Determination of Specific Rain Attenuation Using Different Total Cross Section Models for Southern Africa

Total Page:16

File Type:pdf, Size:1020Kb

Determination of Specific Rain Attenuation Using Different Total Cross Section Models for Southern Africa 20 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS Vol.105(1) March 2014 DETERMINATION OF SPECIFIC RAIN ATTENUATION USING DIFFERENT TOTAL CROSS SECTION MODELS FOR SOUTHERN AFRICA S.J. Malinga*, P.A. Owolawi** and T.J.O. Afullo*** * Dept. of Electrical Engineering, Mangosuthu University of Technology, P. O. Box 12363, Jacobs, Durban,4026, South Africa. E-mail: [email protected] ** Dept. of Electrical Engineering, Mangosuthu University of Technology, P. O. Box 12363, Jacobs, Durban,4026, South Africa. E-mail: [email protected] *** Discipline of Electrical, Electronic and Computer Engineering, University of KwaZulu-Natal, Durban, South Africa E-mail: [email protected] Abstract: In terrestrial and satellite line-of-sight links, radio waves propagating at Super High Frequency and Extremely High Frequency bands through rain undergo attenuation (absorption and scattering). In this paper, the specific attenuation due to rain is computed using different total cross section models, while the raindrop size distribution is characterised for different rain regimes in the frequency range between 1 and 100 GHz. The Method of Moments is used to model raindrop size distributions, while different extinction coefficients are used to compute the specific rain attenuation. Comparison of theoretical results of the existing models and the proposed models against experimental outcomes for horizontal and vertical polarizations at different rain rates are presented. Keywords: Method of moments, microwave attenuation, millimeter wave attenuation, rain attenuation, rainfall regimes, rain types, satellite communication, terrestrial communication, fade margin. 1. INTRODUCTION In order to account for the degree of rain attenuation or The advantages offered by Super High Frequency (SHF) rain fade in a link, two methods are often considered: the and Extremely High Frequency (EHF) bands such as direct method (which refers to direct measurements at the large bandwidth, small antenna size, and easy installation receiver using a spectrum analyzer), and the statistical or deployment have motivated the interest of researchers method (which involves rain rate and raindrop size to study various factors that prevent optimum utilization measurement). The rain rate and raindrop size of these bands. Factors such as cloud, hail, fog, snow, ice measurements allow for the estimation of rain attenuation crystals, and rain degrade terrestrial and satellite link in a cost-effective way as compared with the direct performance at these frequencies. Rain fade remains the method. Regional and global efforts have been made to dominant factor in signal fading over satellite and obtain suitable distribution functions and related terrestrial links, especially in the tropical and sub-tropical parameters for the raindrop size distribution (DSD). The regions like South Africa. In this paper, the focus is on early DSD models were based on exponential [5] signal attenuation due to absorption and scattering by distribution functions, which poorly represented the very rain. While other types of hydrometeors such as water small and very large raindrops. The other distribution vapour, snowfall, and hail are considered secondary functions that have been suggested are the Lognormal [2, deleterious factors to link design at these frequency 6], the Weibull [7, 8], and the gamma [9] distribution bands, attenuation due to rain is a fundamental quantity in functions. There are several ways of fitting measured the estimation of signal degradation in the presence of DSD data, of which the method of moments [10] and precipitation for terrestrial and satellite links. As maximum likelihood estimation [11] are the most presented in several articles, a simple power-law popularly used by many authors. While DSD relationship of specific rain attenuation as given in measurement campaigns have been reported over a equation (1) is widely used, and the values of the considerable period of time in West Africa [2, 12], less coefficient parameters k and are listed in the attention has been invested in this regard in Southern International Telecommunication Union Africa [13, 14]. Recommendation ITU-R P.838.3 [1]. One of the aims of this paper is to give a report on the (1) current DSD modelling for the South African region and its application using different extinction cross section Here R (mm/h) is the rain rate and k and are constants models. The resulting fitted DSD is integrated over the at a given frequency. It is evident from several scattering cross section to calculate the specific contributors [2, 3, 4] that k and vary with the raindrop attenuation due to rain. In order to estimate the total cross size distribution (DSD). It is observed as well that the sectional area of raindrops, the choice of rain shape is the rain DSD is location and climate dependent. key parameter. Morrison and Cross [15] fitted the drop Vol.105(1) March 2014 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 21 shape with a spheroidal model, using a least-squares 2. DISDROMETER DATA COLLECTION method. The contribution of Pruppacher and Pitter [16], presented theoretical results of raindrops at different For the purpose of this submission, two-year DSD data sizes, while Li et al. [17, 18] further simplified was collected using the Joss-Waldvogel RD-80 Pruppacher and Pitter’s model, with the expression: disdrometer (JWD) at an integration time of one minute. This equipment is placed at latitude 30 058 E and longitude 29 052 S atop the Electrical, Electronic, and Computer Engineering building, University of KwaZulu- Natal, at an altitude of 139.7 m above sea-level. It (2) measures raindrop diameters in the range of 0.3 mm to 5 mm in 20 different bins, with the accuracy of ±5%. The expression used to estimate the measured rain rate where, (mm/hr) by the equipment is presented in the JWD (3a) manual as [21]: (3b) (7) (3c) while the measured DSD, or N(D i), is given by [21]: (3d) (8) (3e) 2 Here a0 denotes the mean raindrop radius, theoretically Note that S = 5000 mm , T = 60 s, v(D i) is the terminal given as 0.25 mm to 3.00 mm with an incremental velocity, estimated using the Gunn and Kinzer approach, interval of 0.25 mm, and H( ) denotes the step function. and ni is the number of drops. With the nature of rain Equations (2) to (3) represent the spherical raindrop size distribution in Southern Africa, the rain rate is used to model. Another approach with a new formula was classify the raindrop size distribution models into four presented in reference [19] - in which case the scattered classes: electromagnetic fields were deemed due to spheroidal raindrops. Considering spheroidal raindrop scatterers, the Drizzle (R < 5mm/hr ) surface of the drops is described by: Widespread (5mm/hr R < 10 mm/hr) Shower (10 mm/hr R < 40 mm/hr) (4) Thunderstorm (R 40 mm/hr) The rain rate can be estimated from the modelled N(D i) where , and a and b represent the for each class of rain rate type, given by the expression: raindrop’s minor and major semi-axes respectively, and are measured in centimeters. In [19] Oguchi’s method (9) was used to obtain a and b from the mean drop size radius that was developed to determine the specific In the comparative studies of the measured N(D i) and rainfall attenuation. Oguchi [20] assumed that: modelled N(D ), the root mean square error (RMSE)% is i defined as: ; (5) The other method presented in [19] is that of Morrison and Cross [15], which assumes that: (10) ; (6) 3. THE METHOD OF MOMENTS The parameters obtained using the method of Morrison rd th th and Cross have shown reasonably consistent results when In this paper, the 3 , 4 , and 6 order moments are considering larger raindrops as opposed to that proposed employed to determine the three Lognormal DSD by Oguchi [20]. This paper thus uses the aforementioned parameters because of its simplicity and immediate total scattering cross section of Morrison and Cross [15], physical interpretation of the Lognormal parameters. The alongside the Pruppacher and Pitter model [16] as well as nth order moment is defined as: the Mie model, to compute the specific attenuation due to rain for Southern Africa. 22 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS Vol.105(1) March 2014 1000 approximated by x-th, y-th and z-th moments of the DSD where x, y, and z are non-integer. Then equation (11) is equivalent to: ) -3 y = 41.319x 0.625 (13) (m T N 10 My and Mz are similar to equation (13). Taking Lx to be Log NT the natural logarithm of Mx, the Lognormal DSD Power (NT) parameters are calculated as [10]: 100 40 60 80 100 120 (14a) Rain rate (mm/hr) (a) (14b) 1 (14c) Fig. 1 presents logarithmic scattergrams of Lognormal DSD parameters versus rain rate for the thunderstorm y = 0.063ln(x) + 0.298 rain type. These parameters are derived from equations 10 (13) and (14). For the other rain types such as drizzle, Log widespread and shower, Table 1 and expressions µ presented in equation (15) give details of Lognormal DSD parameters and their coefficients for the Southern African region as summarized in the expressions below: 0.1 40 50 60 70 80 90 100 110 120 130 Rain Rate(mm/hr) (15a) (15b) (b) 1 3.1 Application of Rainfall Regimes y = 0.022ln(x) + 0.013 It has been established that the raindrop size distribution varies considerably for different types of rainfall regimes or classes. These rainfall classes, as defined in section 2, 0.1 2 are: drizzle, widespread, shower and thunderstorm. The 10 corresponding parameters of their Lognormal Log distributions are shown in Table 1. A general distribution 2 model has often been used by many researchers. Log. ( 2) However, there is a notable difference in the specific 0.01 40 50 60 70 80 90 100 110 120 attenuation due to rain produced by the general model, Rain rate (mm/hr) hence the need to develop regime-specific rain attenuation models [22, 23].
Recommended publications
  • Determination of Millimetric Signal Attenuation Due to Rain Using Rain Rate and Raindrop Size Distribution Models for Southern Africa
    DETERMINATION OF MILLIMETRIC SIGNAL ATTENUATION DUE TO RAIN USING RAIN RATE AND RAINDROP SIZE DISTRIBUTION MODELS FOR SOUTHERN AFRICA by Senzo Jerome Malinga A THESIS submitted in fulfillment of the requirements for the degree PhD (ELECTRONIC ENGINEERING) School of Engineering College of Agriculture, Engineering, and Science UNIVERSITY OF KWAZULU-NATAL Durban, South Africa March 2014 Supervisor: Professor Thomas Joachim Odhiambo Afullo Approved by: Supervisor: Professor Thomas Joachim Odhiambo Afullo As the candidate’s Supervisor I agree to the submission of this thesis. Signed………………………………………Date……………………………………….. ii COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE Declaration 1 - Plagiarism I Senzo Jerome Malinga declare that 1. The research reported in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other university. 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This thesis does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables
    [Show full text]
  • Global Satellite Communications Technology and Systems
    International Technology Research Institute World Technology (WTEC) Division WTEC Panel Report on Global Satellite Communications Technology and Systems Joseph N. Pelton, Panel Chair Alfred U. Mac Rae, Panel Chair Kul B. Bhasin Charles W. Bostian William T. Brandon John V. Evans Neil R. Helm Christoph E. Mahle Stephen A. Townes December 1998 International Technology Research Institute R.D. Shelton, Director Geoffrey M. Holdridge, WTEC Division Director and ITRI Series Editor 4501 North Charles Street Baltimore, Maryland 21210-2699 WTEC Panel on Satellite Communications Technology and Systems Sponsored by the National Science Foundation and the National Aeronautics and Space Administration of the United States Government. Dr. Joseph N. Pelton (Panel Chair) Dr. Charles W. Bostian Mr. Neil R. Helm Institute for Applied Space Research Director, Center for Wireless Deputy Director, Institute for George Washington University Telecommunications Applied Space Research 2033 K Street, N.W., Rm. 304 Virginia Tech George Washington University Washington, DC 20052 Blacksburg, VA 24061-0111 2033 K Street, N.W., Rm. 340 Washington, DC 20052 Dr. Alfred U. Mac Rae (Panel Chair) Mr. William T. Brandon President, Mac Rae Technologies Principal Engineer Dr. Christoph E. Mahle 72 Sherbrook Drive The Mitre Corporation (D270) Communications Satellite Consultant Berkeley Heights, NJ 07922 202 Burlington Road 5137 Klingle Street, N.W. Bedford, MA 01730 Washington, DC 20016 Dr. Kul B. Bhasin Chief, Satellite Networks Dr. John V. Evans Dr. Stephen A. Townes and Architectures Branch Vice President Deputy Manager, Communications NASA Lewis Research Center and Chief Technology Officer Systems and Research Section MS 54-2 Comsat Corporation Jet Propulsion Laboratory 21000 Brookpark Rd.
    [Show full text]
  • Rain Fade Analysis at C, Ka and Ku Bands in Nigeria
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Environment and Earth Science www.iiste.org ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) DOI: 10.7176/JEES Vol.9, No.3, 2019 Rain Fade Analysis at C, Ka and Ku Bands in Nigeria Modupe Sanyaolu 1* Oluropo Dairo 2* Lawrence Kolawole 3 Physical Science Department, Redeemer’s University, P.M.B. 230, Ede, Osun State, Nigeria Abstract Rain fade has continued to be a major concern to communication systems designers. The effect of these dynamic fluctuations of the received signal due to rain is very pronounced in the tropical region. This paper pertains to the analysis of rain fades at C, Ku and Ka bands at some selected stations covering the main geographical zones of Nigeria. The ITU-RP propagation model was used to calculate the fade depth at 6 GHz, 8 GHz, 12 GHz, 16 GHz, 20 GHz, 30 GHz and 40 GHz. The rain fade correlate with signal attenuation. Attenuation distributions for percentages of time for signal unavailability were also estimated. The results show that values of attenuation for vertically and circularly polarized signals are less than those of the horizontal polarization at all the frequencies. It is found that rain fade is less severe in the Northern part of the country and is most severe in the southern part of Nigeria, with Port Harcourt, Lagos and Nsukka experiencing the highest rain impairment. Key words: Propagation, rain rate, attenuation, rain fade, communication links DOI : 10.7176/JEES/9-3-16 Publication date :March 31 st 2019 1.
    [Show full text]
  • Mitigating the Effect of Rain Fading on Ka Band High Throughput Satellite in Indonesia: an Empirical Study
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 03, MARCH 2020 ISSN 2277-8616 Mitigating The Effect Of Rain Fading On Ka Band High Throughput Satellite In Indonesia: An Empirical Study Ilvico Sonata, Sandra Octaviani BW, Isdaryanto Iskandar Abstract— The Indonesian government used fiber optics through the Palapa Ring Project to cover all regions of Indonesia with high-speed internet. Certain areas that cannot be passed by optical fiber will be filled by VSAT Broadband System using High Throughput Satellite. High Throughput Satellite takes advantage of frequency reuse and multiple spot beams to increase throughput and reduce the cost per bit delivered, regardless of spectrum choice. But, with the frequency of Ka band being used by High Throughput Satellie, this will be a disadvantage where Ka band frequency is vulnerable to weather. This Papper studied the effect of rain fading to the VSAT High Throughput Satellite and its mitigation techniques. Index Terms— adaptive coding and modulation, high throughput satellite, Ka band, Rain fading, site diversity, orbital diversity, uplink power control. —————————— —————————— 1 INTRODUCTION Rain Attenuation event on Ka Band Satellite Earth Link in High-throughput satellite (HTS) is a classification for Jakarta - Indonesia can be described as follow. communications satellites that provide at least twice, though The time series of a typical rain-induced attenuation event usually by a factor of 20 or more, the total throughput of a recorded simultaneously at 20 and 30 GHz at the Jakarta site classic FSS satellite for the same amount of allocated orbital is shown in Fig. 2. The event, which occurred on 10 December spectrum thus significantly reducing cost-per-bit [3](Fig 1).
    [Show full text]
  • Rain Effect on Ku-Band Satellite System
    Electrical and Electronics Engineering: An International Journal (ELELIJ) Vol 4, No 2, May 2015 RAIN EFFECT ON KU-BAND SATELLITE SYSTEM Jalal J. Hamad Ameen 1 1Department of Electrical Engineering, Salahaddin University, Erbil City , Iraq ABSTRACT Satellite system has many frequency bands, Ku-band is the most used bands in satellite services like DVB, DAB, Internet, the ionosphere influences specially, rain has the direct effect on the satellite signal and causes decrease in the received signal, this paper is an attempt to study, calculation of rain effect in Iraqi Kurdistan region, some results presented and finally, some solutions and recommendations presented to reduce the rain effect hope be useful for any satellite system users in any locations to minimize this effect, improvement and increase in the received signal. KEYWORDS Ku-Band satellite system, rain effect, rain attenuation calculation 1. INTRODUCTION Satellite communication system like other systems has some impairments for example, the transmitting and receiving equipment, polarization mismatch losses, di-pointing losses and free- space losses, the first three impairments can be improved and overcome their effects is not impossible, but the last one needs some technical and special methods to reduce not to overcome but to reduce its effects, free space losses in clear sky exists and affects the signal, and this loss increases in case of rain, snow, heavy clouds, specially, the regions with heavy rain suffering from the disconnecting the received signal during rains, this paper is an attempt how to calculate the free space losses and then the received signal during rain and clear sky, comparing the two results to see the amount of losses, then how to compensate these losses, then, finally, giving the signal continuity without interruption of the received signal.
    [Show full text]
  • Rain Attenuation Predicted Model for 5G Communication in Tropical Regions Trilochan Patra, Swarup Kumar Mitra
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020 Rain Attenuation Predicted Model for 5G Communication in Tropical Regions Trilochan Patra, Swarup Kumar Mitra frequency and due to heavy rainfall the signal gets attenuated Abstract: The signals operating at higher microwave frequency which requires high static fade margin [2]. In this paper the ranges get attenuated in the tropical regions where heavy rainfall Static fade margin has been enhanced to make it applicable occurs. Controlling of Signal fading for establishment of efficient for higher microwave frequency regions. link plays an important role in the heavy rainfall regions. Here rain In paper [4] frequency ranges is available up to attenuation predicted model has been designed in sub- 6 GHz and 38 GHz. But in this paper the frequency ranges have been mm Wave bands. This predicted model is applicable to the tropical improved up to 71 GHz. This predicted model is applicable to regions where heave rainfall occurs. Frequency variation technique has been adopted to execute the research work. The estimated rain the higher frequency regions where higher fade margin attenuation depends on International Telecommunication Union- prevails. When microwave radio frequency signal is scattered R rain mitigation forecast technique utilizing assessment of rain in and absorbed by rain, signal gets attenuated [7]. In the the tropical regions of South East Asia.The frequency ranges used tropical regions the signal power level is diminished on here for variation techniques are respectively 3.6 to 4.2 GHz, 4.4 to account of high rain rate and as a result rain fade occurs and 4.9 GHz, 27.5 to29.5 GHz, 37 to-40 GHz and 64 to71 GHz.
    [Show full text]
  • Overcoming the Rain Fade
    Overcoming the Rain Fade Obstacle – Understanding Singapore’s Rain Dynamics and Feasible Countermeasures Against Rain Fading ABSTRACT Rain fade has always been perceived as the major impediment to satellite communications operating at higher frequencies, particularly in tropical zones like Singapore. Researchers have proposed various rain models to predict the extent of rain fading in different regions globally. However, there still exists an element of uncertainty of their applicability to our climate. As such, it is of paramount importance to establish a suitable high fidelity rain attenuation model based on local weather information. By means of a more accurate estimation of rain fade, and in tandem with the expected benefits of fade mitigation techniques, these key technologies will enable the realisation of a reliable satellite communications system. Dr Lee Yee Hui Koh Wee Sain Lee Yuen Sin Michelle Ho Xiu Mei • Scattering – this is a physical process, caused An ongoing research collaboration between by either refraction or diffraction, in which the DSTA and Nanyang Technological University direction of the radio wave deviates from its (NTU) is looking into the establishment of a original path as it passes through a medium suitable high fidelity rain attenuation model, containing raindrops. This disperses the energy based on weather information from of the signal from its initial travel direction. Singapore’s Meteorological Services Division of the National Environment Agency. The accumulation of these different reactions ultimately leads to a decrease in the level of The principal objective of a rain attenuation received signal, thus resulting in rain model tailored for Singapore’s environment is attenuation.
    [Show full text]
  • 77 Abstract Rain Fade Slope Estimation Using Signal Processing Techniques
    77 RAIN FADE SLOPE ESTIMATION USING SIGNAL PROCESSING TECHNIQUES Chandrika Panigrahi1, S.Vijaya Bhaskara Rao1, G. Rama Chandra Reddy2 1 ijcrr Department of Physics, S.V.University, Tirupati 2 Vol 04 issue 11 School of Electronics, VIT University, Vellore Category: Research Received on:22/04/12 Revised on:02/05/12 E-mail of Corresponding Author: [email protected] Accepted on:11/05/12 ABSTRACT Fade slope estimations extensively depends on the rain type (convective/stratiform), drop size distribution and the melting layer (bright band) height. Tropics show unusual changes in these parameters due to occasional severe thunderstorms, cyclones and seasonal monsoon (SW and NE) currents. An ITU-R prediction based on temperate climatic conditions often fails to estimate accurately rain attenuation and rain fade slopes. Hence, precise experiments and data processing techniques in tropics are quite required to compare the ITU-R results. In this paper we have taken up fade slope estimations over an operational Ku band link in southern India using different signal processing techniques viz., time domain, frequency domain and wavelet domain. For the first time biorthogonal spline wavelets are used to differentiate rain fades to estimate the rain fade slopes. The results are significantly different from ITU-R predictions. Keywords: Rain Attenuation, Fade Mitigation Techniques, Fade slope, Wavelets, Spline wavelets. ____________________________________________________________________________________ INTRODUCTION observed during the southwest and north east Attenuation on Sat Com links is mainly due to monsoon climates. Fade slope, termed as the rate precipitation, Gaseous absorption, cloud of change of the physical variable attenuation is attenuation and scintillations caused by the steep rise or fall fronts of a substantial refractive index fluctuations.
    [Show full text]
  • 131 a Review on Rain Fade and Signal Attenuation by Rain in Ku and Ka Band Satellite Communication at MGC
    International Journal of Trend in Scientific Research and Development (IJTSRD) International Open Access Journal | www.ijtsrd.com ISSN No: 2456 - 6470 | Volume - 2 | Issue – 6 | Sep – Oct 2018 A Review on Rain Fade and Signal Attenuation by Rain in Ku and Ka Band Satellite Communication at MGC Campus Punjab India 1 2 3 Er. Sukhjinder Singh , Er. Iqbal Singh , Er. Jasraj Singh Assistant professor 1Head of Department EEE , 2Head of Department CSE, 3Head of Department EE , Modern Group of Colleges, Mukerian , Punjab, India ABSTRACT Rain attenuation is a major challenge to microwave satellite communication especially at frequencies above 10 GHz, causing unavailability of signals most of the time. Rain attenuation predictions have become one of the vital considerations while setting up a satellite communication link. Performance of the wireless communication system depends on the transmission path between source and destination (transmitter and receiver) which is extremely random, vary significantly over different frequency band. beca use of the heavy rainfall, snowfall, and other climatic condition most of the time wireless communication links are out of service and hence the performance of transmission of micro - wave signal from source to destination attenuate a lot, our primary concer n is here outage due to rain. Attenuation because of rainfall play a significant role in design of terrestrial and Earth-satellite radio link specially at frequencies above 10 GHz. Therefore to design a link channel our major concern is to evaluate attenuation due to rainfall. Figure 1: frequency range of various band Keyword: RAIN FADE, INTELSAT, BER, KU, KA, X, Raindrops absorb and scatter radio waves, leading to C, K, S, L, BAND signal attenuation, and the reduction of the availability and reliability of systems.
    [Show full text]
  • Comparison of Measured Rain Attenuation in the 10.982Ghz Band
    INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING Int. J. Satell. Commun. Network. (2014) Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sat.1082 Comparison of measured rain attenuation in the 10.982-GHz band with predictions and sensitivity analysis Yusuf Abdulrahman1,3,*,†, Tharek A. Rahman1,Rafiqul M. Islam2, Benjamin J. Olufeagba3 and Jalel Chebil2 1Wireless Communications Centre, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia 2Electrical and Computer Engineering, Islamic International University Malaysia (IIUM), Kuala Lumpur, Selangor, Malaysia 3Electrical & Electronics Engineering Department, University of Ilorin, Ilorin, Nigeria SUMMARY The campaign to collect rain attenuation data on terrestrial links had commenced in Malaysian tropical climates for almost two decades. The terrestrial data so far collected have been greatly utilized to derive useful statistics for various microwave applications, such as frequency scaling, rain rate conversion factor, 1-min rain rate contour maps, wet antenna losses, and fade slope duration analysis. However, there is still severe scarcity of rain attenua- tion data on earth–space links in Malaysia. The results of the 2-year measurement (January 2009–December 2010) of rain rates and rain-induced attenuation in vertically polarized signals propagating at 10.982 GHz have been presented in this paper. The rain attenuation over the link path was measured at Islamic International University Malaysia and compared with ITU-R P.618-10 and Crane global models in this paper. The test results show that the two prediction models seem inadequate for predicting rain attenuation in the Ku-band in Malaysia. Sensitivity analysis performed on measured data also reveals that the sensitivity variables depend on rain rate.
    [Show full text]
  • HF- Communication High Frequency (HF) Is the ITU-Designated Range of Radio Frequency Electromagnetic Waves (Radio Waves) Between 3 and 30 Mhz
    Designation Frequency Wavelength ELF extremely low frequency 3Hz to 30Hz 100'000km to 10'000 km SLF superlow frequency 30Hz to 300Hz 10'000km to 1'000km ULF ultralow frequency 300Hz to 3000Hz 1'000km to 100km VLF very low frequency 3kHz to 30kHz 100km to 10km LF low frequency 30kHz to 300kHz 10km to 1km MF medium frequency 300kHz to 3000kHz 1km to 100m HF high frequency 3MHz to 30MHz 100m to 10m VHF very high frequency 30MHz to 300MHz 10m to 1m UHF ultrahigh frequency 300MHz to 3000MHz 1m to 10cm SHF superhigh frequency 3GHz to 30GHz 10cm to 1cm EHF extremely high frequency 30GHz to 300GHz 1cm to 1mm HF- Communication High frequency (HF) is the ITU-designated range of radio frequency electromagnetic waves (radio waves) between 3 and 30 MHz. It is also known as the decameter band or decameter wave as the wavelengths range from one to ten decameters (ten to one hundred metres). The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere, called "skip" or skywave propagation, these frequencies can be used for long distance communication, at intercontinental distances. The band is used by international shortwave broadcasting stations (2.310 - 25.820 MHz), aviation communication, government time stations, weather stations, amateur radio and citizens band services, among other uses. Propagation Charecteristics The dominant means of long distance communication in this band is skywave (skip) propagation, in which radio waves directed at an angle into the sky reflect (actually refract) back to Earth from layers of ionized atoms in the ionosphere.
    [Show full text]
  • A Survey of Rain Fade Models for Earth–Space Telecommunication Links—Taxonomy, Methods, and Comparative Study
    remote sensing Review A Survey of Rain Fade Models for Earth–Space Telecommunication Links—Taxonomy, Methods, and Comparative Study Md Abdus Samad 1,2 , Feyisa Debo Diba 1,3 and Dong-You Choi 1,* 1 Department of Information and Communication Engineering, Chosun University, Gwangju 61452, Korea; [email protected] (M.A.S.); [email protected] (F.D.D.) 2 Department of Electronics and Telecommunication Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh 3 Department of Electronics and Communication Engineering, Adama Science and Technology University, Adama 1888, Ethiopia * Correspondence: [email protected] Abstract: Satellite communication is a promising transmission technique to implement 5G and beyond networks. Attenuation due to rain begins at a frequency of 10 GHz in temperate regions. However, some research indicates that such attenuation effects start from 5–7 GHz, especially in tropical regions. Therefore, modeling rain attenuation is significant for propagating electromagnetic waves to achieve the required quality of service. In this survey, different slant link rain attenuation prediction models have been examined, classified, and analyzed, and various features like improve- ments, drawbacks, and particular aspects of these models have been tabulated. This survey provides various techniques for obtaining input data sets, including rain height, efficient trajectory length Citation: Samad, M.A.; Diba, F.D.; measurement techniques, and rainfall rate conversion procedures. No survey of the Earth–space Choi, D.-Y. A Survey of Rain Fade link models for rain attenuation is available to the best of our knowledge. In this study, 23 rain Models for Earth–Space Telecommunication Links— attenuation models have been investigated.
    [Show full text]