Fouling Bryozoan Fauna from Hurghada, Red Sea, Egypt. II. Encrusting Species

Total Page:16

File Type:pdf, Size:1020Kb

Fouling Bryozoan Fauna from Hurghada, Red Sea, Egypt. II. Encrusting Species Egyptian Journal of Aquatic Research (2016) xxx, xxx–xxx HOSTED BY National Institute of Oceanography and Fisheries Egyptian Journal of Aquatic Research http://ees.elsevier.com/ejar www.sciencedirect.com FULL LENGTH ARTICLE Fouling bryozoan fauna from Hurghada, Red Sea, Egypt. II. Encrusting species Khaled Mahmoud Abdelsalam National Institute of Oceanography and Fisheries, Qayet Bey, El-Anfoushy, Alexandria, Egypt Received 14 April 2016; revised 17 October 2016; accepted 23 October 2016 KEYWORDS Abstract The current work aims to present systematic information about encrusting fouling bry- Neocheilostomina; ozoan fauna collected from Hurghada, Egyptian Red Sea. During September 2015, scraped fouling Taxonomy; samples were collected from beneath the jetty of the National Institute of Oceanography and Fish- New records; eries, Red Sea branch, Egypt. Five species of encrusting bryozoan are recorded in the present study. Egyptian Red Sea These are Celleporaria aperta, Parasmittina egyptiaca, Watersipora subtorquata, Hippopodina feegeensis and Scorpiodinipora costulata, affiliating to 5 families, which belong to the suborder Neocheilostomina. Parasmittina egyptiaca, Hippopodina feegeensis and Scorpiodinipora costulata are new records from Hurghada, Red Sea waters. Descriptions of the recorded species are given with illustrative photos as well as their geographical distribution and habitats. Ó 2016 National Institute of Oceanography and Fisheries. Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Introduction (1826) who identified 67 species of Bryozoa collected by Savi- gny from the Mediterranean and Red Seas. The precise collect- Bryozoans inhabit variable marine ecosystems, mainly coastal, ing sites for most of the species were not mentioned. In 1924, wherever the substrata are available. They are mainly benthic the Cambridge Expedition to the Suez Canal explored the invertebrate animals, forming colonies (Zabala and Maluquer, Polyzoan collection and recorded 24 species that were pub- 1988). Settling on artificial substrata, bryozoans represent one lished by Hastings (1927). Apart from the Indonesian and of the principal components of fouling communities (Pisano, New Guinean material, the monographs of Siboga Expedition 1979; Boyer, 1984). It is worth mentioning that phylum Bry- by Harmer (1926, 1957) comprise descriptions of 35 bry- ozoa has been erected by Ehrenberg (1831) based on samples ozoans, some of which were collected by the author during collected from the Egyptian waters (Alexandria in the Mediter- his visit to the biological station at Hurghada (Ghardaqa), ranean Sea, and Suez in the Red Sea). Moreover, the type spe- northern Red Sea, in 1934. cies of Zoobotryon pellucidus stimulated Ehrenberg to propose During his mission in Egypt (December 1927–March 1929), a phylum ‘‘Bryozoa” to be separated from ‘‘Anthozoa”. Robert Ph. Dollfus collected 44 bryozoan species from the Studies of bryozoan fauna from the Egyptian Red Sea are Gulf of Aqaba, Gulf of Suez and Suez Canal (Balavoine, scarce. First bryozoan study in Egypt goes back to Audouin 1959). This record consisted of four species of Cyclostomes and 40 species of Cheilostomes. Eitan (1972) identified 14 bry- ozoan species collected from the Suez Canal and among those, E-mail address: [email protected] 11 were new for this area, the three previously known species Peer review under responsibility of National Institute of Oceanography being Bugula neritina (Linnaeus, 1758), Watersipora and Fisheries. http://dx.doi.org/10.1016/j.ejar.2016.10.004 1687-4285 Ó 2016 National Institute of Oceanography and Fisheries. Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Please cite this article in press as: Abdelsalam, K.M. Fouling bryozoan fauna from Hurghada, Red Sea, Egypt. II. Encrusting species. Egyptian Journal of Aquatic Research (2016), http://dx.doi.org/10.1016/j.ejar.2016.10.004 2 Kh.M. Abdelsalam subovoidea (d’Orbigny, 1852) and Celleporaria aperta (Hincks, were preserved in 70% ethanol, in the Collection of Taxonomy 1882). A new clarification was given by d’Hondt (2006) for the & Biodiversity of Aquatic Biota (TBAB), Laboratory of the plates of ‘‘Polyps-Bryozoa” in the description of Egyptian National Institute of Oceanography and Fisheries, Alexandria fauna presented by Audouin (1826). Recently, Ostrovsky branch, Egypt. Specimens were examined under a stereoscopic et al. (2011) provided an extensive account of bryozoan light microscope (model Novex P-20, with total magnification research in the Red Sea. up to 80 X) and monoscopic microscope (model BEL Bio-1-T, Knowledge of the Egyptian records of fouling bryozoans in with total magnification up to 400 X), and photographed by the Red Sea is low and few informative because the available Nikon digital camera (model D5000) equipped with a special papers generally provide uncommented species lists. adaptor for attaching to the microscopes. Size of colony was Ghobashy et al. (1980) listed 13 species in the Suez Canal, determined according to the maximum number of zooids per Ghobashy and El-Komy (1981a,b) recorded 5 and 10 species colony (i.e. Small with <100 zooids; moderate with >100 from Lake Timsah and the South region of Suez Canal, respec- and <200 zooids; and large with >300 zooids). Descriptions tively. Ramadan (1986) recorded 21 species of fouling bry- of the recorded species are provided with illustrative photos; ozoans in the northern part of the Suez Canal from Port as well as; their geographical distribution and habitats. In Said in the north to El-Ferdan in the south. El-Komi (1992) the present work, much literature was consulted for identifica- studied the marine fouling in Ghardaqa (Hurghada) and listed tion (e.g. Harmer, 1926, 1957; Balavoine, 1959; d’Hondt, 1988, only 3 species of encrusting bryozoans: Schizoporella errata, 2006; Hayward and Parker, 1994; Tilbrook, 1999, 2006; Watersipora subovoidea, and Cryptosula pallasiana. El-Komi Tilbrook et al., 2001; Ryland et al., 2009; Vieira et al., 2014). et al. (1998) recorded 7 species in the Suez Bay and Emara The current higher-taxonomic position of the species is given (2002) listed 4 species in the northern region of the Suez Gulf. according to Bock and Gordon (2013). Emara and Belal (2004) recorded 8 species in the Bitter Lakes In the text, measurements of bryozoan zooids (in microm- and Lake Timsah along the Suez Canal. A total of 27 bry- eters) are given as mean ± standard deviation, observed ozoan species was recorded in the Egyptian Red Sea. However, range, and (in parentheses) the number of specimens exam- there is no recent study concerning the systematic of the foul- ined. Autozooid length (ZL) and width (ZW) are as measured ing bryozoan fauna from Hurghada, Red Sea, Egypt. This arti- at the colony surface. A cleaning agent (diluted Clorox or cle may fill that gap. domestic household bleach) was used for better observation of the encrusting species. Material and methods Results Samples of marine fouling were scraped from beneath the jetty of the National Institute of Oceanography and Fisheries, Red The present study yielded 5 species of encrusting fouling bry- Sea branch, Hurghada, Egypt (Fig. 1). Sampling was done ozoans affiliating to 5 families (Lepraliellidae, Smittinidae, during September, 2015. The collected materials were pre- Watersiporidae, Hippopodinidae and Hippoporidridae, under served in 10% formalin. the suborder Neocheilostomina of order Cheilostomata, In the laboratory, samples of encrusting bryozoan fauna belonging to class Gymnolaemata. Each family is represented were recorded and isolated for identification. The specimens by one genus and one species. Family Lepraliellidae is repre- Figure 1 Location map. (A). Geographical location of Hurghada on the Egyptian Red Sea. (B). Enlarged map showing the sampling area (the jetty of the National Institute of Oceanography and Fisheries). Please cite this article in press as: Abdelsalam, K.M. Fouling bryozoan fauna from Hurghada, Red Sea, Egypt. II. Encrusting species. Egyptian Journal of Aquatic Research (2016), http://dx.doi.org/10.1016/j.ejar.2016.10.004 Fouling bryozoan fauna from Hurghada, Red Sea, Egypt. II. Encrusting species 3 sented by Celleporaria Lamouroux, 1816; Smittinidae by erect in frontally budded regions. Frontal wall with irregularly Parasmittina Osburn, 1952; Watersiporidae by Watersipora granular calcification and perforated by marginal and occa- Neviani, 1895; Hippopodinidae by Hippopodina Levinsen, sional frontal small pores. Peristome low. Orifice semicircular 1909; and Hippoporidridae by Scorpiodinipora Balavoine, with a small, rounded proximal sinus, located not always in the 1959. center of the straight proximal edge. Two to four long-jointed Systematic accounts oral spines are seen, often broken. Small adventitious ovoid suboral avicularia, located just proximal to the orificial sinus, Kingdom: Animalia their rostrum perpendicular to plane of orifice and facing lat- Phylum: Bryozoa (Ehrenberg, 1831) erally. Large interzooidal avicularia with a subtriangular Class: Gymnolaemata (Allmann, 1856) mandible and a serrated rostral margin, common. Ovicells Order: Cheilostomata (Busk, 1852) cap like, imperforated. Suborder: Neocheilostomina (d’Hondt, 1985) Remarks: Colonies are encrusting rocks and broken shells. Superfamily: Lepralielloidea (Vigneaux, 1949) The simple sinusoid condition of the orifices
Recommended publications
  • Bryozoan Genera Fenestrulina and Microporella No Longer Confamilial; Multi-Gene Phylogeny Supports Separation
    Zoological Journal of the Linnean Society, 2019, 186, 190–199. With 2 figures. Bryozoan genera Fenestrulina and Microporella no longer confamilial; multi-gene phylogeny supports separation RUSSELL J. S. ORR1*, ANDREA WAESCHENBACH2, EMILY L. G. ENEVOLDSEN3, Downloaded from https://academic.oup.com/zoolinnean/article/186/1/190/5096936 by guest on 29 September 2021 JEROEN P. BOEVE3, MARIANNE N. HAUGEN3, KJETIL L. VOJE3, JOANNE PORTER4, KAMIL ZÁGORŠEK5, ABIGAIL M. SMITH6, DENNIS P. GORDON7 and LEE HSIANG LIOW1,3 1Natural History Museum, University of Oslo, Oslo, Norway 2Department of Life Sciences, Natural History Museum, London, UK 3Centre for Ecological & Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway 4Centre for Marine Biodiversity and Biotechnology, School of Life Sciences, Heriot Watt University, Edinburgh, UK 5Department of Geography, Technical University of Liberec, Czech Republic 6Department of Marine Science, University of Otago, Dunedin, New Zealand 7National Institute of Water and Atmospheric Research, Wellington, New Zealand Received 25 March 2018; revised 28 June 2018; accepted for publication 11 July 2018 Bryozoans are a moderately diverse, mostly marine phylum with a fossil record extending to the Early Ordovician. Compared to other phyla, little is known about their phylogenetic relationships at both lower and higher taxonomic levels. Hence, an effort is being made to elucidate their phylogenetic relationships. Here, we present newly sequenced nuclear and mitochondrial genes for 21 cheilostome bryozoans. Combining these data with existing orthologous molecular data, we focus on reconstructing the phylogenetic relationships of Fenestrulina and Microporella, two species-rich genera. They are currently placed in Microporellidae, defined by having a semicircular primary orifice and a proximal ascopore.
    [Show full text]
  • Strong Linkages Between Depth, Longevity and Demographic Stability Across Marine Sessile Species
    Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Doctorat en Ecologia, Ciències Ambientals i Fisiologia Vegetal Resilience of Long-lived Mediterranean Gorgonians in a Changing World: Insights from Life History Theory and Quantitative Ecology Memòria presentada per Ignasi Montero Serra per optar al Grau de Doctor per la Universitat de Barcelona Ignasi Montero Serra Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Universitat de Barcelona Maig de 2018 Adivsor: Adivsor: Dra. Cristina Linares Prats Dr. Joaquim Garrabou Universitat de Barcelona Institut de Ciències del Mar (ICM -CSIC) A todas las que sueñan con un mundo mejor. A Latinoamérica. A Asun y Carlos. AGRADECIMIENTOS Echando la vista a atrás reconozco que, pese al estrés del día a día, este ha sido un largo camino de aprendizaje plagado de momentos buenos y alegrías. También ha habido momentos más difíciles, en los cuáles te enfrentas de cara a tus propias limitaciones, pero que te empujan a desarrollar nuevas capacidades y crecer. Cierro esta etapa agradeciendo a toda la gente que la ha hecho posible, a las oportunidades recibidas, a las enseñanzas de l@s grandes científic@s que me han hecho vibrar en este mundo, al apoyo en los momentos más complicados, a las que me alegraron el día a día, a las que hacen que crea más en mí mismo y, sobre todo, a la gente buena que lucha para hacer de este mundo un lugar mejor y más justo. A tod@s os digo gracias! GRACIAS! GRÀCIES! THANKS! Advisors’ report Dra. Cristina Linares, professor at Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (Universitat de Barcelona), and Dr.
    [Show full text]
  • Description from Tilbrook, Hayward & Gordon, 2001
    CHEILOSTOMATOUS BRYOZOA FROM VANUATU 91 CHEILOSTOMATOUS BRYOZOA FROM VANUATU 75 FAMILY WATERSIPORIDAE VIGNEAUX, 1949 Description GENUS WATERSIPORA NEVIANI, 1895 Colony encrusting, multilaminar. Autozooids rect- Watersipora subovoidea sensu Harmer. Tilbrook,angular Haywardto irregularly & Gordon,polygonal, 2001,convex, p.75,separated fig.18F.by thickened sutures; 0.55–0.70×0.30–0.45 mm. Frontal WATERSIPORA SUBOVOIDEA SENSU HARMER shield coarsely nodular, with a single series of large (Fig. 18F) marginal pores. Primary orifice longer than wide; ly- Dakaria subovoidea (d’Orbigny) Harmer, 1957 (in rula short, rectangular, with straight distal edge and part): 1022, pl. 69, fig. 12. cusped corners, occupying about half proximal orifice Watersipora subovoidea: Dumont, 1981: 636. width; condyles rounded, downcurved, finely dent- ‘‘Watersipora subovoidea’’ sensu Harmer: Soule & Soule, iculate. 1–2 distal oral spines present in early ontogeny 1976: 308, pl. 3, figs 4–6; Winston & Heimberg, 1986: only. Peristome consisting mostly of prominent paired 17, figs 35–37. lateral lappets, deeply concave proximally. Avicularia polymorphic, numerous, mostly lateral-oral, single or paired, with acutely triangular, finely denticulate rost- Remarks rum, this directed medially and ascending the side of There has been much discussion about the taxonomic the peristomial lappet; similar avicularia often present status of this genus and species attributed to it, distal to ovicell; similar-sized avicularia with parallel- Watersipora subovoidea in particular (e.g., Ryland, sided, distally rounded rostrum typically developed 1974; Soule & Soule, 1976; Winston & Heimberg, 1986; along margins of zooids, proximolateral to peristome Gordon, 1989b; Soule et al., 1995). All species at- and proximally directed. Enlarged avicularia frequent: tributed to Watersipora need to be reviewed before any proximal portion lateral to orifice, rostrum proximally synonymies can be resolved.
    [Show full text]
  • Non-Native Sessile Invertebrates in Marinas on the English Coast
    Aquatic Invasions (2015) Volume 10, Issue 3: 249–264 doi: http://dx.doi.org/10.3391/ai.2015.10.3.01 Open Access © 2015 The Author(s). Journal compilation © 2015 REABIC Research Article Unheralded arrivals: non-native sessile invertebrates in marinas on the English coast John D.D. Bishop*, Christine A. Wood, Anna L.E. Yunnie and Carly A. Griffiths The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, Devon, UK E-mail: [email protected] (JDDB), [email protected] (CAW), [email protected] (ALEY), [email protected] (CAG) *Corresponding author Received: 10 December 2014 / Accepted: 6 March 2015 / Published online: 23 March 2015 Handling editor: Amy Fowler Abstract Between 2005 and 2012, 61 marinas and harbours around the English coast were surveyed to record the occurrence of non-native species (NNS) of sessile invertebrates. From these surveys, geographic distributions are described for eight species of ascidians, six bryozoans and five other species. A mean of 6.7 sessile invertebrate NNS per site (range 0–13 species) was recorded. At the 43 sites on the English Channel coast, the mean was 7.8 NNS per site, and all of the ten English sites that had ≥ 10 NNS were in the western or central region of the Channel coast. Ten sites on the Channel coast surveyed in 2004 were re-visited at least once in 2009 or 2010, and the mean number of sessile invertebrate NNS had increased from 6.0 to 7.6 species per site. Combining data from all visits in 2005–2012 for the sites surveyed in 2004, the mean number of NNS recorded per site rose to 9.2.
    [Show full text]
  • Field Science Manual: Oyster Restoration Station.Pdf
    Field Science Manual: Oyster Restoration Station 1 Copyright © 2016 New York Harbor Foundation Contents All rights reserved Published by Background 5 New York Harbor Foundation Introduction 13 Battery Maritime Building, Slip 7 10 South Street Teacher’s Timetable 15 New York, NY 10004 The Billion Oyster Project Curriculum and The Expedition Community Enterprise for Restoration Retrieving the ORS 19 Science (BOP-CCERS) aims to improve STEM education in public schools by linking teaching and learning to ecosystem Protocols 1–5: 25 restoration and engaging students in hands-on environmental field science Site Conditions during their regular school day. BOP-CCERS Oyster Measurement is a research-based partnership initiative between New York Harbor Foundation, Mobile Trap Pace University, New York City Depart- Settlement Tiles ment of Education, Columbia University Lamont-Doherty Earth Observatory, New Water Quality York Academy of Sciences, University of Maryland Center for Environmental Science, New York Aquarium, The River Returning the ORS to the Water 69 Project, and Good Shepherd Services. and Cleaning Up Our work is supported by the National Science Foundation through grant #DRL1440869. Appendix Mobile Species ID 77 Any opinions, findings, and conclusions or recommendations expressed in this Sessile Species ID 103 material are those of the author(s) and Data Sheets 135 do not necessarily reflect the views of the National Science Foundation. This material is based upon work supported by the National Science Foundation under Grant Number NSF EHR DRL 1440869/PI Lauren Birney. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflectthe views of the National Science Foundation.
    [Show full text]
  • A Manual of Previously Recorded Non-Indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States
    A Manual of Previously Recorded Non- indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States NOAA Technical Memorandum NOS NCCOS 77 ii Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States government. Citation for this report: Megan O’Connor, Christopher Hawkins and David K. Loomis. 2008. A Manual of Previously Recorded Non-indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States. NOAA Technical Memorandum NOS NCCOS 77, 82 pp. iii A Manual of Previously Recorded Non- indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States. Megan O’Connor, Christopher Hawkins and David K. Loomis. Human Dimensions Research Unit Department of Natural Resources Conservation University of Massachusetts-Amherst Amherst, MA 01003 NOAA Technical Memorandum NOS NCCOS 77 June 2008 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Carlos M. Gutierrez Conrad C. Lautenbacher, Jr. John H. Dunnigan Secretary Administrator Assistant Administrator i TABLE OF CONTENTS SECTION PAGE Manual Description ii A List of Websites Providing Extensive 1 Information on Aquatic Invasive Species Major Taxonomic Groups of Invasive 4 Exotic and Native Transplanted Species, And General Socio-Economic Impacts Caused By Their Invasion Non-Indigenous and Native Transplanted 7 Species by Geographic Region: Description of Tables Table 1. Invasive Aquatic Animals Located 10 In The Great Lakes Region Table 2. Invasive Marine and Estuarine 19 Aquatic Animals Located From Maine To Virginia Table 3. Invasive Marine and Estuarine 23 Aquatic Animals Located From North Carolina to Texas Table 4.
    [Show full text]
  • Comparative Anatomy of Internal Incubational Sacs in Cupuladriid Bryozoans and the Evolution of Brooding in Free-Living Cheilostomes
    JMOR-Cover 1 Spine_sample2.qxd 10/26/09 6:24 PM Page 1 Journal of Morphology Volume 270, Number 12, Month 2009 JOURNAL OF ISSN 0362-2525 Volume 270, Number 12, Month 2009 Volume Pages 1413–0000 Editor: J. Matthias Starck JOURNAL OF MORPHOLOGY 270:1413–1430 (2009) Comparative Anatomy of Internal Incubational Sacs in Cupuladriid Bryozoans and the Evolution of Brooding in Free-Living Cheilostomes Andrew N. Ostrovsky,1,2* Aaron O’Dea3 and Felix Rodrı´guez3 1Department of Invertebrate Zoology, Faculty of Biology and Soil Science, St. Petersburg State University, St. Petersburg 199034, Russia 2Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, Geozentrum, University of Vienna, Vienna A-1090, Austria 3Smithsonian Tropical Research Institute, Center for Tropical Paleoecology and Archeology, PO Box 2072, Balboa, Republic of Panama ABSTRACT Numerous gross morphological attributes Cretaceous (Taylor, 1988, 2000; Jablonski et al., are shared among unrelated free-living bryozoans 1997). The vast majority of living cheilostomes revealing convergent evolution associated with func- brood embryos in externally prominent protective tional demands of living on soft sediments. Here, we chambers with well-developed calcified walls show that the reproductive structures across free-living (hyperstomial ovicells), in which all or at least half groups evolved convergently. The most prominent con- vergent traits are the collective reduction of external of the brooding cavity is above the colony surface. brood chambers (ovicells) and the acquisition of internal Some taxa, however, incubate internally in the brooding. Anatomical studies of four species from the brooding cavity below the colony surface. In this cheilostome genera Cupuladria and Discoporella (Cupu- case, embryos develop in either 1) modified ovicells ladriidae) show that these species incubate their with a reduced ooecium (protective calcified fold of embryos in internal brooding sacs located in the coelom of the ovicell)—endozooidal (brooding cavity is placed the maternal nonpolymorphic autozooids.
    [Show full text]
  • List of Potential Aquatic Alien Species of the Iberian Peninsula (2020)
    Cane Toad (Rhinella marina). © Pavel Kirillov. CC BY-SA 2.0 LIST OF POTENTIAL AQUATIC ALIEN SPECIES OF THE IBERIAN PENINSULA (2020) Updated list of potential aquatic alien species with high risk of invasion in Iberian inland waters Authors Oliva-Paterna F.J., Ribeiro F., Miranda R., Anastácio P.M., García-Murillo P., Cobo F., Gallardo B., García-Berthou E., Boix D., Medina L., Morcillo F., Oscoz J., Guillén A., Aguiar F., Almeida D., Arias A., Ayres C., Banha F., Barca S., Biurrun I., Cabezas M.P., Calero S., Campos J.A., Capdevila-Argüelles L., Capinha C., Carapeto A., Casals F., Chainho P., Cirujano S., Clavero M., Cuesta J.A., Del Toro V., Encarnação J.P., Fernández-Delgado C., Franco J., García-Meseguer A.J., Guareschi S., Guerrero A., Hermoso V., Machordom A., Martelo J., Mellado-Díaz A., Moreno J.C., Oficialdegui F.J., Olivo del Amo R., Otero J.C., Perdices A., Pou-Rovira Q., Rodríguez-Merino A., Ros M., Sánchez-Gullón E., Sánchez M.I., Sánchez-Fernández D., Sánchez-González J.R., Soriano O., Teodósio M.A., Torralva M., Vieira-Lanero R., Zamora-López, A. & Zamora-Marín J.M. LIFE INVASAQUA – TECHNICAL REPORT LIFE INVASAQUA – TECHNICAL REPORT Senegal Tea Plant (Gymnocoronis spilanthoides) © John Tann. CC BY 2.0 5 LIST OF POTENTIAL AQUATIC ALIEN SPECIES OF THE IBERIAN PENINSULA (2020) Updated list of potential aquatic alien species with high risk of invasion in Iberian inland waters LIFE INVASAQUA - Aquatic Invasive Alien Species of Freshwater and Estuarine Systems: Awareness and Prevention in the Iberian Peninsula LIFE17 GIE/ES/000515 This publication is a technical report by the European project LIFE INVASAQUA (LIFE17 GIE/ES/000515).
    [Show full text]
  • Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science
    Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science Scientific Name: Watersipora subtorquata complex Phylum Bryozoa Common Name red-rust bryozoan Class Gymnolaemata Order Cheilostomatida Family Watersiporidae Z:\GAP\NPRB Marine Invasives\NPRB_DB\SppMaps\WATSUB.pn g 66 Final Rank 58.51 Data Deficiency: 16.25 Category Scores and Data Deficiencies Total Data Deficient Category Score Possible Points Distribution and Habitat: 20 26 3.75 Anthropogenic Influence: 3.25 10 0 Biological Characteristics: 19 25 5.00 Impacts: 6.75 23 7.50 Figure 1. Occurrence records for non-native species, and their geographic proximity to the Bering Sea. Ecoregions are based on the classification system by Spalding et al. (2007). Totals: 49.00 83.75 16.25 Occurrence record data source(s): NEMESIS and NAS databases. General Biological Information Tolerances and Thresholds Minimum Temperature (°C) 6.7 Minimum Salinity (ppt) 25 Maximum Temperature (°C) 30.6 Maximum Salinity (ppt) 40 Minimum Reproductive Temperature (°C) NA Minimum Reproductive Salinity (ppt) 31* Maximum Reproductive Temperature (°C) NA Maximum Reproductive Salinity (ppt) 35* Additional Notes Colonial bryozoan that is red or orange in color. Its native range is unknown. Watersipora subtorquata is a species complex that has not been taxonomically resolved. Reviewed by Linda McCann, Research Technician, Smithsonian Environmental Research Center, Tiburon, CA Review Date: 12/15/2017 Report updated on Tuesday, December 19, 2017 Page 1 of 12 1. Distribution and Habitat 1.1 Survival requirements - Water temperature Choice: No overlap – Temperatures required for survival do not exist in the Bering Sea Score: D 0 of 3.75 Ranking Rationale: Background Information: Year-round temperature requirements do not exist in the Bering Sea.
    [Show full text]
  • Transoceanic Rafting of Bryozoa (Cyclostomata, Cheilostomata, and Ctenostomata) Across the North Pacific Ocean on Japanese Tsunami Marine Debris
    Aquatic Invasions (2018) Volume 13, Issue 1: 137–162 DOI: https://doi.org/10.3391/ai.2018.13.1.11 © 2018 The Author(s). Journal compilation © 2018 REABIC Special Issue: Transoceanic Dispersal of Marine Life from Japan to North America and the Hawaiian Islands as a Result of the Japanese Earthquake and Tsunami of 2011 Research Article Transoceanic rafting of Bryozoa (Cyclostomata, Cheilostomata, and Ctenostomata) across the North Pacific Ocean on Japanese tsunami marine debris Megan I. McCuller1,2,* and James T. Carlton1 1Williams College-Mystic Seaport Maritime Studies Program, Mystic, Connecticut 06355, USA 2Current address: Southern Maine Community College, South Portland, Maine 04106, USA Author e-mails: [email protected] (MIM), [email protected] (JTC) *Corresponding author Received: 3 April 2017 / Accepted: 31 October 2017 / Published online: 15 February 2018 Handling editor: Amy E. Fowler Co-Editors’ Note: This is one of the papers from the special issue of Aquatic Invasions on “Transoceanic Dispersal of Marine Life from Japan to North America and the Hawaiian Islands as a Result of the Japanese Earthquake and Tsunami of 2011." The special issue was supported by funding provided by the Ministry of the Environment (MOE) of the Government of Japan through the North Pacific Marine Science Organization (PICES). Abstract Forty-nine species of Western Pacific coastal bryozoans were found on 317 objects (originating from the Great East Japan Earthquake and Tsunami of 2011) that drifted across the North Pacific Ocean and landed in the Hawaiian Islands and North America. The most common species were Scruparia ambigua (d’Orbigny, 1841) and Callaetea sp.
    [Show full text]
  • A Broadly Resolved Molecular Phylogeny of New Zealand Cheilostome Bryozoans As a Framework for Hypotheses of Morphological Evolu
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.415943; this version posted December 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A broadly resolved molecular phylogeny of New Zealand cheilostome bryozoans as a framework for hypotheses of morphological evolution. RJS Orra*, E Di Martinoa, DP Gordonb, MH Ramsfjella, HL Melloc, AM Smithc & LH Liowa,d* aNatural History Museum, University of Oslo, Oslo, Norway bNational Institute of Water and Atmospheric Research, Wellington, New Zealand cDepartment of Marine Science, University of Otago, Dunedin, New Zealand dCentre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway *corresponding authors bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.415943; this version posted December 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Larger molecular phylogenies based on ever more genes are becoming commonplace with the advent of cheaper and more streamlined sequencing and bioinformatics pipelines. However, many groups of inconspicuous but no less evolutionarily or ecologically important marine invertebrates are still neglected in the quest for understanding species- and higher- level phylogenetic relationships. Here, we alleviate this issue by presenting the molecular sequences of 165 cheilostome bryozoan species from New Zealand waters.
    [Show full text]
  • Risk Assessment Guide: Introduction of Non-Indigenous Species Via Ballast Water
    Risk assessment guide: introduction of non-indigenous species via ballast water Contacts: Océane RIGNAULT & Damien CHEVALLIER Ministry of Ecology, Sustainable Development and Energy General Directorate of Infrastructures, Transport and the Sea Directorate of Maritime Affairs/Sub-directorate of maritime safety Phone: +33 (0)1 40 81 21 22 © Photo credit (cover): background photo: Blue-green algae at beach, Toxic algae bloom on Lake Erie in 2011 Tom Archer, handout The four small photos: Scanning electron microscope image of Vibrio cholerae bacteria, which infect the digestive system.Zeiss DSM 962 SEM ; Mnemiopsis leidyi (in the central Baltic Sea in January 2008), Jan-Erik Bruun, FIMR (Finnish Institute of Marine Research) ; Cyanobacteria, Josef Reischig / CC BY-SA 3.0 ; Lake-bottom-blanketing zebra mussel, Maria Antónia Sampayo. Acknowledgements to contributors: Perrine Prigent, Policy offi cer at the Directorate of Maritime Affairs, Laurent Guérin for the National Museum of Natural History, Daniel Masson for IFREMER, Frederic Quemmerais for the Agency for Marine Protected Areas, the Directorate of water and biodiversity, the Directorate of transport services. Ministèry of Ecology, Sustainable development and Energy General Directorate of Infrastructures, Transport and the Sea Directorate of Maritime Affairs Tour Séquoia - 92055 La Défense cedex Tél. : +33 (0)1 40 81 21 22 Layout-Design: SG/SPSSI/ATL2/Benoît Cudelou - Printing: SG/SPSSI/ATL2. Printed on paper certified European Ecolabel European certified paper on Printed SG/SPSSI/ATL2.
    [Show full text]