401 >10 401 0 401 0 496 95 20 516 33-56 572831.60 133535.SO 316 >40 316 0 316 316 0 316 0 431 115 115 431 0 431 0 711 280 5 716 34-20 583653.00 133722.00 -118 -118 -65 53 0 65 15 15 15 155 80 175 20 275 100 180 300 25 355 55 415 120 25 500 34-41B 577338.20 133913.63 400 > 10 400 0 400 0 510 170 0 570 34-88 563035.20 133974.10 -18 -18 0 !05 123 226 122 226 0 226 0 226 0 226 0 506 280 280 541 55 54! 0 619 78 12 631 34-98 nr nr 41 41 0 156 115 237 122 237 0 237 0 237 0 237 0 528 291 291 546 18 568 22 638 70 0 638 35-21 583514.00 134322.30 -59 -59 0 II 70 91 80 126 35 196 70 276 80 276 0 354 78 158 354 0 456 102 5ll 55 0 5ll 35-27 581659.80 134093.30 -84 -84 0 II 95 106 95 126 20 146 20 146 0 146 0 281 135 135 301 20 301 0 531 230 0 531 35-28 581287.00 134019.00 -87 -87 0 8 95 73 65 78 5 133 55 198 65 198 0 283 85 150 318 35 483 165 528 45 5 533 Borehole# Ea.sting Northing Top Top ho Top Iao Top ho Top !so Top Iso Top l,o Top Iao Top Iso ho Top Iso Top Iso Top ho ho Elev Baa SubA Sub A A A LM LM BD BD SubC SubC C C Sub E Sub E E E C+E UR UR PMPP PMPP Hf Hf Eo 35-3 588963.00 134190.00 26 26 0 26 0 131 105 131 0 131 0 226 95 256 30 316 60 155 331 15 431 100 466 35 20 486 35-66 569856.10 134094.00 273 > I 325 52 325 0 325 0 325 0 325 0 423 98 98 423 0 423 0 713 290 10 724 35-70 568566.46 133987.75 422 >55 444 22 474 30 687 213 5 692 35-78B 566067.00 134273.00 78 83 168 85 240 72 240 0 240 0 240 240 0 498 258 258 498 0 553 55 658 105 0 658 35-9 587102.03 134089.57 0 0 323 > 111 334 49 495 112 5 500 36-27 581805.00 134446.00 -64 -64 0 6 70 106 100 116 10 149 33 216 67 216 0 286 70 137 321 35 466 145 531 65 0 531 36-46P 575994.10 134518.20 182 182 0 266 84 341 15 341 0 341 0 341 0 341 0 410 69 69 410 0 410 0 701 291 0 701 36-618 571400.80 134586.90 201 201 0 251 50 346 95 346 0 346 0 346 0 346 0 436 90 90 436 0 436 0 736 300 10 746 36-92 561650.00 134400.00 586 >1 616 30 786 170 0 786 36-93 561551.00 134420.00 -38 -32 6 101 133 198 97 230 32 230 0 230 0 258 28 498 240 240 508 10 508 0 643 135 5 642 36-E3 590777.00 134348.00 140 140 0 140 0 220 80 250 30 250 0 295 45 345 50 345 0 45 345 0 375 30 465 90 0 465 37-43 576828.40 134785.10 180 180 0 264 84 289 25 289 0 289 0 304 15 350 46 293 44 58 404 10 404 0 689 285 0 689 37-82B 564903. 71 134733.44 30 30 0 135 105 240 105 240 0 240 0 240 0 240 0 525 285 285 525 0 540 15 625 85 10 636 37-84 564247.00 134768.00 14 14 0 129 115 216 87 216 0 216 0 216 0 216 0 526 310 310 531 5 565 34 634 69 0 634 38-19 584256.00 135160.00 -29 -29 0 -29 0 91 115 IOI 10 139 38 206 67 206 0 301 95 162 331 30 411 80 451 40 10 461 38-34A 579490.79 135148.73 174 174 0 254 80 264 10 304 40 304 0 304 0 354 50 379 25 25 409 30 479 70 519 40 10 529 38-65 570091.10 135041.00 225 225 0 302 77 360 58 360 0 360 0 360 0 360 0 470 110 110 470 0 470 0 751 281 0 751 38-70 568500.94 135089.20 314 >20 314 0 314 314 0 314 464 150 150 509 45 524 IS 704 180 5 709 39-23 582963.40 135347.20 -19 -19 26 45 81 55 151 70 166 15 256 90 256 321 65 155 351 30 431 80 476 45 415 39-79 565890.92 135411.87 522 > 140 532 10 652 120 20 672 39-7A 587815.53 135440.73 339 339 0 339 0 352 13 352 0 352 0 352 0 352 0 352 0 0 352 0 352 0 492 140 0 492 39-E2 590532.00 135451.00 219 219 0 219 0 239 20 249 10 249 0 249 0 279 30 219 0 0 219 0 364 85 404 40 0 404 39-E3 590532 135451 140 140 0 140 0 220 80 250 30 250 0 295 45 295 0 295 0 0 345 50 375 30 465 90 0 465 399-l-16C 594312.00 116410.00 205 205 0 205 0 270 65 270 0 270 0 270 0 270 0 325 55 55 325 0 325 0 380 55 0 399-l-17C 594104.00 116409.00 206 206 0 206 0 261 55 261 0 261 0 281 20 281 0 326 45 65 326 0 326 0 371 45 5 399.4.5 594128.00 115638.00 202 202 0 208 6 220 12 231 11 231 0 231 0 251 26 345 88 88 345 0 345 0 400 55 0 40-12B 586325.30 135637.23 52 52 0 52 0 108 56 137 29 169 32 253 84 290 37 327 37 190 352 25 407 55 512 105 515 40-13 585939.00 135650.00 26 26 0 26 0 90 64 50 60 184 34 276 92 283 1 328 45 137 348 20 391 43 508 117 0 507 40-20 583830.00 135678.00 -14 -14 0 16 30 101 85 146 45 156 10 216 60 226 10 321 95 165 336 15 425 89 476 51 0 532 40-32 580007.00 135576.00 199 199 0 273 74 388 115 388 0 388 0 388 0 388 0 388 0 0 388 0 388 0 518 130 523 40-33A 579704.81 135811.68 240 240 0 310 70 403 93 403 0 403 0 403 0 403 0 403 0 0 403 0 403 0 518 115 0 S18 40-36 578789.30 135633.80 252 252 0 328 76 413 85 413 0 413 0 413 0 413 0 413 0 0 413 0 413 0 522 109 4 526 40-39 577938.30 135646.20 338 > 10 418 80 418 0 418 0 418 0 418 0 418 0 0 418 0 418 0 533 115 538 40-62 571149.10 135755.60 374 > 10 374 0 374 0 374 0 374 0 435 61 61 435 0 435 0 744 309 748 40-80 565517.00 135548.00 107 107 0 164 51 216 52 216 0 216 0 216 0 216 0 504 288 288 504 0 542 38 654 112 0 654 40-84 564246.00 135751.00 40 40 0 156 116 237 81 237 0 237 0 237 0 237 0 528 291 291 546 18 553 638 85 0 638 41-20 583876.00 136150.00 15 15 0 35 20 115 80 160 45 160 0 245 85 255 10 315 60 145 315 0 385 70 470 85 15 485 41-23 582923.06 135905.92 371 371 0 371 0 466 95 0 466 41-31 580525.00 136002.00 194 194 0 263 71 369 105 369 0 369 0 369 0 369 0 369 30 30 399 0 424 25 499 15 5 504 41-35 579079.60 135947.40 270 270 0 352 82 417 65 417 0 417 0 417 0 417 0 417 0 0 417 0 417 0 517 100 0 517 41-40 577614.00 135996.30 380 > 12 421 41 421 0 421 0 421 0 421 0 421 0 0 421 0 421 0 543 122 0 543 41-42 577122.20 136068.20 305 305 0 386 81 414 28 414 0 414 0 414 0 414 0 414 0 0 414 0 414 0 634 220 6 640 42-12A 586318.00 136457.00 186 186 0 186 0 239 53 304 65 304 0 372 68 372 0 384 12 80 384 0 465 81 504 39 10 514 42-21 583404.00 136195.00 0 74 70 89 15 174 85 189 15 224 35 249 25 346 97 132 346 0 393 47 458 65 5 463 42-29 581045.00 136427.00 0 65 40 80 15 165 85 210 45 260 so 300 40 335 35 85 345 10 375 30 450 15 5 455 42-3 588908.00 136319.00 49 49 0 49 0 155 106 209 54 254 45 219 25 279 279 0 25 329 so 354 25 434 80 10 444 42-30 580786.00 136213.00 63 63 0 125 62 155 30 183 28 223 40 291 68 306 15 351 45 113 351 0 406 55 466 60 15 481 42-37 578476.30 136219.40 272 272 0 392 120 427 35 427 0 427 0 427 0 427 0 427 0 0 427 0 427 0 522 95 0 522 42-40C 571644.50 136418.20 328 328 0 403 15 416 13 416 0 416 0 416 0 416 0 416 0 0 416 0 416 0 546 130 0 546 42-42A 577086.80 136290.00 311 311 0 394 83 413 19 413 0 413 0 413 0 413 0 413 0 0 413 0 413 0 596 183 5 601 42-42B 576998.30 136434.40 402 >70 424 22 424 0 424 0 424 0 424 0 424 0 0 424 0 424 0 583 159 0 583 42-88 562931.00 136346.00 17 17 45 132 70 217 85 217 0 217 0 217 0 217 0 442 225 225 467 25 467 0 637 170 642 43-18 584394.00 136576.00 62 62 0 62 0 127 65 212 85 212 0 212 0 212 0 297 85 85 327 30 417 90 517 100 0 517 43-23 582978.00 136714.00 49 49 0 59 10 89 30 144 55 154 10 184 30 194 10 324 130 160 334 10 419 85 S19 100 0 519 43-41E 577479.10 136594.40 425 >28 425 0 425 0 425 0 425 0 425 0 0 425 0 425 0 547 122 0 541 43-41F 577480.00 136579.00 406 >38 426 20 426 0 426 0 426 0 426 0 426 0 0 426 0 426 0 548 122 0 548 43-42 577145.30 136630.70 364 364 0 410 46 410 0 410 0 410 0 410 0 410 0 410 0 0 410 0 410 0 564 154 0 564 43-421 577006.60 136452.19 423 >22 423 0 423 0 423 0 423 0 423 0 0 423 0 423 0 581 158 0 581 43-43 576728.80 136576.50 406 > 13 406 0 406 0 406 0 406 0 406 0 406 0 0 406 0 406 0 579 173 0 519 43-45 576283.90 136585.90 595 >202 0 595 43-84 564184.00 136656.00 153 83 197 44 197 0 197 0 197 197 0 525 328 328 536 11 556 20 634 78 0 634 43-89 562917.14 136618.49 501 529 28 544 15 629 8S 13 642 43-9 587245.00 136507.00 0 325 0 325 0 325 0 325 0 325 0 325 0 325 0 0 325 0 325 0 490 165 0 490 44-42 577099.60 136833.90 416 >10 416 0 416 0 416 0 416 0 416 0 416 0 0 416 0 416 0 519 163 0 579 44-43B 576673.40 136897.90 420 >20 420 0 420 0 420 0 420 0 420 0 420 0 0 420 0 420 0 511 151 0 577 44-64 570459.80 136897.40 284 284 0 340 56 357 17 357 0 357 0 357 0 357 0 357 0 0 460 103 460 0 720 260 0 720 45-24 582552.00 137231.00 15 15 0 80 0 155 85 190 35 235 45 215 40 285 10 345 60 100 350 5 425 15 510 85 0 510 45-26 582081.00 137280.00 68 68 0 68 0 113 45 138 25 213 75 273 60 278 5 333 55 115 348 15 443 95 518 15 0 518 45-42 571051.50 137288.20 402 402 0 402 0 402 0 402 0 402 0 402 0 402 0 402 0 0 402 0 402 0 577 175 0 577 45-18 566027.00 137045.00 181 181 203 218 22 247 44 247 0 247 0 247 0 247 0 553 306 306 568 15 598 30 688 90 0 688 Borehole# Ea.ting Northing Top Top 1,0 Top lao Top Jao Top lao Top ho Top lao Top Iso Top lao !so Top !so Top Iso Top lso lao Elev Bas SubA SubA A A IM LM BD BD SubC SubC C C Sub E Sub E E E C+E UR UR PMPP PMPP Hf Hf Eo 46-15 585430.00 137428.00 0 415 0 415 415 0 415 0 415 0 415 0 415 0 0 415 0 415 0 444 29 0 444 46-3 588822 137692 19 79 0 79 0 156 11 166 10 236 70 266 30 266 0 266 0 30 326 60 326 0 381 55 0 381 46-85B 564038.40 137389.04 87 87 0 187 100 224 37 224 0 224 0 224 0 224 0 517 293 293 567 50 519 12 792 213 0 792 47-35B 579313.48 137793.68 370 370 0 420 50 440 20 440 0 440 0 440 0 440 0 440 0 0 440 0 440 0 470 30 5 475 47-46A 575869.00 137822. 70 0 406 0 406 0 406 0 406 0 406 0 406 0 406 0 0 406 0 406 0 580 174 0 580 47-50 574797.80 137888.90 367 367 0 367 0 367 0 367 0 367 0 367 0 367 0 367 0 0 367 0 367 0 582 215 0 582 47-60 571474.00 137968.00 366 366 0 366 0 366 0 366 0 366 0 366 0 366 0 424 58 58 424 0 424 0 644 0 5 649 48-22 583116.00 138130.00 142 142 0 142 0 207 65 252 45 252 0 297 45 297 0 357 60 105 357 0 397 40 517 120 0 517 48-71 568351.00 138045.00 517 517 0 517 0 682 165 5 687 48-77A 566414.00 137970.00 218 218 0 347 129 347 0 347 0 347 0 347 0 347 0 590 243 243 607 17 650 43 670 20 2 672 49-lOOC 559305.17 138504.54 390 390 0 390 0 398 8 398 0 398 0 398 0 398 0 565 167 167 565 0 590 25 773 183 17 790 49-21 583634.00 138555.00 364 364 0 364 0 364 0 364 0 364 0 364 0 364 0 364 0 0 364 0 364 0 494 130 0 494 49-48 575103.40 138570.30 0 431 0 431 0 431 0 431 0 431 0 431 0 431 0 0 431 0 431 0 552 121 0 552 49-57B 572536.60 138381.40 0 389 0 389 0 389 0 389 0 389 0 389 0 389 0 0 389 0 389 0 547 158 4 551 49-95 560900. 59 138503. 03 296 >28 316 20 316 0 316 0 316 0 316 0 551 241 241 557 0 551 0 802 245 5 807 50.30 580792.00 138827.00 159 159 0 159 0 214 55 234 20 249 15 299 50 309 IO 419 110 160 440 21 440 0 529 89 0 529 50.42 577111.10 138791.40 400 400 0 409 9 428 19 428 0 428 0 428 0 428 0 428 0 0 428 0 428 0 466 38 0 466 50.45 576172.00 138772.00 412 412 0 412 0 412 0 412 0 412 0 412 0 412 0 412 0 0 412 0 412 0 448 36 450 50.48A 575155.00 138685.60 438 438 0 438 0 438 0 438 0 438 0 438 0 438 0 438 0 0 438 0 438 0 549 Ill 0 549 50.85 564130.00 138670.00 154 154 0 219 65 267 48 267 0 267 0 267 0 267 0 534 267 267 619 85 674 55 739 65 0 739 51-36B 578921.41 139066.17 479 479 0 479 0 479 0 479 0 479 0 479 0 479 0 479 0 0 479 0 479 0 515 36 0 515 51-46 575738.00 139004.00 0 430 0 430 0 430 0 430 0 430 0 430 0 430 0 0 430 0 430 0 443 13 0 443 51-63 570664.00 139152.00 388 388 0 388 0 388 0 388 0 388 0 388 0 388 0 388 0 0 388 0 388 0 570 182 0 570 51-15 566980.00 138904.00 0 305 41 309 309 0 309 0 309 0 309 0 429 120 120 429 0 429 0 641 212 0 641 52-46A 575952.30 139394.60 403 403 0 403 0 419 16 419 0 419 0 419 0 419 0 419 0 0 419 0 419 0 454 35 0 454 53-55A 573114.80 139632.00 279 316 0 316 0 316 0 316 0 316 0 316 0 316 0 316 0 0 316 0 316 0 574 258 0 474 54-15 585187.00 139833.00 0 57 0 150 93 155 5 210 55 265 55 265 0 265 0 55 305 40 305 0 395 90 10 405 54-18C 584471.64 139998.68 63 63 0 63 0 108 45 134 26 200 66 247 47 247 0 247 0 47 327 80 327 0 402 15 0 404 54-42 576950.00 140066.00 0 370 0 370 0 370 0 370 0 370 0 370 0 370 0 0 370 0 370 0 510 140 0 510 54-45A 576317.00 140008.00 389 >5 389 0 389 0 389 0 389 0 389 0 0 389 0 389 0 494 105 0 494 54-48 575357.00 139823.00 0 359 0 391 32 391 0 391 0 391 0 391 0 391 0 0 391 0 391 0 449 58 5 454 55-44 576569.00 140392.00 0 378 >20 418 40 418 0 418 0 418 0 418 0 418 0 0 418 0 418 0 513 95 s 518 55-50A 574642.00 140247.30 343 343 0 343 0 343 0 343 0 343 0 343 0 343 0 343 0 0 343 0 343 0 438 95 443 55-51 572445.00 140119.80 384 384 0 384 0 384 0 384 0 384 0 384 0 384 0 384 0 0 384 0 384 0 552 168 2 554 55-60A 571562.95 140267.37 569 >230 4 573 55-60B 571550.48 140366.40 572 >289 0 572 55-10 568561.00 140328.00 368 368 0 387 19 403 16 403 0 403 0 403 0 403 0 518 115 ll5 518 0 518 0 568 50 0 568 55-16 566750.00 140227.00 360 360 0 403 43 416 13 416 0 416 0 416 0 416 0 463 47 47 463 0 463 0 583 120 0 583 55-95 560942.00 140210.00 0 305 43 400 95 400 0 400 0 400 0 400 0 640 240 240 640 0 665 25 775 110 0 775 56-40A 577561.31 140465.18 505 505 0 505 505 505 0 505 0 sos 0 505 0 505 0 505 0 505 0 566 61 0 566 56-53 573793.10 140652.40 332 332 0 332 0 332 0 332 0 332 0 332 0 332 0 332 0 332 0 332 0 432 100 0 432 57-83 564583.00 140825.00 233 233 0 321 88 367 46 367 0 367 0 367 0 367 0 372 5 372 0 372 0 511 205 o m 59-101 559199.00 141400.00 465 465 0 465 0 465 0 465 0 465 0 465 0 465 0 465 0 465 0 465 0 580 115 0 580 59.55 573049.00 141544.20 405 > 135 0 405 59-80B 565637.67 141574.96 416 416 0 436 20 436 0 436 0 436 0 436 0 436 0 505 69 69 505 0 505 0 581 76 0 581 6-2A 589311.74 125194.36 .78 -78 0 -2 76 67 69 117 50 175 58 235 60 235 0 388 153 213 388 0 388 0 457 69 4 461 60-57 572624.00 141871.00 325 325 0 325 0 325 0 325 0 325 0 325 0 325 0 325 0 0 325 0 325 0 470 145 0 470 61-16A 585101.00 142243.00 112 112 0 112 0 170 58 186 16 205 19 269 64 269 0 269 0 64 412 143 412 0 412 0 0 412 61-62 570915.00 141922.00 316 316 0 316 0 316 0 316 0 316 0 316 0 316 0 316 0 0 364 48 364 0 495 131 2 497 61-66 569788.00 142008.00 307 307 0 307 0 307 0 307 0 307 0 307 0 307 0 307 0 0 307 0 307 0 522 215 0 522 63-55 573094.00 142562.00 314 314 0 314 0 314 0 314 0 314 0 314 0 314 0 314 0 0 314 0 314 0 425 111 I 426 63-90 562367.00 142612.00 274 274 0 347 73 375 28 375 0 375 0 375 0 375 0 393 18 18 393 0 393 0 510 117 0 510 63-95 560915.00 142651.00 407 407 0 407 0 407 0 407 0 407 0 407 0 407 0 407 0 0 407 0 407 0 485 78 0 485 65-50 574591.00 143188.00 -108 -108 0 -87 21 22 109 97 75 217 120 287 70 287 0 287 0 70 365 78 365 0 467 102 0 467 65-95 560815.00 143193.00 396 396 0 432 36 433 433 0 433 0 433 0 433 0 433 0 0 433 0 433 0 452 19 0 452 66-38 578294.02 143607.67 409 > 127 409 0 436 27 0 436 66-91 562175.00 143476.00 369 369 0 410 41 411 411 0 411 411 0 411 0 411 0 0 411 0 411 0 467 56 0 467 67-51 574178.93 143933.22 324 >50 324 0 324 0 369 45 369 0 524 155 0 524 69-45 576157.41 144556.31 195 >9 236 41 265 29 265 0 265 0 29 395 130 395 0 484 89 2 486 71-30 580603.35 145226.91 276 >25 276 0 276 0 366 90 366 0 401 35 0 401 71-52 573907. 74 145215.10 368 > 55 398 30 398 0 398 0 520 122 3 523 71.77 566401.95 145098.61 197 >25 297 100 367 70 367 0 367 0 472 105 0 472 71-78 565418.00 145348.00 -213 -213 0 -153 60 -26 127 13 39 63 50 183 120 292 109 387 95 215 387 0 387 0 442 55 0 442 72.73 561551.54 145418.78 318 >35 398 80 398 0 398 0 483 85 0 483 72.92 561839.42 145359. 75 300 >50 300 0 300 0 450 ISO 0 450 74-44 576393.09 146098.78 375 >80 400 25 400 0 400 0 443 43 2 445 74-48 575237. 72 146037. 71 362 >25 420 58 420 0 420 0 487 67 0 487 77-36 578847.55 146868.58 277 > 15 277 0 277 0 367 90 367 0 410 43 2 412 77-54 573385.97 146854.80 390 >60 390 0 390 0 480 90 0 480 78-62 570877.30 147166.22 344 >25 425 81 425 0 425 0 468 43 469 Borehole# Easting Northing Top Top Iso Top ho Top !so Top !so Top !so Top 1,0 Top !so Top !so !so Top tao Top Iao Top !so !so Elev llaJ SubA SubA A A lM lM BD BD SubC SubC C C Sub8 Sub 8 8 E C+E UR UR PMPP PMPP Hf Hf Eo 8-17 584699.64 126006.11 0 332 > 10 396 64 509 113 13 522 8-25 582298.26 125937.79 404 404 0 404 0 484 80 25 509 80-43P 576703.83 14n29.91 38 >30 68 30 203 135 308 105 308 0 308 0 105 373 65 373 0 412 39 1 413 81-58 572185.64 148173.68 294 >5 349 55 374 25 374 0 374 0 439 65 0 439 81-62 570943.00 148103.00 -88 -88 0 -65 23 40 105 110 70 235 125 245 10 341 96 406 65 75 406 0 406 0 440 34 0 440 83-47 575492.04 148705.25 355 >70 355 O 435 80 0 435 84-35A 579193.10 149093. 73 45 45 0 45 0 119 74 155 36 155 0 155 0 155 0 155 0 365 210 365 0 400 35 0 400 84-59 571731.00 149176.00 0 -52 12 58 110 124 66 265 141 280 15 353 73 403 50 65 403 0 403 O 456 53 4 460 87-55 512969.15 149903.97 418 >50 418 0 418 0 459 41 0 459 89-35 579121.74 150543.51 342 >21 342 0 396 54 0 396 9-ESA 591479.51 12631220 -23 -23 0 7 30 153 146 218 65 218 0 218 0 248 30 353 105 105 353 0 386 33 453 67 0 453 92-14 585588 15154S 273 273 0 273 0 273 0 273 0 273 0 288 15 441 159 464 17 191 858 394 858 0 858 0 4 862 93-48 575094.32 151795.52 366 > II 366 0 429 63 9 438 96-43 576761.65 152605.54 3n >6 3n 0 421 44 I 421 96-49 574851.56 152858.31 359 >40 359 0 419 60 0 419 97-43 576672.03 153090.52 3n >55 3n 0 422 45 0 422 B3-2 565848.00 145326.00 -206 -206 0 -152 54 -9 143 15 24 63 48 183 120 243 60 384 141 261 384 0 384 0 440 56 0 440 D2-5 573812.47 1S1148.41 368 >7 408 40 408 0 408 0 458 so 0 D5-12 573839.81 151557.51 379 >3 418 39 418 0 418 0 468 50 0 468 D5-20 573239.97 152030.15 363 >2 412 49 412 0 412 0 460 48 0 725 B13-l 573664.21 134391.22 390 > 10 390 0 390 0 740 350 0 740 613-13 573409.07 134085. 72 390 >20 390 0 390 0 724 334 0 741 El3-18 573119.16 134215.97 273 > 15 328 55 328 0 328 0 328 0 328 0 443 115 115 443 0 443 0 727 284 0 727 El3-20 573609.57 134312.73 156 156 0 270 ll4 331 61 331 0 331 0 331 0 331 0 426 95 95 426 0 426 0 741 315 0 716 617-4 575ll8.14 135370.33 330 > 15 330 0 330 0 330 0 330 0 410 80 80 410 0 410 0 717 307 0 717 618-1 573296.80 135200.37 396 396 0 396 0 716 320 0 714 819-1 572819.87 135085.89 215 215 0 309 94 360 51 360 0 360 0 360 0 360 0 385 25 25 385 0 385 0 734 349 0 734 B24-7 574406. 76 135560. 73 271 271 0 381 l!O 381 0 381 0 381 0 381 0 381 0 381 0 0 381 0 381 0 714 333 0 615 624-8 574547.00 136271.68 306 306 0 408 102 408 0 408 0 408 0 408 0 408 0 408 0 0 408 0 408 0 688 280 0 688 E25-l 575336.10 136031.30 408 >40 418 10 418 0 418 0 418 0 418 0 418 0 0 418 0 418 0 663 245 25 688 B25-l2 575978.80 135491.30 357 >25 362 5 362 0 362 0 362 0 362 0 362 0 0 362 0 362 0 673 311 5 678 E25-l3 575362.90 136139.90 399 >34 427 28 427 0 427 0 427 0 427 0 427 0 0 427 0 427 0 6n 250 5 681 E25-l7 575699.40 135703.20 407 > 18 407 0 407 0 407 0 407 0 407 0 0 407 0 407 0 687 280 0 687 E25-18 575816. IO 135698. 70 386 > IO 391 391 0 391 0 391 0 391 0 391 0 0 391 0 391 0 616 285 0 676 E25-19 575855.00 135657.60 399 >25 399 0 399 0 399 0 399 0 399 0 399 0 0 399 0 399 0 670 271 4 674 E25-2 575513. 98 136032.15 319 319 0 405 86 419 14 419 0 419 0 419 0 419 0 419 0 0 419 0 419 0 675 256 0 615 E25-28 576011.80 136111.90 319 319 0 407 88 413 5 413 0 413 0 413 0 413 0 413 0 0 413 0 413 0 655 242 5 660 E25-32P 576382.30 136044.70 323 323 0 37$ 52 375 0 375 0 375 . 0 315 0 375 0 375 0 0 315 0 375 0 663 · 288 668 E25-33 575992.20 135713.20 291 291 0 384 93 403 19 403 0 403 0 403 0 403 0 403 0 0 403 0 403 0 672 269 0 672 626-l 575251.94 137130.71 393 393 0 393 0 393 0 393 0 393 0 393 0 393 0 393 0 0 393 0 393 0 616 223 0 615 E26-l0 575589.30 137023.80 394 394 0 394 0 394 0 394 0 394 0 394 0 394 0 394 0 0 394 0 394 0 598 204 0 598 E26-ll 576180.20 137134.90 399 399 0 399 0 399 0 399 0 399 0 399 0 399 0 399 0 0 399 0 399 0 596 197 0 596 E26-9 575576.37 137133.40 397 397 0 397 0 397 0 397 0 397 0 397 0 397 0 397 0 0 397 0 397 0 600 203 0 600 827-1 574515.60 136537.10 428 >70 428 0 428 0 428 0 428 0 428 0 428 0 0 428 0 428 0 681 253 0 681 E27-10 575100. 71 13705280 382 382 0 382 0 382 0 382 0 382 0 382 0 382 0 382 0 0 382 0 382 0 622 240 0 622 827-11 574653.20 137063.00 378 378 0 378 0 378 0 378 0 378 0 378 0 378 0 378 0 0 378 0 378 0 640 262 0 640 B27-13 575065.10 136489.50 666 >276 0 666 B27-5 574688.60 136306.50 435 >70 440 440 0 440 0 440 0 440 0 440 0 0 440 0 440 0 685 245 0 685 B27-6 575245.06 136332.47 336 336 0 404 68 414 IO 414 0 414 0 414 0 414 0 414 0 0 414 0 414 0 671 257 0 671 E28-17 573492.00 136331.80 415 >50 415 0 415 0 415 0 415 0 415 0 415 0 0 415 0 415 0 708 293 0 708 628-18 573095.20 136767. 70 438 >50 438 0 438 0 438 0 438 0 438 0 438 0 0 438 0 438 0 692 254 0 692 E28-2 573704.48 136863.89 373 373 0 402 29 402 0 402 0 402 0 402 0 402 0 402 0 0 402 0 402 0 679 2n 0 679 E28-22 574041.35 136320.83 337 337 0 430 93 430 0 430 0 430 0 430 0 430 0 430 0 0 430 0 430 0 700 270 0 700 E28-3 573708.86 136607.30 366 >5 366 0 366 0 366 0 366 0 366 0 366 0 0 366 0 366 0 693 327 0 693 E28-5 574034.10 136856.90 363 363 0 380 17 380 0 380 0 380 0 380 0 380 0 380 0 0 380 0 380 0 665 285 5 670 E33-18 573779.39 137386.32 386 386 0 404 18 433 29 433 0 433 0 433 0 433 0 433 0 0 433 0 433 0 643 210 0 649 E33-29 573228.13 137231.47 385 385 0 433 48 433 0 433 0 433 0 433 0 433 0 433 0 0 433 0 433 0 671 238 0 671 E33-37 574091.71 137185.70 385 385 0 385 0 385 0 385 0 385 0 385 0 385 0 385 0 0 385 0 385 0 653 268 0 653 E33-4 573616.97 137693.40 397 397 0 397 0 397 0 397 0 397 0 397 0 397 0 397 0 0 397 0 397 0 612 215 15 627 E33-41 573707.19 137369.94 389 389 0 4ll 22 433 22 433 0 433 0 433 0 433 0 433 0 0 433 0 433 0 652 219 0 652 E34-2 574635.18 137220.92 388 388 0 388 0 388 0 388 0 388 0 388 0 388 0 388 0 0 388 0 388 0 629 241 0 629 E34-4 574825.29 Bn44.26 409 409 0 409 0 409 0 409 0 409 0 409 0 409 0 409 0 0 409 0 409 0 585 176 0 585 E34-8 574206.66 137249.88 381 381 0 381 0 381 0 381 0 381 0 381 0 381 0 381 0 0 381 0 381 0 638 257 0 638 E35-I 575460.00 137465.20 402 402 0 402 0 402 0 402 0 402 0 402 0 402 0 402 0 0 402 0 402 0 595 193 0 595 E35-2 575576.50 137255.30 399 399 0 399 0 399 0 399 0 399 0 399 0 399 0 399 0 0 399 0 399 0 599 200 0 599 H3-2C 5n632.23 152750.54 356 >95 356 0 416 60 0 416 H4-12C 578011.97 152920.10 352 > 160 352 0 411 59 0 411 H4-15C 5n907.86 153060.27 92 92 0 92 194 102 200 6 200 200 0 200 0 200 0 357 157 357 0 406 49 0 406 H4-2 578094.00 152502.00 84 84 0 84 170 86 229 59 229 229 0 229 0 229 0 356 127 356 0 420 64 0 420 K-20 569520.52 147687.24 420 420 0 420 0 420 0 0 420 B0tohole # Easting Northing Top Top Iso Top ho Top ho Top I,o Top ho Top ho Top lao Top !so Iao Top Iso Top Iso Top I,o lso Elev Bal SubA Sub A A A LM LM BD BD Sub C Sub C C C Sub E Sub E E E C+E UR UR PMPP PMPP Hf Hf Bo K-24 568833.85 146934.33 445 > I 445 0 445 0 467 22 0 467 N-2 571476.21 149859.43 351 >27 386 35 386 0 386 0 451 65 0 451 N-5 571405.70 149675.17 349 > 15 399 50 399 0 399 0 454 55 0 454 N-69 571483.89 149804.80 356 >3 415 59 415 0 415 0 457 42 0 457 N-80 571477. 76 149951.09 357 > 29 417 60 417 0 417 0 455 38 0 455 SI-SH 587524.94 123302.58 -57 -57 0 0 57 70 70 120 50 120 0 120 0 145 25 410 265 265 410 0 410 0 550 140 5 555 SII-El2A 593576.40 120173.85 129 129 0 160 31 195 35 225 30 225 0 225 0 255 30 310 55 55 310 0 310 0 365 55 0 365 Sl2-29 580953.00 119932.00 308 308 0 308 0 332 24 352 20 352 0 352 0 362 10 427 65 65 427 0 427 0 487 60 0 487 Sl2-3 589113.03 119761.79 326 >2 391 65 391 0 391 0 430 39 435 Sl4-20A 583921.00 119087.00 347 15 357 10 357 0 357 0 357 357 0 392 35 35 392 0 392 0 472 80 20 492 S18-E2 590549.00 117881.00 185 185 185 0 229 44 274 45 274 0 274 279 364 85 85 364 0 364 0 424 60 10 434 Sl9-II 586583.82 11n99.so 388 388 0 388 0 483 95 0 484 S19-El3 593835.39 117605.38 316 >5 316 0 316 0 376 60 15 391 S22-B9C 592689.00 116753.00 201 201 201 0 222 21 256 34 261 310 49 326 16 341 15 64 341 0 341 0 367 26 4 371 S24-19 584162.00 116200.00 381 381 381 0 381 0 381 0 381 0 381 0 381 0 403 22 22 403 0 403 0 426 23 I 427 S27-E9C 592721.00 115325.00 189 189 189 0 211 22 252 41 268 16 288 20 314 26 341 27 47 341 0 341 0 386 45 2 388 S29-Bl2 593626.16 114569.68 339 >35 339 0 339 0 384 45 0 384 S29-El6C 594742.00 114731.00 202 202 0 202 258 56 292 34 292 292 0 292 319 27 27 319 0 319 0 374 55 3n S3-25 582459.96 122587.88 398 >39 398 0 398 0 493 95 30 523 S3-B12 593586.00 122615.00 0 145 0 178 33 225 47 245 20 306 61 313 7 340 27 88 351 II 351 0 378 27 17 395 S30-B15C 594366.00 114270.00 201 201 0 201 0 241 40 271 30 271 0 271 0 281 10 331 50 50 331 0 331 0 399 68 2 401 S31-l 589749.00 114213.00 239 239 0 239 0 274 35 311 37 311 0 311 0 327 16 387 60 60 387 0 387 0 444 57 16 460 S4-E16 594988.00 122405.00 187 187 0 187 0 193 6 236 43 236 0 236 0 270 34 318 48 48 318 0 318 0 343 25 0 343 S6-Bl4A 594262.39 121569. 74 181 181 0 181 0 202 21 280 78 280 0 280 0 288 8 342 54 54 342 0 342 0 378 36 0 378 S6-B4C 591083.17 121663.59 64 64 0 102 38 136 34 198 62 234 36 291 57 314 23 376 62 119 376 0 376 0 431 55 0 431 S7-34 579431.00 121503.00 384 384 0 401 17 435 34 435 0 435 0 435 0 435 0 435 0 0 435 0 435 0 523 88 521 S8-19 584226.54 120964.55 391 >36 391 0 391 0 484 93 19 503 WI0-14 566018.00 136609.00 246 > II 246 0 246 0 246 0 246 0 559 313 313 559 0 566 7 696 130 0 696 Wll-2 567407.00 136671.00 199 199 0 272 73 289 17 289 0 289 0 289 0 289 0 564 275 275 564 0 601 37 707 106 5 712 Wll-26 567045.00 136564.00 190 190 0 264 74 281 17 281 0 281 0 281 0 281 0 552 271 271 563 II 589 26 694 105 0 690 Wl4-7 567034.00 135654.00 159 159 0 214 55 253 39 253 0 253 0 253 0 253 0 547 294 294 547 0 558 II 672 114 5 6n W14-8 568073.30 135698. 70 186 186 0 265 79 282 17 282 0 282 0 282 0 282 0 547 265 265 547 0 555 8 722 167 0 722 Wl5-14 566093.00 135648.00 134 134 0 199 65 240 41 240 0 240 0 240 0 240 0 517 2n 2n 528 II 540 12 693 153 5 698 Wl5-5 566735.00 135512.00 142 142 0 188 46 242 54 242 0 242 0 242 0 242 0 532 290 290 532 0 549 17 652 103 18 670 Wl8-22 566089.13 134990.30 281 >70 281 0 281 0 281 0 281 0 521 240 240 521 0 536 15 666 130 0 666 Wl9-IO 566887.00 134925.00 125 125 0 195 70 221 26 221 0 221 0 221 0 221 0 509 288 288 509 0 540 31 680 140 0 680 W19-4 568003.00 135366.40 176 176 0 191 15 210 19 210 0 210 0 210 0 210 0 451 241 241 470 19 546 76 708 162 5 713 W19-8 567564.00 135220.00 140 140 0 235 95 267 32 267 0 267 0 267 0 267 0 490 223 223 490 0 525 35 700 115 0 700 W22-19 567618.44 133981.44 453 >223 453 0 487 34 678 191 680 W22-24 567648.00 134411.00 122 122 39 262 101 293 31 293 0 293 0 293 0 293 0 450 157 157 473 23 500 27 690 190 0 690 W22-27 567151.00 134497.00 120 120 9 174 45 226 52 226 0 226 0 226 0 226 0 489 263 263 524 35 544 20 679 135 0 679 W27-2 566908.55 133670.63 250 > 12 250 0 250 0 250 0 250 0 449 199 199 474 25 501 27 672 171 2 674 W6-1 567214.00 137510.00 232 232 0 267 35 2n 10 2n 0 2n 0 2n 0 277 0 602 325 325 642 40 662 20 697 35 5 702 W6-3 567118.18 137299.13 280 > 10 290 10 290 0 290 0 290 0 290 0 607 317 317 617 10 644 27 705 61 0 705 W6-6 567319.00 137638.59 271 >31 285 14 285 0 285 0 285 0 285 0 602 317 317 . 650 48 681 31 710 29 0 710 W7-3 566292.00 137639.00 199 199 308 109 308 0 308 0 308 0 308 0 308 0 568 260 260 593 25 639 46 673 34 0 673