Moth Tails Divert Bat Attack: Evolution of Acoustic Deflection

Total Page:16

File Type:pdf, Size:1020Kb

Moth Tails Divert Bat Attack: Evolution of Acoustic Deflection Moth tails divert bat attack: Evolution of acoustic deflection Jesse R. Barbera,1, Brian C. Leavella, Adam L. Keenera, Jesse W. Breinholtb, Brad A. Chadwellc, Christopher J. W. McClurea,d, Geena M. Hillb, and Akito Y. Kawaharab,1 aDepartment of Biological Sciences, Boise State University, Boise, ID 83725; bFlorida Museum of Natural History, McGuire Center for Lepidoptera and Biodiversity, University of Florida, Gainesville, FL 32611; cDepartment of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272; and dPeregrine Fund, Boise, ID 83709 Edited by May R. Berenbaum, University of Illinois at Urbana-Champaign, Urbana, IL, and approved January 28, 2015 (received for review November 15, 2014) Adaptations to divert the attacks of visually guided predators the individuals that were tested. Interactions took place under have evolved repeatedly in animals. Using high-speed infrared darkness in a sound-attenuated flight room. We recorded each videography, we show that luna moths (Actias luna) generate an engagement with infrared-sensitive high-speed cameras and ul- acoustic diversion with spinning hindwing tails to deflect echolo- trasonic microphones. To constrain the moths’ flight to a ∼1m2 cating bat attacks away from their body and toward these non- area surveyed by the high-speed cameras, we tethered luna moths essential appendages. We pit luna moths against big brown bats from the ceiling with a monofilament line. (Eptesicus fuscus) and demonstrate a survival advantage of ∼47% for moths with tails versus those that had their tails removed. The Results and Discussion benefit of hindwing tails is equivalent to the advantage conferred Bats captured 34.5% (number of moths presented; n = 87) of to moths by bat-detecting ears. Moth tails lured bat attacks to tailed luna moths, and 81.3% (n = 75) of moths without tails these wing regions during 55% of interactions between bats and were caught—a 46.8% survival advantage for hindwing tails (Fig. intact luna moths. We analyzed flight kinematics of moths with 1). Mixed-effects logistic regression revealed a moth without tails and without hindwing tails and suggest that tails have a minimal is 8.7 times [confidence interval (CI) = 2.1–35.3] more likely to role in flight performance. Using a robust phylogeny, we find that be captured than a moth with tails. During each foraging session, long spatulate tails have independently evolved four times in sa- we presented a bat with one intact luna moth, one luna moth turniid moths, further supporting the selective advantage of this with its tails ablated, and 1–2 pyralid moths as controls. Control anti-bat strategy. Diversionary tactics are perhaps more common moths were captured 97.5% (n = 136) of the time. The adult big than appreciated in predator–prey interactions. Our finding sug- brown bats (Eptesicus fuscus) used in these experiments are not gests that focusing on the sensory ecologies of key predators will sympatric with tailed saturniid moths and are thus naive to this reveal such countermeasures in prey. anti-bat strategy. Initial mixed-effects logistic regression analysis indicated that the number of nights bats hunted luna moths was antipredator defense | bat–moth interactions | Lepidoptera | Saturniidae not correlated with capture success (P = 0.42); bats did not learn to circumvent this defense over time. In addition, bats did not redators are under pressure to perform incapacitating initial alter their sonar cries with experience or prey type (Fig. S1). Pstrikes to thwart prey escape. It is thought that prey, in turn, To determine if moths with intact tails lured bat attacks, we have evolved conspicuous colors or markings to deflect predator determined where on the moths’ bodies the bats aimed their attack to less vulnerable body regions (1, 2). Eyespots are a well- known class of proposed deflection marks (3), which are found in Significance a variety of taxa, including Lepidoptera (3) and fishes (4), but only recently have experiments convincingly demonstrated that Bats and moths have been engaged in acoustic warfare these color patterns redirect predatory assault. Eyespots on ar- for more than 60 million y. Yet almost half of moth species tificial butterfly (5) and fish (4) prey draw strikes of avian and lack bat-detecting ears and still face intense bat predation. fish predators. Eyespots on the wing margins of woodland brown We hypothesized that the long tails of one group of seem- butterflies (Lopinga achine) lure the attacks of blue tits (Cya- ingly defenseless moths, saturniids, are an anti-bat strategy nistes caeruleus) (6). Brightly colored lizard tails also divert avian designed to divert bat attacks. Using high-speed infrared vid- predator attacks to this expendable body region (7). eography, we show that the spinning hindwing tails of luna Deflection coloration is unlikely to be an effective strategy moths lure echolocating bat attacks to these nonessential against echolocating bats, as these predators have scotopic vision appendages in over half of bat–moth interactions. Further we and poor visual acuity unsuited for prey localization and dis- show that long hindwing tails have independently evolved crimination (8). Most bats rely on echoes from their sonar cries multiple times in saturniid moths. This finding expands our to image prey and other objects in their environment—they live knowledge of antipredator deflection strategies, the limi- in an auditory world (9). Thus, we would expect a deflection tations of bat sonar, and the extent of a long-standing evolu- strategy, effective against bats, to present diversionary acoustic tionary arms race. signatures to these hearing specialists. Weeks (10) proposed that saturniid hindwing tails might serve to divert bat attacks from Author contributions: J.R.B. and A.Y.K. designed research; J.R.B., B.C.L., A.L.K., J.W.B., G.M.H., and A.Y.K. performed research; J.R.B., B.C.L., A.L.K., J.W.B., B.A.C., C.J.W.M., essential body parts. We hypothesized that saturniid tails, spin- G.M.H., and A.Y.K. analyzed data; and J.R.B. wrote the paper. ning behind a flying moth (Movie S1) and reflecting sonar calls, The authors declare no conflict of interest. serve as either a highly contrasting component of the primary This article is a PNAS Direct Submission. echoic target or as an alternative target. We predicted that bats Data deposition: The data reported in this paper have been deposited in the Dryad Data would aim their attacks at moth tails, instead of the wings or Repository, datadryad.org (accession no. 0vn84). body, during a substantial percentage of interactions. To test this 1To whom correspondence may be addressed. Email: [email protected] or prediction, we pit eight big brown bats against luna moths with [email protected]. and without hindwing tails. To control for handling, we restrained This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. each moth similarly and removed tails from approximately half of 1073/pnas.1421926112/-/DCSupplemental. 2812–2816 | PNAS | March 3, 2015 | vol. 112 | no. 9 www.pnas.org/cgi/doi/10.1073/pnas.1421926112 Downloaded by guest on September 25, 2021 evidence indicates bats that emit FM sonar might do so, using information either within a single echo (14) or across an echo strobe group (15, 16). Regardless, the FM bats in these experi- ments were lured to the echoes of spinning tails. To understand the historical pattern of tail evolution, we measured tail lengths of 113 saturniid moth species and con- structed a phylogeny using maximum likelihood (ML) and Bayesian approaches. Trees from both analyses provided very similar results that are largely congruent (Fig. 2 and Fig. S3). Our Fig. 1. Luna moth tails lure echolocating bat attacks. (A) Percentage of results demonstrate four independent origins of long (>30 mm) moths captured during interactions with big brown bats (E. fuscus). Error hindwing tails with modified spatulate tips in the Saturniidae. bars are binomial 95% CIs. Brackets show P values for comparisons using Tails evolved in the well-supported Actias + Argema + Graellsia mixed-effects logistic regression. (B) Movie frames of a bat biting and re- clade, Copiopteryx, Eudaemonia, and Coscinocera, which are moving the tail of a luna moth (A. luna). placed in disparate tribes and two different saturniid subfamilies. Evidence for a single origin of tails is strongly rejected statistically < strikes. We did so by reviewing three different high-speed camera (SH test, P 0.0001). Examination of the tailed moth clades angles of the interactions. Bats aimed at tails in 55.2% (n = 87) of appears to show tail length increases from tailless or ancestrally interactions with intact moths (Movie S2), slightly more often than shorter tails. Tail length might be increasing under selection from they aimed at the moth’s body (44.8%, n = 87; binomial test, P = bats to move the echoic target created by spinning tails further 0.05; Movie S3). Visual deflection marks are also usually found on from the body and forewings. Although a phylogenetic study with ’ increased sampling focusing on these tailed clades is needed to the posterior of prey animals, which likely draws the predators = attack away from the escape trajectory (1–7). In fact, bats were support this conclusion, we note forewing damage in 8% (n 87) of bat–luna moth interactions. It would be informative to look rarely successful at capturing moths when they aimed at tails broadly across the Saturniidae and assess both the rates of damage (4.2%, n = 48) but showed similar capture success to moths with to critical flight infrastructure (17) and bat capture rates of moths tails removed when they targeted the body (71.8%, n = 39; bi- with longer (e.g., Copiopteryx, >100 mm) and shorter (e.g., Arsenura, nomial test, P = 0.07).
Recommended publications
  • Butterflies and Moths of Brevard County, Florida, United States
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Nomenclatural Notes for the Erotylinae (Coleoptera: Erotylidae)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 4-29-2020 Nomenclatural notes for the Erotylinae (Coleoptera: Erotylidae) Paul E. Skelley Florida State Collection of Arthropods, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Skelley, Paul E., "Nomenclatural notes for the Erotylinae (Coleoptera: Erotylidae)" (2020). Insecta Mundi. 1265. https://digitalcommons.unl.edu/insectamundi/1265 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. May 29 2020 INSECTA 35 urn:lsid:zoobank. A Journal of World Insect Systematics org:pub:41CE7E99-A319-4A28- UNDI M B803-39470C169422 0767 Nomenclatural notes for the Erotylinae (Coleoptera: Erotylidae) Paul E. Skelley Florida State Collection of Arthropods Florida Department of Agriculture and Consumer Services 1911 SW 34th Street Gainesville, FL 32608, USA Date of issue: May 29, 2020 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Paul E. Skelley Nomenclatural notes for the Erotylinae (Coleoptera: Erotylidae) Insecta Mundi 0767: 1–35 ZooBank Registered: urn:lsid:zoobank.org:pub:41CE7E99-A319-4A28-B803-39470C169422 Published in 2020 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non- marine arthropod.
    [Show full text]
  • Aid to the Identification of Insects
    §!§§§ Ilit MM piX; % K V il; *f (Nj V< ?CXm . 1 22101607347 Med K17364 4- : AID TO THE IDENTIFICATION OF INSECTS. Edited by CHARLES OWEN WATERHOUSE. Lithographs by EDWIN WILSON. VOL. I. LONDON E. W. JANSON, 35, LITTLE RUSSELL STREET, W.C. - 1880 82 . JANSON A SONS, 44 0t. Russia St, LONDON. W.C, : bonbon PRINTED BV F. T. ANDREW, ALBION WORKS, ALBION PLACE, LONDON WALL. WELLCC ~ INSTITUTE L! 1Y Coll we'MOmec Call No. W PREFACE. In issuing this first volume of ‘Aid,’ I wish to call attention to — the following sentence in my Prospectus, viz : “ There will be a Systematic Index, together with such remarks on the insects as may appear absolutely necessary, but the Editor is anxious to avoid adding to the already voluminous Entomological Literature ; the present work being intended to elucidate that which has been already written.” I mention this for the reason that some persons have wished that the Plates were accompanied by Letter-press or descriptions. To reproduce all the original descriptions would have added so greatly to the expense of producing the work, that it would have been impossible to have given the number of Plates at the small price now asked ; and extracts from descriptions so frequently lead to error that I have determined in eveiy case to refer to the original works for all information. In preparing the Plates, however, a few notes on some of the species have (as I anticipated) appeared to me to be necessary, and these I give at the end of the Systematic Index. With the exception of Plates 1, 4, 16, 17, 20, 23, 27, 31, 32, 42, 48, 59, 61, 89 and 98, all the figures are taken from original types.
    [Show full text]
  • Amphiesmeno- Ptera: the Caddisflies and Lepidoptera
    CY501-C13[548-606].qxd 2/16/05 12:17 AM Page 548 quark11 27B:CY501:Chapters:Chapter-13: 13Amphiesmeno-Amphiesmenoptera: The ptera:Caddisflies The and Lepidoptera With very few exceptions the life histories of the orders Tri- from Old English traveling cadice men, who pinned bits of choptera (caddisflies)Caddisflies and Lepidoptera (moths and butter- cloth to their and coats to advertise their fabrics. A few species flies) are extremely different; the former have aquatic larvae, actually have terrestrial larvae, but even these are relegated to and the latter nearly always have terrestrial, plant-feeding wet leaf litter, so many defining features of the order concern caterpillars. Nonetheless, the close relationship of these two larval adaptations for an almost wholly aquatic lifestyle (Wig- orders hasLepidoptera essentially never been disputed and is supported gins, 1977, 1996). For example, larvae are apneustic (without by strong morphological (Kristensen, 1975, 1991), molecular spiracles) and respire through a thin, permeable cuticle, (Wheeler et al., 2001; Whiting, 2002), and paleontological evi- some of which have filamentous abdominal gills that are sim- dence. Synapomorphies linking these two orders include het- ple or intricately branched (Figure 13.3). Antennae and the erogametic females; a pair of glands on sternite V (found in tentorium of larvae are reduced, though functional signifi- Trichoptera and in basal moths); dense, long setae on the cance of these features is unknown. Larvae do not have pro- wing membrane (which are modified into scales in Lepi- legs on most abdominal segments, save for a pair of anal pro- doptera); forewing with the anal veins looping up to form a legs that have sclerotized hooks for anchoring the larva in its double “Y” configuration; larva with a fused hypopharynx case.
    [Show full text]
  • Wildlife in Your Young Forest.Pdf
    WILDLIFE IN YOUR Young Forest 1 More Wildlife in Your Woods CREATE YOUNG FOREST AND ENJOY THE WILDLIFE IT ATTRACTS WHEN TO EXPECT DIFFERENT ANIMALS his guide presents some of the wildlife you may used to describe this dense, food-rich habitat are thickets, T see using your young forest as it grows following a shrublands, and early successional habitat. timber harvest or other management practice. As development has covered many acres, and as young The following lists focus on areas inhabited by the woodlands have matured to become older forest, the New England cottontail (Sylvilagus transitionalis), a rare amount of young forest available to wildlife has dwindled. native rabbit that lives in parts of New York east of the Having diverse wildlife requires having diverse habitats on Hudson River, and in parts of Connecticut, Rhode Island, the land, including some young forest. Massachusetts, southern New Hampshire, and southern Maine. In this region, conservationists and landowners In nature, young forest is created by floods, wildfires, storms, are carrying out projects to create the young forest and and beavers’ dam-building and feeding. To protect lives and shrubland that New England cottontails need to survive. property, we suppress floods, fires, and beaver activities. Such projects also help many other kinds of wildlife that Fortunately, we can use habitat management practices, use the same habitat. such as timber harvests, to mimic natural disturbance events and grow young forest in places where it will do the most Young forest provides abundant food and cover for insects, good. These habitat projects boost the amount of food reptiles, amphibians, birds, and mammals.
    [Show full text]
  • N Erhalten Die Pdf-Version Nur Für Den Privaten Austausch Mit Fachkollegen Oder Für Den Versand Auf Einzelne Anfragen Hin
    N achrichten des E ntomologischen V ereins A pollo 97 de Freina, J. J.: Eine Revision der Syntomini Irans (Lepidoptera, Arctiidae, Syntominae) 119 Efetov, K. A., Mollet, B., & Tarmann, G. M.: The biology and early stages of Adscita (Adscita) capitalis (Staudinger, 1879) (Lepidoptera: Zygaenidae, Procridinae) 125 Entomologische Notiz: Schurian, K.G.: Wasseraufnahme und Wasserabgabe („Mud-puddling“) bei Iphiclides podalirius (Linnaeus, 1758) in Deutschland (Lepidoptera: Papilionidae) 127 Naumann, S., & Nässig, W. A.: Two species in Saturnia (Rinaca) zuleika Hope, 1843 (Lepidoptera: Saturniidae) 144 Entomologische Notiz: Waltemathe, R.: Neue Fundorte für zwei lokale Schmetterlingsarten auf La Réunion (Lepidoptera: Nymphalidae, Lycaenidae) 145 Nässig, W. A., Kitching, I. J., Peigler, R. S., & Treadaway, C. G.: The group of Cricula elaezia: Comments on synonyms and priority questions, with illustrations of barcode similarity trees, distribution maps, a revised checklist and a formerly unknown female (Lepidoptera: Saturniidae) 166 Spitzer, L., Beneš, J., Vrba, P., & Zlatník M.: Three observation of interspecific mating attempts by males of the Meadow Brown (Maniola jurtina (Linnaeus, 1758)) in the wild (Lepidoptera, Nymphalidae: Satyrinae, Heliconiinae) 169 Popović, M., & Đurić M.: New findings of two rare nymphalids in Serbia (Lepidoptera: Nymphalidae) 173 Lechner, K.: The hitherto unknown female of Byasa adamsoni takakoae Uehara, 2006 (Lepidoptera: Papilionidae, Troidini) Copyright © 2010 by Entomologischer Verein Apollo e.V., Frankfurt am Main, Germany. All rights reserved. No part of this publication may be reproduced in any form, or be used, stored, propagated and distributed using electronical media without written permission of the editor. Authors that receive the pdf version may use it for private exchange with colleagues or for sending on request, only.
    [Show full text]
  • Phylogenomics Reveals Major Diversification Rate Shifts in The
    bioRxiv preprint doi: https://doi.org/10.1101/517995; this version posted January 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Phylogenomics reveals major diversification rate shifts in the evolution of silk moths and 2 relatives 3 4 Hamilton CA1,2*, St Laurent RA1, Dexter, K1, Kitching IJ3, Breinholt JW1,4, Zwick A5, Timmermans 5 MJTN6, Barber JR7, Kawahara AY1* 6 7 Institutional Affiliations: 8 1Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA 9 2Department of Entomology, Plant Pathology, & Nematology, University of Idaho, Moscow, ID 10 83844 USA 11 3Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK 12 4RAPiD Genomics, 747 SW 2nd Avenue #314, Gainesville, FL 32601. USA 13 5Australian National Insect Collection, CSIRO, Clunies Ross St, Acton, ACT 2601, Canberra, 14 Australia 15 6Department of Natural Sciences, Middlesex University, The Burroughs, London NW4 4BT, UK 16 7Department of Biological Sciences, Boise State University, Boise, ID 83725, USA 17 *Correspondence: [email protected] (CAH) or [email protected] (AYK) 18 19 20 Abstract 21 The silkmoths and their relatives (Bombycoidea) are an ecologically and taxonomically 22 diverse superfamily that includes some of the most charismatic species of all the Lepidoptera. 23 Despite displaying some of the most spectacular forms and ecological traits among insects, 24 relatively little attention has been given to understanding their evolution and the drivers of 25 their diversity.
    [Show full text]
  • ESSAI DE CLASSIFICATION DES LEPIDOPTERES PRODUCTEURS DE Sole
    VOLU-"IE 33, NUMBER 3 207 for their achievements. I welcome the present revision warmly and recommend its subject to a wide circle of my colleagues interested in Lepidoptera. Unusual additions to this fifth volume are the sympathetic obituary of the third Editor of the series, the late Hans Reisser, and a fascinating review of the origin of the ten­ year-old series "Microlepidoptera Palaearctica," by its initiator and Editor-in-Chief, Dr. H. C. Amsel. A. DIAKONOFF. Rijsmuseum Van Naturlijke Historie Raomsteeg 2, Postbut 9517, 2300 RA Leiden, Nederland. Journal of the Lepidopterists' Society 33(3). 1979,207-208 BOOK REVIEW ESSAI DE CLASSIFICATION DES LEPIDOPTERES PRODUCTEURS DE SOlE. Original fascicles published 1897-1934 in Compte rendu des Travaux du Laboratoire d'Etudes de la Soie, Lyon, Facsimile reprints now available, published 1976-1978 by Sciences Nat, 2 rue Andre Mellenne, Venette, 60200 Compiegne, France. Price different for each fascicle, but varying from 42 FF to 99 FF each, Presently only available through Sciences Nat. This old classical series on Saturniidae (= Attacidae) and related moths has been quite rare and unavailable to workers. The series is particularly useful to taxonomists and of special interest to amateur students of Saturniidae. I own an original copy of fasc. 2 and can thus see that these reprints are accurate reproductions of the originals, except for size: originals measure ca, 19 X 27 cm and reprints are ca, 15 X 22 cm. It is now possible for both libraries and individual lepidopterists to own copies of these important works. The series resulted from the immense interest in these moths from their economic standpoint as silk producers, Several experts at the Silk Laboratory in Lyon authored the text, all in French, The figures are not colored, but are line drawings and some are done from photographs.
    [Show full text]
  • Polyphemus Moth Antheraea Polyphemus (Cramer) (Insecta: Lepidoptera: Saturniidae: Saturniinae)1 Donald W
    EENY-531 Polyphemus Moth Antheraea polyphemus (Cramer) (Insecta: Lepidoptera: Saturniidae: Saturniinae)1 Donald W. Hall2 Introduction Distribution The polyphemus moth, Antheraea polyphemus (Cramer), Polyphemus moths are our most widely distributed large is one of our largest and most beautiful silk moths. It is silk moths. They are found from southern Canada down named after Polyphemus, the giant cyclops from Greek into Mexico and in all of the lower 48 states, except for mythology who had a single large, round eye in the middle Arizona and Nevada (Tuskes et al. 1996). of his forehead (Himmelman 2002). The name is because of the large eyespots in the middle of the moth is hind wings. Description The polyphemus moth also has been known by the genus name Telea, but it and the Old World species in the genus Adults Antheraea are not considered to be sufficiently different to The adult wingspan is 10 to 15 cm (approximately 4 to warrant different generic names. Because the name Anther- 6 inches) (Covell 2005). The upper surface of the wings aea has been used more often in the literature, Ferguson is various shades of reddish brown, gray, light brown, or (1972) recommended using that name rather than Telea yellow-brown with transparent eyespots. There is consider- to avoid confusion. Both genus names were published in able variation in color of the wings even in specimens from the same year. For a historical account of the polyphemus the same locality (Holland 1968). The large hind wing moth’s taxonomy see Ferguson (1972) or Tuskes et al. eyespots are ringed with prominent yellow, white (partial), (1996).
    [Show full text]
  • BOLD Taxonid Tree
    BOLD TaxonID Tree Title : Tree Result - Search (444 records) Date : 14-Apr-2017 Data Type : Nucleotide Distance Model : Kimura 2 Parameter Marker : COI-5P Colourization : Barcode Cluster (BIN) Label : Sample ID Label : Taxon Label : Region Label : Barcode Cluster (BIN) Sequence Count : 444 Species count : 105 Genus count : 45 Family count : 2 Unidentified : 0 BIN Count : 109 Cover Page 1/1 Search Fri Apr 14 08:55:59 2017 Page 1 of 5 2 % Rhadinopasa hornimani|[1]|TDGABb-004|La Lope|BOLD:AAC7927 Rhadinopasa hornimani|[2]|TDGABb-006|La Lope|BOLD:AAC7927 Rhadinopasa hornimani|[3]|Lope11-0392|La Lope|BOLD:AAC7927 Rhadinopasa hornimani|[4]|TDGABb-005|La Lope|BOLD:AAC7927 Rhadinopasa hornimani|[5]|Lope11-0890|La Lope|BOLD:AAC7927 Platysphinx vicaria|[6]|TDGABb-019|Makokou|BOLD:AAC6479 Platysphinx vicaria|[7]|TDGABb-020|Makokou|BOLD:AAC6479 Platysphinx vicaria|[8]|TDGABb-021|Makokou|BOLD:AAC6479 Phylloxiphia illustris|[9]|TDGABb-100|Makokou|BOLD:AAB8786 Phylloxiphia illustris|[10]|TDGABb-101|Makokou|BOLD:AAB8786 Phylloxiphia illustris|[11]|TDGABb-102|Makokou|BOLD:AAB8786 Phylloxiphia illustris|[12]|Lope11-0713|La Lope|BOLD:AAB8786 Phylloxiphia oberthueri|[13]|Lope11-0672|La Lope|BOLD:AAC9990 Phylloxiphia oberthueri|[14]|TDGABb-086|Makokou|BOLD:AAC9990 Phylloxiphia oberthueri|[15]|TDGABb-087|Makokou|BOLD:AAC9990 Phylloxiphia oberthueri|[16]|TDGABb-088|Makokou|BOLD:AAC9990 Phylloxiphia oberthueri|[17]|Lope11-0858|La Lope|BOLD:AAC9990 Phylloxiphia formosa|[18]|TDGABb-081|Makokou|BOLD:ABY3722 Phylloxiphia formosa|[19]|TDGABb-082|Makokou|BOLD:ABY3722
    [Show full text]
  • Impacts and Options for Biodiversity-Oriented Land Managers
    GYPSY MOTH (LYMANTRIA DISPAR): IMPACTS AND OPTIONS FOR BIODIVERSITY-ORIENTED LAND MANAGERS May 2004 NatureServe is a non-profit organization providing the scientific knowledge that forms the basis for effective conservation action. A NatureServe Technical Report Citation: Schweitzer, Dale F. 2004. Gypsy Moth (Lymantria dispar): Impacts and Options for Biodiversity- Oriented Land Managers. 59 pages. NatureServe: Arlington, Virginia. © 2004 NatureServe NatureServe 1101 Wilson Blvd., 15th Floor Arlington, VA 22209 www.natureserve.org Author’s Contact Information: Dr. Dale Schweitzer Terrestrial Invertebrate Zoologist NatureServe 1761 Main Street Port Norris, NJ 08349 856-785-2470 Email: [email protected] NatureServe Gypsy Moth: Impacts and Options for Biodiversity-Oriented Land Managers 2 Acknowledgments Richard Reardon (United States Department of Agriculture Forest Service Forest Health Technology Enterprise Team, Morgantown, WV), Kevin Thorpe (Agricultural Research Service, Insect Chemical Ecology Laboratory, Beltsville, MD) and William Carothers (Forest Service Forest Protection, Asheville, NC) for technical review. Sandra Fosbroke (Forest Service Information Management Group, Morgantown, WV) provided many helpful editorial comments. The author also wishes to commend the Forest Service for funding so much important research and technology development into the impacts of gypsy moth and its control on non-target organisms and for encouraging development of more benign control technologies like Gypchek. Many, but by no means all, Forest Service-funded studies are cited in this document, including Peacock et al. (1998), Wagner et al. (1996), and many of the studies cited from Linda Butler and Ann Hajek. Many other studies in the late 1980s and 1990s had USDA Forest Service funding from the Appalachian Gypsy Moth Integrated Pest Management Project (AIPM).
    [Show full text]
  • Moth Fun Facts
    MOTH FUN FACTS NC has 174 species of butterflies, and 2,000-2,500 moths! That’s 11 to 14 times as many moth spe- cies as there are butterflies. There is moth caterpillar that is carnivorous, the Ashen Pinion, Lithophane antennata which is a well-known predator of winter moths. Some tiger moths in the family Arctiidae are known to "jam" bat echolocation by producing sounds. The North Carolina Heritage Program lists 99 state concern moths mostly from the mountains, sandhills and coast. Many females of the Tussock family of moths don't have wings. The Hawk moth (Sphinx) is the worlds fastest flying insect attaining speed of over 50 kph Moth antennae are either feather like or a hair like filament. The Cecropia moth is North America's largest insect with a six inch wingspan. Moths have hairy bodies to help retain internal body temperature necessary for flight. Quite a few moths fly during the day, such as the Hummingbird Clearwing, Virginia Ctenucha and the Spear-Marked Black. In colder climates some moths can have a two year life cycle. Some moth caterpillars, such as the "Io" are covered with stinging hairs. Moths make up 80 percent of the order lepidoptera. A small group of moths are called "Bird Dropping" moths because -you guessed it- that's what they resemble when they are at rest. Moths navigate by two methods. They use the moon and stars when available and geomagnetic clues when light sources are obscured. Cloth Moths eat such things as wool, fur and other animal products.
    [Show full text]