University of Southampton Research Repository Eprints Soton

Total Page:16

File Type:pdf, Size:1020Kb

University of Southampton Research Repository Eprints Soton University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON Effects of the dinoflagellate parasite Hematodinium sp. on the immune response of its crustacean hosts by Jodi Leigh Hoppes A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy in the Faculty of Natural and Environmental Sciences School of Ocean and Earth Science November 2011 \Biology has at least 50 more interesting years." James D. Watson UNIVERSITY OF SOUTHAMPTON Abstract Faculty of Natural and Environmental Sciences School of Ocean and Earth Science Doctor of Philosophy Effects of the dinoflagellate parasite Hematodinium sp. on the immune response of its crustacean hosts by Jodi Leigh Hoppes The aim of the present study was to investigate the immune response of two UK crustaceans, the edible crab Cancer pagurus and the Norway lobster Nephrops norvegicus, to the dinoflag- ellate parasite Hematodinium sp. Hematodinium sp. is an emerging global pathogen affecting a number of commercially important crustacean species. Parasites have been found to cause metabolic disruption, and mortality has generally been associated with a massive decrease in haemocyte numbers. Investigations to date have indicated the potential for the parasite to avoid or suppress the host immune system, as well as to increase the likelihood of secondary infection. Hematodinium-host interactions were examined using a combination of in vitro experiments, gene expression analysis and immune assays with the express purpose of determining if a) par- asites were capable of avoiding the host immune response or b) parasites were suppressing the host immune response. In vitro experiments were designed to study the response of individual haemocyte populations from Cancer pagurus to Hematodinium sp. in the absence of confounding factors such as sec- ondary infection. Cell viability and gross morphology of separate hyalinocyte and granulocyte cultures were examined, though no significant differences were identified between challenged and na¨ıve cultures. A differential display technique, used to identify differentially expressed genes between Hematodinium-exposed and na¨ıve cultures, found two novel genes from na¨ıve granulo- cyte cultures: a prophenoloxidase activating factor (ppaf ) and an ATP-dependent RNA helicase DEAD-box protein (ddx). These genes, in addition to the immune-relevant gene for prophenolox- idase (proPO), were analysed for gene expression changes during Hematodinium sp. exposure. No change in gene expression was found for any of the genes, suggesting a lack of parasite recognition or the loss of a crucial humoral recognition component under in vitro conditions. In vivo analysis of immune parameters of N. norvegicus found that, despite dramatically de- creased total haemocyte counts, phenoloxidase activity increased in infected individuals. Haemag- glutinin titres and intracellular superoxide (SO) anion activity were not significantly different between infected and control animals, however infected animals had much broader variability in SO activity. SO activity was negatively correlated with Hematodinium sp. presence in the haemolymph which suggested a potential mechanism of immune suppression via SO inhibition. In vivo gene expression studies used differential display to identify differentially expressed genes in Hematodinium-infected and uninfected N. norvegicus. Novel genes were identified from N. norvegicus and coded for two crustin isoforms (NnCrust1 and NnCrust2 ), a 40S ribosomal protein S12 (NnrpS12 ) and a chaperonin containing TCP1 protein (NnCct7 ). Gene expression analysis of these three genes and the immune-relevant proPO gene indicated that NnrpS12 was significantly down-regulated in infected N. norvegicus and proPO was significantly up-regulated. Results were discussed regarding the evidence of Hematodinium sp. to avoid recognition by the host immune system as well as the implications of actively suppressing host immune response by inhibiting the production of superoxide anions. Further consideration was given to the possibility of secondary infection during parasite infection. Contents Abstract v List of Figures xiii List of Tables xv Declaration of Authorship xvii Acknowledgements xix Abbreviations xx 1 Introduction1 1.1 General Introduction..............................1 1.2 Disease and crustaceans............................2 1.3 Hematodinium spp................................4 1.3.1 Pathology................................ 10 1.3.2 Hematodinium sp. life cycle and transmission............ 13 1.3.3 Diagnostics............................... 16 1.3.4 Effects of Hematodinium sp. on host physiology and biochemistry 18 1.3.5 Hematodinium sp. effects on immunity................ 19 1.4 Crustacean Immunity............................. 21 1.4.1 Pathogen recognition and pathogen associated molecular patterns (PAMPs)................................ 22 1.4.2 Haemocytes and haemopoiesis.................... 24 1.4.3 Clotting and agglutination...................... 27 1.4.4 Phagocytosis, nodule formation and encapsulation......... 28 1.4.5 Respiratory burst and reactive oxygen species (ROS)........ 29 1.4.6 Antimicrobial peptides......................... 30 1.4.7 Melanisation and the prophenoloxidase system........... 32 1.5 Apoptosis.................................... 34 1.6 Cancer pagurus and Nephrops norvegicus .................. 34 1.7 The current study............................... 35 2 Molecular cloning of crustacean and Hematodinium sp. genes for gene expression studies 37 2.1 Introduction................................... 37 vii Contents viii 2.1.1 Immune-related genes of interest................... 37 2.1.1.1 Prophenoloxidase...................... 37 2.1.1.2 Haemopoiesis......................... 40 2.1.2 Quantifying Hematodinium sp. infection............... 41 2.1.3 Reference Genes............................ 41 2.2 Isolation of species-specific mRNA transcripts................ 42 2.2.1 Cancer pagurus, Nephrops norvegicus and Hematodinium sp. col- lection.................................. 42 2.2.2 Haemolymph collection........................ 43 2.2.3 Haemopoietic tissue .......................... 43 2.2.4 RNA Extraction............................ 44 2.2.5 cDNA Synthesis............................ 44 2.2.6 Degenerate Primer Development................... 46 2.2.7 Polymerase Chain Reaction...................... 48 2.2.8 Degenerate PCR Results........................ 49 2.2.9 Cloning and Sequencing........................ 50 2.2.10 Degenerate PCR sequence results and analysis........... 51 2.2.11 Crustacean actin ............................ 51 2.2.12 Crustacean prophenoloxidase ..................... 52 2.2.13 Hematodinium actin (HemAct).................... 54 2.2.14 Hematodinium 18S........................... 54 2.2.15 Crustacean runt ............................ 57 2.2.16 Rapid amplification of 5' and 3' cDNA ends (RACE)........ 59 2.2.16.1 SMART™ RACE protocol.................. 59 2.2.16.2 RACE Gene-specific primer design............. 60 2.3 Complete proPO sequence results....................... 61 2.4 Conclusions................................... 63 3 Quantitative PCR Methodology 65 3.1 Introduction................................... 65 3.2 Sample handling................................ 67 3.2.1 RNA quality and quantity....................... 68 3.2.1.1 DNase treatment....................... 69 3.2.2 cDNA preparation........................... 69 3.3 qPCR Assay Design and Validation...................... 72 3.3.1 Dye and probe technology....................... 72 3.3.1.1 Specific detection...................... 72 3.3.1.2 Non-specific detection.................... 74 3.3.1.3 qPCR Instrument...................... 74 3.4 Primer and amplicon design.......................... 74 3.4.1 qPCR assay optimisation....................... 76 3.4.1.1 Primer check and melt curve analysis........... 76 3.4.1.2 Primer Titration....................... 78 3.4.1.3 Standard curve for assay efficiency............. 80 3.5 Quantification method............................. 80 3.5.1 Relative quantification......................... 80 3.5.2 Statistical analysis of relative expression qPCR data........ 83 3.5.2.1 Reference gene validation.................. 83 3.5.3 Absolute quantification........................ 84 3.6 Summary.................................... 87 Contents ix 4 Expression of immune-related host genes in Cancer pagurus haemo- cytes during in vitro challenge with Hematodinium sp. 89 4.1 Introduction................................... 89 4.1.1 Host-parasite immune interactions.................. 89 4.1.2 In vitro immune studies........................ 91 4.1.3 Crustacean cell culture......................... 93 4.1.4 Aims of exposing C. pagurus haemocytes
Recommended publications
  • An Aerobic Eukaryotic Parasite with Functional Mitochondria That Likely
    An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome Uwe John, Yameng Lu, Sylke Wohlrab, Marco Groth, Jan Janouškovec, Gurjeet Kohli, Felix Mark, Ulf Bickmeyer, Sarah Farhat, Marius Felder, et al. To cite this version: Uwe John, Yameng Lu, Sylke Wohlrab, Marco Groth, Jan Janouškovec, et al.. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Science Advances , American Association for the Advancement of Science (AAAS), 2019, 5 (4), pp.eaav1110. 10.1126/sci- adv.aav1110. hal-02372304 HAL Id: hal-02372304 https://hal.archives-ouvertes.fr/hal-02372304 Submitted on 25 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SCIENCE ADVANCES | RESEARCH ARTICLE EVOLUTIONARY BIOLOGY Copyright © 2019 The Authors, some rights reserved; An aerobic eukaryotic parasite with functional exclusive licensee American Association mitochondria that likely lacks a mitochondrial genome for the Advancement Uwe John1,2*, Yameng Lu1,3, Sylke Wohlrab1,2, Marco Groth4, Jan Janouškovec5, Gurjeet S. Kohli1,6, of Science. No claim to 1 1 7 4 1,8 original U.S. Government Felix C. Mark , Ulf Bickmeyer , Sarah Farhat , Marius Felder , Stephan Frickenhaus , Works.
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Parasitic Dinoflagellate Hematodinium Perezi Prevalence in Larval and Juvenile Blue Crabs Callinectes Sapidus from Coastal Bays of Virginia
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 6-6-2019 Parasitic dinoflagellate Hematodinium perezi prevalence in larval and juvenile blue crabs Callinectes sapidus from coastal bays of Virginia HJ Small Virginia Institute of Marine Science JP Huchin-Mian Virginia Institute of Marine Science KS Reece Virginia Institute of Marine Science KM Pagenkopp Lohan MJ Butler IV See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons, and the Parasitology Commons Recommended Citation Small, HJ; Huchin-Mian, JP; Reece, KS; Pagenkopp Lohan, KM; Butler, MJ IV; and Shields, JD, Parasitic dinoflagellate Hematodinium perezi prevalence in larval and juvenile blue crabs Callinectes sapidus from coastal bays of Virginia (2019). Diseases of Aquatic Organisms, 134, 215-222. 10.3354/dao03371 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors HJ Small, JP Huchin-Mian, KS Reece, KM Pagenkopp Lohan, MJ Butler IV, and JD Shields This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/1428 Vol. 134: 215–222, 2019 DISEASES OF AQUATIC ORGANISMS Published online June 6 https://doi.org/10.3354/dao03371 Dis Aquat Org OPENPEN ACCESSCCESS Parasitic dinoflagellate Hematodinium perezi prevalence in larval and juvenile blue crabs Callinectes sapidus from coastal bays of Virginia H. J. Small1,*, J. P. Huchin-Mian1,3, K.
    [Show full text]
  • The Mitochondrial Genome and Transcriptome of the Basal
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE GBEprovided by PubMed Central The Mitochondrial Genome and Transcriptome of the Basal Dinoflagellate Hematodinium sp.: Character Evolution within the Highly Derived Mitochondrial Genomes of Dinoflagellates C. J. Jackson, S. G. Gornik, and R. F. Waller* School of Botany, University of Melbourne, Australia *Corresponding author: E-mail: [email protected]. Accepted: 12 November 2011 Abstract The sister phyla dinoflagellates and apicomplexans inherited a drastically reduced mitochondrial genome (mitochondrial DNA, mtDNA) containing only three protein-coding (cob, cox1, and cox3) genes and two ribosomal RNA (rRNA) genes. In apicomplexans, single copies of these genes are encoded on the smallest known mtDNA chromosome (6 kb). In dinoflagellates, however, the genome has undergone further substantial modifications, including massive genome amplification and recombination resulting in multiple copies of each gene and gene fragments linked in numerous combinations. Furthermore, protein-encoding genes have lost standard stop codons, trans-splicing of messenger RNAs (mRNAs) is required to generate complete cox3 transcripts, and extensive RNA editing recodes most genes. From taxa investigated to date, it is unclear when many of these unusual dinoflagellate mtDNA characters evolved. To address this question, we investigated the mitochondrial genome and transcriptome character states of the deep branching dinoflagellate Hematodinium sp. Genomic data show that like later-branching dinoflagellates Hematodinium sp. also contains an inflated, heavily recombined genome of multicopy genes and gene fragments. Although stop codons are also lacking for cox1 and cob, cox3 still encodes a conventional stop codon. Extensive editing of mRNAs also occurs in Hematodinium sp.
    [Show full text]
  • <I>Hematodinium Perezi</I>
    Old Dominion University ODU Digital Commons Biological Sciences Faculty Publications Biological Sciences 2019 Parasitic Dinoflagellate Hematodinium perezi Prevalence in Larval and Juvenile Blue Crabs Callinectes sapidus from Coastal Bays of Virginia H. J. Small J. P. Huchin-Mian K. S. Reece K. M. Pagenkopp Lohan Mark J. Butler IV Old Dominion University, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.odu.edu/biology_fac_pubs Part of the Biology Commons, Marine Biology Commons, and the Parasitology Commons Original Publication Citation Small, H. J., Huchin-Mian, J. P., Reece, K. S., Lohan, K. M. P., Butler, M. J., & Shields, J. D. (2019). Parasitic dinoflagellate Hematodinium perezi prevalence in larval and juvenile blue crabs Callinectes sapidus from coastal bays of Virginia. Diseases of Aquatic Organisms, 134(3), 215-222. doi:10.3354/dao03371 This Article is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. Authors H. J. Small, J. P. Huchin-Mian, K. S. Reece, K. M. Pagenkopp Lohan, Mark J. Butler IV, and J. D. Shields This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/biology_fac_pubs/391 Vol. 134: 215–222, 2019 DISEASES OF AQUATIC ORGANISMS Published online June 6 https://doi.org/10.3354/dao03371 Dis Aquat Org OPENPEN ACCESSCCESS Parasitic dinoflagellate Hematodinium perezi prevalence in larval and juvenile blue crabs Callinectes sapidus from coastal bays of Virginia H.
    [Show full text]
  • Ibairwcanjauseum PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK 24, N.Y
    AoxfitatesibAirwcanJAuseum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2203 DECEMBER I5, I964 A Review of the Genus Hypochilus and a Description of a New Species from Colorado (Araneae, Hypochilidae) BY W. J. GERTSCH' The key position ofthe primitive spiders ofthe family Hypochilidae was noted by me in a revisional study ofthe world fauna (Gertsch, 1958). The hypochilids still retain features shared during Carboniferous times with primitive forebears and that are now found in no other true spiders. The disjunct distributions of the four known recent genera (with centers in North America, China, Tasmania, and southern Chile) reflect the early wide range and present near extinction ofthese relict types. The North American genus Hypochilus is reappraised and enlarged to four species in the present paper. In 1958 this genus was known from two principal areas: the southern Appalachian Mountains, with the species thorelli, and the central Sierra Nevada Mountains of California, with the species petrunkevitchi. The evident need for more adequate collections and fuller distributional information has prompted much recent interest in the group. The surprising discovery of a third species, named gertschi by Hoffman (1963), from Virginia and West Virginia was a reward ofvigi- lant collecting in the eastern mountains. Many new collections have been made during recent years in California, and these indicate a much broader range for the far western species than was anticipated. Finally, 'Curator, Department of Entomology, the American Museum of Natural History. 2 AMERICAN MUSEUM NOVITATES NO. 2203 an exciting event has been the discovery of a distinctive new species, bon- neti, in the deep canyons of southern Colorado.
    [Show full text]
  • ABSTRACT Dinoflagellate Parasites in the Hematodinium Genus Have
    ABSTRACT Title of Document: DEVELOPMENT, VALIDATION AND APPLICATION OF A QUANTITATIVE POLYMERASE CHAIN REACTION ASSAY TO ASSESS ENVIRONMENTAL SAMPLES FOR HEMATODINIUM PEREZI PREVALENCE Ammar W. Hanif, MS, 2012 Directed By: Assistant Professor Eric J. Schott, Institute of Marine and Environmental Technology, University of Maryland Center of Environmental Science Associate Professor Rosemary Jagus, Co- advisor, Institute of Marine and Environmental Technology, University of Maryland Center of Environmental Science Dinoflagellate parasites in the Hematodinium genus have emerged as important pathogens of economically important crustaceans worldwide, causing significant economic losses to fisheries and aquaculture. An understanding of the routes of infection in blue crab (Callinectes sapidus) populations would be facilitated by an improved knowledge of environmental reservoirs. A previously used PCR assay, based on small subunit rRNA sequences, lacked the specificity needed for Hematodinium perezi detection of environmental samples. Therefore a quantitative PCR assay based on the internal transcribed spacer 2 (ITS2) region of H. perezi rRNA genes was developed, validated, and applied to examine temporal and spatial incidences of environmental reservoirs in Delmarva coastal bays. H. perezi was detected in sediment and water in several Delmarva coastal bays, as well as the host, C. sapidus. Results suggest the existence of localized sediment reservoirs in areas where hydrological and geophysical features allow for the formation of cell deposits. DEVELOPMENT, VALIDATION, AND APPLICATION OF A QUANTITATIVE POLYMERASE CHAIN REACTION ASSAY TO ASSESS HEMATODINIUM PEREZI PREVALENCE IN ENVIRONMENTAL SAMPLES By Ammar W. Hanif Thesis submitted to the Faculty of the Graduate School of the University of Maryland College Park, in partial fulfillment of the requirements for the degree of Master of Science 2012 Advisory committee: Professor Eric J.
    [Show full text]
  • Environmental DNA Metabarcoding for Simultaneous Monitoring and Ecological Assessment of Many Harmful Algae
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.01.322941; this version posted October 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Environmental DNA Metabarcoding for Simultaneous Monitoring and Ecological Assessment of Many Harmful Algae Emily Jacobs-Palmer1, Ramón Gallego1,2, Kelly Cribari1, Abigail Keller1, Ryan P. Kelly1 1University of Washington School of Marine and Environmental Affairs 2NRC Research Associateship Program, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration. Abstract Harmful algae can have profound economic, environmental, and social consequences. As the timing, frequency, and severity of harmful algal blooms (HABs) change alongside global climate, efficient tools to monitor and understand the current ecological context of these taxa are increasingly important. Here we employ environmental DNA metabarcoding to identify patterns in a wide variety of harmful algae and associated ecological communities in the Hood Canal of Puget Sound in Washington State, USA. We track trends of presence and abundance in a series of water samples across nearly two years. We find putative harmful algal sequences in a majority of samples, suggesting that these groups are routinely present in local waters. We report patterns in variants of the economically important genus Pseudo-nitzschia (family Bacillariaceae), as well as multiple harmful algal taxa previously unknown or poorly documented in the region, including a cold-water variant from the saxitoxin-producing genus Alexandrium (family Gonyaulacaceae), two variants from the karlotoxin-producing genus Karlodinium (family Kareniaceae), and one variant from the parasitic genus Hematodinium (family Syndiniaceae).
    [Show full text]
  • 11 Shields FISH 98(1)
    139 Abstract.–On the eastern seaboard of Mortality and hematology of blue crabs, the United States, populations of the blue crab, Callinectes sapidus, experi- Callinectes sapidus, experimentally infected ence recurring outbreaks of a parasitic dinoflagellate, Hematodinium perezi. with the parasitic dinoflagellate Epizootics fulminate in summer and autumn causing mortalities in high- Hematodinium perezi* salinity embayments and estuaries. In laboratory studies, we experimentally investigated host mortality due to the Jeffrey D. Shields disease, assessed differential hemato- Christopher M. Squyars logical changes in infected crabs, and Department of Environmental Sciences examined proliferation of the parasite. Virginia Institute of Marine Science Mature, overwintering, nonovigerous The College of William and Mary female crabs were injected with 103 or P.O. Box 1346, Gloucester Point, VA 23602, USA 105 cells of H. perezi. Mortalities began E-mail address (for J. D. Shields): [email protected] 14 d after infection, with a median time to death of 30.3 ±1.5 d (SE). Sub- sequent mortality rates were greater than 86% in infected crabs. A relative risk model indicated that infected crabs were seven to eight times more likely to Hematodinium perezi is a parasitic larger, riverine (“bayside”) fishery; die than controls and that decreases in total hemocyte densities covaried signif- dinoflagellate that proliferates in it appears most detrimental to the icantly with mortality. Hemocyte densi- the hemolymph of several crab spe- coastal (“seaside”) crab fisheries. ties declined precipitously (mean=48%) cies. In the blue crab, Callinectes Outbreaks of infestation by Hema- within 3 d of infection and exhibited sapidus, H. perezi is highly patho- todinium spp.
    [Show full text]
  • Biodiversity from Caves and Other Subterranean Habitats of Georgia, USA
    Kirk S. Zigler, Matthew L. Niemiller, Charles D.R. Stephen, Breanne N. Ayala, Marc A. Milne, Nicholas S. Gladstone, Annette S. Engel, John B. Jensen, Carlos D. Camp, James C. Ozier, and Alan Cressler. Biodiversity from caves and other subterranean habitats of Georgia, USA. Journal of Cave and Karst Studies, v. 82, no. 2, p. 125-167. DOI:10.4311/2019LSC0125 BIODIVERSITY FROM CAVES AND OTHER SUBTERRANEAN HABITATS OF GEORGIA, USA Kirk S. Zigler1C, Matthew L. Niemiller2, Charles D.R. Stephen3, Breanne N. Ayala1, Marc A. Milne4, Nicholas S. Gladstone5, Annette S. Engel6, John B. Jensen7, Carlos D. Camp8, James C. Ozier9, and Alan Cressler10 Abstract We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemism is high; of the troglobionts, 17 (33 % of those known from the state) are endemic to Georgia and seven (14 %) are known from a single cave. We identified three biogeographic clusters of troglobionts. Two clusters are located in the northwestern part of the state, west of Lookout Mountain in Lookout Valley and east of Lookout Mountain in the Valley and Ridge. In addition, there is a group of tro- globionts found only in the southwestern corner of the state and associated with the Upper Floridan Aquifer. At least two dozen potentially undescribed species have been collected from caves; clarifying the taxonomic status of these organisms would improve our understanding of cave biodiversity in the state.
    [Show full text]
  • A Review of the Impact of Diseases on Crab and Lobster Fisheries
    A Review Of The Impact Of Diseases On Crab And Lobster Fisheries Jeffrey D. Shields Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, VA 23062 Abstract Diseases are a natural component of crustacean populations. Background levels of various agents are expected in fished populations, and there is good reason to establish baseline levels of pathogens in exploited fisheries before they become a problem. Such baselines are often difficult to fund or publish; nonetheless, outbreaks are an integral feature of heavily exploited populations. Mortalities or other problems can arise when an outbreak occurs, and all too often the underlying causes of an outbreak are poorly understood. A variety of stressors can lead to outbreaks of disease or contribute to their severity. Pollution, poor water quality, hypoxia, temperature extremes, overexploitation have all been implicated in various outbreaks. This review focuses on epidemic diseases of commercially important crabs and lobsters as well as a few examples of other disease issues in crustaceans that are ecologically important, but not of commercial significance. Key words: pathogens, crustaceans, mortality, Carcinonemertes, PaV1, overfishing, Rhizo- cephala, Paramoeba Introduction Pathogens cause direct and indirect losses to fish were thought to contain presumptive crustacean fisheries. Direct losses are obvi- toxins (Magnien 2001). At the time, the ous, resulting in morbidity or mortality to scare threatened the commercial fishing in- the fished species, but they can be difficult dustry of Chesapeake Bay because consum- to assess. However, mortality events can be ers did not purchase fish from the region. widespread and can even damage the socio- economics of impacted fishing communities, Direct losses are most visible to the fishery such as the lobster mortality event in Long because the outcome is usually morbidity or Island Sound during 1999 (Pearce and mortality to the targeted component of the Balcom 2005).
    [Show full text]
  • Molecular Phylogeny and Surface Morphology of Colpodella Edax (Alveolata): Insights Into the Phagotrophic Ancestry of Apicomplexans
    J. Eukaryot. Microbiol., 50(5), 2003 pp. 334±340 q 2003 by the Society of Protozoologists Molecular Phylogeny and Surface Morphology of Colpodella edax (Alveolata): Insights into the Phagotrophic Ancestry of Apicomplexans BRIAN S. LEANDER,a OLGA N. KUVARDINA,b VLADIMIR V. ALESHIN,b ALEXANDER P. MYLNIKOVc and PATRICK J. KEELINGa aCanadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada, and bDepartments of Evolutionary Biochemistry and Invertebrate Zoology, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119 992, Russian Federation, and cInstitute for the Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavskaya oblast, 152742, Russian Federation ABSTRACT. The molecular phylogeny of colpodellids provides a framework for inferences about the earliest stages in apicomplexan evolution and the characteristics of the last common ancestor of apicomplexans and dino¯agellates. We extended this research by presenting phylogenetic analyses of small subunit rRNA gene sequences from Colpodella edax and three unidenti®ed eukaryotes published from molecular phylogenetic surveys of anoxic environments. Phylogenetic analyses consistently showed C. edax and the environmental sequences nested within a colpodellid clade, which formed the sister group to (eu)apicomplexans. We also presented surface details of C. edax using scanning electron microscopy in order to supplement previous ultrastructural investigations of this species using transmission electron microscopy and to provide morphological context for interpreting environmental sequences. The microscopical data con®rmed a sparse distribution of micropores, an amphiesma consisting of small polygonal alveoli, ¯agellar hairs on the anterior ¯agellum, and a rostrum molded by the underlying (open-sided) conoid.
    [Show full text]