Intrusive Igneous Rocks- a Rock That Forms Below the Earth’S Surface

Total Page:16

File Type:pdf, Size:1020Kb

Intrusive Igneous Rocks- a Rock That Forms Below the Earth’S Surface Rocks What is a rock? • Rock- naturally formed, consolidated materials composed of one or more minerals. • There are 3 types of rocks: • Igneous • Sedimentary • Metamorphic Igneous Rocks What are Igneous Rocks? • Magma vs. Lava • Magma- molten rock below the Earth’s surface. • Lava- magma on the Earth’s surface. • Igneous Rock- rocks made from cooling magma or lava. • They can be intrusive or extrusive. Intrusive vs. Extrusive • Intrusive Igneous Rocks- a rock that forms below the Earth’s surface. • Normally made from magma • Extrusive Igneous Rocks- a rock formed on the Earth’s surface. • Normally made from lava. Extrusive rock The white rock is intrusive. Intrusive Igneous Rocks • We cannot see these rocks be formed. • They typically have large crystal minerals. • The rock itself can give you a lot of information about how it was formed. Extrusive Igneous Rocks • You can see them form: • Lava flow • Ash Flow • Lava that cools down very quickly so all you see is ask coming out • Pyroclastic Flow • Clouds flowing downhill like a huge avalanche. • Data from these rocks can be used to interpret ancient volcanic activity. Igneous Rock Textures • The crystal size of the rock is related to the speed of the rock cooling. • Fast gives you small crystals and slow cooling gives you large crystals. • Also the rocks can appear: • Glassy- look like a piece of glass. • From the magma/lava cooling too quickly. • Vesicular- has air bubbles in it. This is vesicular. • From air bubbles getting trapped in the magma/lava. • Fragmental- they look jagged and angular. This is glassy and fragmental. Igneous Rock Composition Felsic • The composition is based on the amount of silica in the rock. Mafic • Felsic- has the most silica • Light colored • Mafic- 50% silica Intermediate • Dark colored • Intermediate- Halfway between felsic and mafic Ultramafic • Tend to be gray • Ultramafic- Less than 45% silica • Green in color Classifying Igneous Rocks • To classify an igneous rock, you need 2 basic elements. • Texture • Composition • Texture + composition=rock name • When you classify the rock, you can determine what minerals present. Some Examples of Common Igneous Rocks Rhyolite Obsidian Pumice Granite Basalt Andesite Watch this Have your rock graphic organizer out and fill it in as the video goes on. We will discuss it at the end of the video. https://www.youtube.com/watch?v=aCnAF1Opt8M.
Recommended publications
  • The Science Behind Volcanoes
    The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere.
    [Show full text]
  • Mineral Mania
    The Rock Factory A Pre-Visit Information Guide for Teachers Meets Next Generation Science Standards: 5-PS1-3; MS LS4-1,2; MS ESS1-4; MS-ESS2-1 How does our Earth create so many different types of rocks? Learn about the different processes that form and reform rocks as you identify many types of rocks, minerals and fossils. Students will learn to think like geologists as they move through interactive investigation stations packed with specimens from the Museum’s collections. OBJECTIVES The Rock Cycle: Students will examine the three types of rocks - igneous, metamorphic and sedimentary – and discover the processes that create them. Tracing the connections between shale and slate, limestone and marble, students will discover how the rock cycle changes the very ground beneath our feet! Characteristics of Rocks Students will learn how to observe and identify rocks through their unique characteristics, looking for telling clues such as layering, crystal size, fossils, magnetism, and more. Students will practice their observational skills as they describe the Museum’s unique rock and mineral specimens. Investigation Stations: Students will explore Museum geology specimens up close at investigation stations to answer such questions as: “Why do fossils form only in certain rocks?” “How do rocks form from volcanic eruptions?” “How can I recognize different types of rocks?”. ACTIVITIES Teachers are encouraged to conduct pre-visit and post-visit classroom discussions and activities with their classes to make the most of their experience. Encourage your students to start a classroom rock collection, and create an exhibit with the rocks organized by type – igneous, sedimentary and metamorphic.
    [Show full text]
  • Volcanism on Mars
    Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny.
    [Show full text]
  • Volcanic Eruptions
    Volcanic Eruptions •Distinguish between nonexplosive and explosive volcanic eruptions. • Identify the features of a volcano. • Explain how the composition of magma affects the type of volcanic eruption that will occur. • Describe four types of lava and four types of pyroclastic material. I. Volcanic Eruptions A. A volcano is a vent or fissure in the Earth’s surface through which molten rock and gases are expelled. B. Molten rock is called magma. C. Magma that flows onto the Earth’s surface is called lava. II. Nonexplosive Eruptions A. Nonexplosive eruptions are the most common type of volcanic eruptions. These eruptions produce relatively calm flows of lava in huge amounts. B. Vast areas of the Earth’s surface, including much of the sea floor and the Northwestern United States, are covered with lava form nonexplosive eruptions. Kilauea Volcano in Hawaii Island III. Explosive Eruptions A. While explosive eruptions are much rarer than non-explosive eruptions, the effects can be incredibly destructive. B. During an explosive eruption, clouds of hot debris, ash, and gas rapidly shoot out from a volcano. C. An explosive eruption can also blast millions of tons of lava and rock from a volcano, and can demolish and entire mountainside. Alaska's Mount Redoubt eruption in March 2009 IV. What Is Inside a Volcano? A. The interior of a volcano is made up of two main features. B. The magma chamber is the body of molten rock deep underground that feeds a volcano. C. The vent is an opening at the surface of the Earth through which volcanic material passes.
    [Show full text]
  • Geologic Boulder Map of Campus Has Been Created As an Educational Educational an As Created Been Has Campus of Map Boulder Geologic The
    Adam Larsen, Kevin Ansdell and Tim Prokopiuk Tim and Ansdell Kevin Larsen, Adam What is Geology? Igneous Geo-walk ing of marine creatures when the limestone was deposited. It also contains by edited and Written Geology is the study of the Earth, from the highest mountains to the core of The root of “igneous” is from the Latin word ignis meaning fire. Outlined in red, numerous fossils including gastropods, brachiopods, receptaculita and rugose the planet, and has traditionally been divided into physical geology and his- this path takes you across campus looking at these ancient “fire” rocks, some coral. The best example of these are in the Geology Building where the stone torical geology. Physical geology concentrates on the materials that compose of which may have been formed at great depths in the Earth’s crust. Created was hand-picked for its fossil display. Campus of the Earth and the natural processes that take place within the earth to shape by the cooling of magma or lava, they can widely vary in both grain size and Granite is another common building stone used on campus. When compa- its surface. Historical geology focuses on Earth history from its fiery begin- mineral composition. This walk stops at examples showing this variety to help nies sell granite, they do not use the same classification system as geologists. nings to the present. Geology also explores the interactions between the you understand what the change in circumstances will do to the appearance Granite is sold in many different colours and mineral compositions that a Map Boulder Geologic lithosphere (the solid Earth), the atmosphere, the biosphere (plants, animals of the rock.
    [Show full text]
  • Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
    Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust.
    [Show full text]
  • High-Silica Lava Morphology at Ocean Spreading Ridges: Machine-Learning Seafloor Classification at Alarcon Rise
    Article High-Silica Lava Morphology at Ocean Spreading Ridges: Machine-Learning Seafloor Classification at Alarcon Rise Christina H. Maschmeyer 1,†, Scott M. White 1,*, Brian M. Dreyer 2 and David A. Clague 3 1 School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208, USA; [email protected] 2 Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA; [email protected] 3 Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA; [email protected] † Now at: Fugro USA Marine, Inc. Geoconsulting Exploration, 6100 Hillcroft Ave, Houston, TX 77081, USA * Correspondence: [email protected] Received 31 March 2019; Accepted 28 May 2019; Published: 1 June 2019 Abstract: The oceanic crust consists mostly of basalt, but more evolved compositions may be far more common than previously thought. To aid in distinguishing rhyolite from basaltic lava and help guide sampling and understand spatial distribution, we constructed a classifier using neural networks and fuzzy inference to recognize rhyolite from its lava morphology in sonar data. The Alarcon Rise is ideal to study the relationship between lava flow morphology and composition, because it exhibits a full range of lava compositions in a well‐mapped ocean ridge segment. This study shows that the most dramatic geomorphic threshold in submarine lava separates rhyolitic lava from lower‐silica compositions. Extremely viscous rhyolite erupts as jagged lobes and lava branches in submarine environments. An automated classification of sonar data is a useful first‐order tool to differentiate submarine rhyolite flows from widespread basalts, yielding insights into eruption, emplacement, and architecture of the ocean crust.
    [Show full text]
  • Exploring Origins of Pitted/Vesicular Rocks in Perseverance Valley, Endeavour Crater
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 2327.pdf EXPLORING ORIGINS OF PITTED/VESICULAR ROCKS IN PERSEVERANCE VALLEY, ENDEAVOUR CRATER. A. W. Tait1*, C. Schröder1, W. H Farrand2, J. W. Ashley3, B. A. Cohen4, R. Gellert5, J. Rice6, L. C. Crumpler7, B. Jolliff8, 1Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK ([email protected]), 2Space Science Institute, Boulder, CO, USA, 3Jet Propulsion Laboratory, California In- stitute of Technology, Pasadena, CA, USA, 4NASA Goddard Space Flight Centre, Greenbelt, MD, USA, 5Department of Physics, University of Guelph, Ontario, Canada, 6Planetary Science Institute, Tucson, AZ, USA, 7NM Museum of Natural History & Science, Albuquerque, NM, USA, 8Washington University in St. Louis, MO, USA. Introduction: Since sol 4780, the NASA Mars Ex- ploration Rover (MER) Opportunity has been traversing down Perseverance Valley (PV), a linear, negative-re- lief feature trending perpendicular to the western flank of Endeavour crater. The goal of the current investiga- tion is to understand PVs geomorphology and chemical composition to determine its mode of formation and ap- proximate age. Formation hypotheses include debris or fluid flow, and wind sculpting, all while intersecting possible Noachian lithologies [1]. Rover observations confirms orbital data that there exists a dextral off-set, indicating a structural origin to the valleys formation [2]. This faulting may have allowed for fluids to interact with the rocks [3]. On sol ~5000 Opportunity started to investigate a train of dark pitted/vesicular rocks with an unusual morphology, texture, and composition enriched in Al and Si. Here we describe the rock facies, and ex- plore preliminary formation/alteration hypotheses.
    [Show full text]
  • Nicaragua's Cerro Negro Stratovolcano
    NICARAGUANICARAGUA’S’S CERROCERRO NEGRONEGRO STRASTRATOVTOVOLCANOOLCANO —— HOW DID IT BLOW ITS TOP??? 1) A stratovolcano or composite volcano 6) Large cloud of pyroclastic debris, is built of alternating layers of lava Match the explanations with the numbers on the volcano and find out. steam, and other vapors erupted and pyroclastic (ash or ejected de- from Cerro Negro. The larger, bris) deposits. These deposits accu- heavier fragments fall back on the mulate around the central vent in a cone while the smaller, lighter ash cone-shaped pile. Lava may flow from 6 fragments are carried great dis- fissures (fractures or cracks) radi- tances before they settle. ating from the central vent, whereas the multi-sized pyroclastics are B 7) A smaller cloud of darker material ejected from the main vent. 9 indicates that a localized eruption L has just occurred. 2) Steam and other vapors rising from 10 the large volcanic blocks erupted 8 from the main crater recently. Com- ) Cloud of vapors from the volcano is mostly steam and ash, but also con- pare with the older, cooler volcanic 8 tains chlorine, fluorine, sulfur, and blocks at the ends of the tracks or L 5 their acids. furrows that run down the slope of 5 the main cone. These tracks or fur- 5 9 rows were plowed by the rolling 7 9) Shadow cast by the ash and vapor blocks. Some house-size blocks now 5 cloud from the volcano (6) carried lie loosely at the bottom of the 5 by turbulent hot gasses and winds. slope. 4 When the volcanic ash settles, the 2 pyroclastic deposit that forms is 9 called an ash fall.
    [Show full text]
  • Features of Lava Lake Filling and Draining and Their Implications for Eruption Dynamics
    Bull Volcanol (2009) 71:767–780 DOI 10.1007/s00445-009-0263-0 RESEARCH ARTICLE Features of lava lake filling and draining and their implications for eruption dynamics W. K. Stovall & Bruce F. Houghton & Andrew J. L. Harris & Donald A. Swanson Received: 13 March 2008 /Accepted: 7 January 2009 /Published online: 13 February 2009 # Springer-Verlag 2009 Abstract Lava lakes experience filling, circulation, and roughly horizontal lava shelves on the lakeward edge of the often drainage depending upon the style of activity and vertical rinds; the shelves correlate with stable, staggered lake location of the vent. Features formed by these processes stands. Shelves either formed as broken relict slabs of lake have proved difficult to document due to dangerous crust that solidified in contact with the wall or by accumula- conditions during the eruption, inaccessibility, and destruction tion, accretion, and widening at the lake surface in a dynamic of features during lake drainage. Kīlauea Iki lava lake, lateral flow regime. Thin, upper lava shelves reflect an Kīlauea, Hawai‘i, preserves many such features, because lava initially dynamic environment, in which rapid lake lowering ponded in a pre-existing crater adjacent to the vent and was replaced by slower and more staggered drainage with the eventually filled to the level of, and interacted with, the vent formation of thicker, more laterally continuous shelves. At all and lava fountains. During repeated episodes, a cyclic pattern lava lakes experiencing stages of filling and draining these of lake filling to above vent level, followed by draining back processes may occur and result in the formation of similar sets to vent level, preserved features associated with both filling of features.
    [Show full text]
  • The Boring Volcanic Field of the Portland-Vancouver Area, Oregon and Washington: Tectonically Anomalous Forearc Volcanism in an Urban Setting
    Downloaded from fieldguides.gsapubs.org on April 29, 2010 The Geological Society of America Field Guide 15 2009 The Boring Volcanic Field of the Portland-Vancouver area, Oregon and Washington: Tectonically anomalous forearc volcanism in an urban setting Russell C. Evarts U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA Richard M. Conrey GeoAnalytical Laboratory, School of Earth and Environmental Sciences, Washington State University, Pullman, Washington 99164, USA Robert J. Fleck Jonathan T. Hagstrum U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA ABSTRACT More than 80 small volcanoes are scattered throughout the Portland-Vancouver metropolitan area of northwestern Oregon and southwestern Washington. These vol- canoes constitute the Boring Volcanic Field, which is centered in the Neogene Port- land Basin and merges to the east with coeval volcanic centers of the High Cascade volcanic arc. Although the character of volcanic activity is typical of many mono- genetic volcanic fi elds, its tectonic setting is not, being located in the forearc of the Cascadia subduction system well trenchward of the volcanic-arc axis. The history and petrology of this anomalous volcanic fi eld have been elucidated by a comprehensive program of geologic mapping, geochemistry, 40Ar/39Ar geochronology, and paleomag- netic studies. Volcanism began at 2.6 Ma with eruption of low-K tholeiite and related lavas in the southern part of the Portland Basin. At 1.6 Ma, following a hiatus of ~0.8 m.y., similar lavas erupted a few kilometers to the north, after which volcanism became widely dispersed, compositionally variable, and more or less continuous, with an average recurrence interval of 15,000 yr.
    [Show full text]
  • Structure of the Earth
    And the ROCK CYCLE Structure of the Earth Compositional (Chemical) Layers Crust: Low density High in silicon (Si) and oxygen (O) Moho: Density boundary between crust and mantle Mantle: Higher density High in Magnesium (Mg) and Iron (Fe) Core: High in Nickel (Ni) and Iron (Fe) Heat Flow in the Earth Heat sources: latent heat from the formation of the Earth Radioactive decay in the core and mantle Temperature in the core: 3000- 5000° C Cooling processes: Convection currents: in outer core and asthenosphere transport heat to the surface Plate tectonics releases heat through the crust (volcanoes) Convection cells in the mantle and core transport heat from the interior of earth to the surface and also return cooler material back into the earth. Mechanical (Physical) Layers of the Earth Lithosphere: Crust and upper, solid part of the mantle; “plates” in plate tectonics Asthenosphere: Partially molten part of mantle; location of convection current that drive plates Outer core: Liquid Inner core: Solid Greatest temperatures, solid due to intense pressure Comparing Compositional Layers to Mechanical Layers Moho What is a Rock? A group of minerals bound together Three major groups: 1) Igneous: Solidified Molten Magma 2) Sedimentary: formed by cementing of sediments. Sediments come from the erosion of other rocks. 3) Metamorphic: Heat and pressure change a rock into something new, without melting. Rock Types Igneous: Solidified molten magma 2 types of Igneous: 1) Extrusive (volcanic) = erupted lava Cools more quickly, so only small crystals form. 2) Intrusive (plutonic) = never erupted magma Cools more slowly within the earth, so larger crystals can form.
    [Show full text]