Femtosecond Laser Internal Manufacturing of Three Dimensional Micro-Structure Devices

Total Page:16

File Type:pdf, Size:1020Kb

Femtosecond Laser Internal Manufacturing of Three Dimensional Micro-Structure Devices Femtosecond laser internal manufacturing of three dimensional micro-structure devices Chong Zheng1,2, Anming Hu1,2,*,Tao Chen1,*, Ken D. Oakes3, Shibing Liu1 (1) Institute of Laser Engineering, Beijing University of Technology, 100 Pingle Yuan, Chaoyang District, Beijing 100124, P. R. China; (Fax:+86-10-67392514; Email: [email protected]; [email protected]) (2) Department of Mechanical, Aerospace and Biomedical Engineering, The University of Tennessee, Knoxville, Tennessee, TN 37920; (3) Verschuren Centre, Department of Biology, Cape Breton University, P. O. Box 5300, 1250 Grand Lake Rd., Sydney, B1P 6L2 Canada ABSTRACT: Potential applications for three-dimensional microstructure devices developed rapidly across numerous fields including micro-optics, microfluidics, micro-electromechanical systems (MEMS), and biomedical devices. Benefiting from many unique fabricating advantages, internal manufacturing methods have become the dominant process for three-dimensional microstructure device manufacturing. This paper provides a brief review of the most common techniques of femtosecond laser three-dimensional internal manufacturing (3DIM). The physical mechanisms and representative experimental results of 3D manufacturing technologies based on multiphoton polymerization, laser modification, micro-explosion and continuous hollow structure internal manufacturing (CHSIM) are provided in details. The important progress in emerging applications based on the 3DIM technologies are introduced as well. Key words: Femtosecond laser direct writing (FsLDW); Three-dimensional internal manufacturing (3DIM); Multiphoton polymerization; Laser modification; Micro-explosion; Continuous hollow structure internal manufacturing (CHSIM); 1. Introduction of Femtosecond Laser Three-Dimensional Internal Manufacturing (3DIM) Femtosecond (fs) laser micromachining was first demonstrated by Srinivasan [1] in 1987 when a femtosecond laser was employed to ablate polymethylmethacrylate (PMMA) without inducing thermal damage. From then on, femtosecond laser was gradually noticed as a powerful tool in micromachining due to its excellent performance in high machining quality and precision [2] , especially in solid materials ablation, i.e., ablate 2D structures on metals [3-5] , polymers [6,7] , and crystals [8,9] . Meanwhile, 2D photonic devices manufacturing [10,11] , surface engineering [12-15] and the formation of novel polyynes, 1D molecular carbon wire [16] , nanojoining [17,18] , and casting [19] based on femtosecond laser irradiation are also well developed and attracted many scientific interests. Apart from the aforementioned 2D manufacturing applications of which functional features are fabricated either directly on the surface of the materials, or fabricated according to in-plane machining pattern, femtosecond laser micromachining is unique 1 in its 3D micro- /nano- structuring ability attributing to the nonlinear nature of the multiphoton absorption [20-22] : (1) the structure changes can be confined to the focal volume as the intensity distribution for multiphoton absorption is spatially narrower than linear absorption, providing an ideal tool for 3D manufacturing with high spatial resolution; (2) the absorption of laser energy is independent with materials, ensuring its wide applications in various materials; and (3) no thermal effect occurs during femtosecond laser irradiation since the lattice heating time (~10 ps) is much longer than the pulse duration of femtosecond laser (<1 ps), thus femtosecond laser machining is more precise than the fabrication with the lasers with longer pulse durations. Benefit by these advantages, four types of 3D manufacturing technologies were well developed in the past 15 years based on femtosecond laser direct writing (FsLDW), including: (1) multiphoton polymerization[22-24] , (2) laser modification [25-27] , (3) micro-explosion [28-31] and (4) continuous hollow structure internal manufacturing (CHSIM) [32-37] . For the reason that all the 3D structures fabricated by the aforementioned techniques are essentially obtained inside different materials with certain laser conditions, a summarized name of all these technologies is given here as femtosecond laser three dimensional internal manufacturing (3DIM). These four types of 3DIM methods are classified by the typical structural change following femtosecond laser micromachining. Among them, multiphoton polymerization is a process whereby monomers are polymerized into solid state macromolecules by laser irradiation; it is an example of additive manufacturing [22] . In this process, photopolymerizable monomers are used as basic elements to fabricate macroscopic structures, analogous to building a house with bricks. While, laser modification denotes a process that only the optical [38] and/or chemical [39] properties change within the irradiated region, and no significant structural additions or losses occur during this process. In other words, only specific material properties are modified, without inducing remarkable microstructural changes. It should be noticed that the term “laser modification” is broadly used in many other scientific contexts whenever a laser beam is employed on a material to elicit either structural or optical/chemical/mechanical properties changes. It is a much broader usage of the term than is strictly used in this context of femtosecond 3DIM, since the formation of microvoids are sometimes also described as a result of “laser modification” [30] . Whereas, here in this review, microvoids are always manufactured by femtosecond-laser-radiation-induced micro-explosion or micro-dissociation when the laser power exceeds the threshold of optical damage [40] . Compared with multiphoton polymerization processes, microexplosion techniques can be considered as a “reductive manufacturing” process, during which single microvoid formed due to extremely high temperature or pressure caused by laser irradiation. Another reductive manufacturing technology in 3DIM is continuous hollow internal structure manufacturing (CHISM). As its literal meaning of the name, CHISM identifies the process of producing characteristic 3D continuous hollow structures directly inside a bulk material, either using liquid assisted femtosecond laser selective etching [41] or by laser direct-write fabrication [37] . It is different from the micro-explosion processing because the fabricated structures by CHISM method are either long hollow channels or large chambers fabricated by laser continuously 3D scanning, while microexplosions are only utilized to create dispersed microvoids array by fs laser single spot or parallel exposure. Besides, the methods underlying CHISM are considerably different from those utilized by microexplosions. Further unique attributes defining these four 3DIM methods, including relevant physical tools, procedures, and experiment setups, will be described in detail within subsequent sections of this review. 2 As there are already many review articles and pioneer works on femtosecond laser [42] , non-linear processes [8,43] , femtosecond laser ablation [44-46] , and surface micromachining [47] , we will only focus on femtosecond laser three dimensional internal manufacturing technologies in this review. Consequently, we examine the fabrication processes, experimental conditions and physical mechanisms of each 3DIM technology. In addition, the advanced applications and the most recent progresses of 3DIM technologies are also introduced in this review. 2. 3D Microstructure Device by Femtosecond Laser Processing Although 3DIM technologies are classified into four types due to the fabricated structures, it should be noted that there are only two typical physical processes for laser-material interaction, that is: light-induced polymerization (multiphoton polymerization) and optical breakdown (laser modification, laser microexplosion and CHISM). The differences between the technologies caused by optical breakdown are attributed to the different laser parameters and post-processing methods, but they share a similar physical procedure in laser-material interaction. Generally, laser-induced optical breakdown can be described by three major stages [21,48] : (i) Multi-photon ionization and/or tunneling ionization cause the excitation of the electrons to the conduction band; (ii) Sufficient seed electrons provided by multi-photon ionization and tunneling ionization initiate the avalanche ionization; (iii) High density free electron plasma absorbs laser energy by free-carrier absorption and then transfers the energy to the lattice leading to permanent structural changes in the material. Later in this article, the basic physical mechanisms underlying each technology will be distinguished in details. In light of the unique advantages of femtosecond laser 3D manufacturing as we talked above, microstructured device applications, especially with complicated 3D structures such as micro-sculptures [24,49] , micro-components [50-52] , micro-lens arrays [53,54] , waveguides [26,55] , gratings [56] , photonic crystals [29] , and microfluidic chips [57,58] are developing rapidly with diverse applications in recent years. The unique applications of each technology will be also provided in the later illustration. 2.1 Multiphoton polymerization Photopolymerization refers to the process by which small unsaturated molecules (monomer or oligomer units) such as unsaturated polyester (UPR) are converted from liquid to solid state macromolecules using light as an energy source driving polymerization
Recommended publications
  • Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical
    Eliminating Crystals in Non‐Oxide Optical Fiber Preforms and Optical Fibers Short Running Title Gravity and Magnetic Effects on Glass Author’s Names and Affiliations Dennis S. Tucker Michael R. LaPointe NASA NASA/ZP10 EM20 National Space Science and Technology Center MSFC, Alabama, USA, 35812 320 Sparkman Drive Telephone: 256‐544‐7022 Huntsville, Alabama 35805 FAX: 256‐961‐9604 Telephone: 256‐961‐7555 [email protected] [email protected] Abstract Non‐oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non‐oxide glasses utilizing a magnetic field will be detailed.
    [Show full text]
  • The American Ceramic Society 25Th International Congress On
    The American Ceramic Society 25th International Congress on Glass (ICG 2019) ABSTRACT BOOK June 9–14, 2019 Boston, Massachusetts USA Introduction This volume contains abstracts for over 900 presentations during the 2019 Conference on International Commission on Glass Meeting (ICG 2019) in Boston, Massachusetts. The abstracts are reproduced as submitted by authors, a format that provides for longer, more detailed descriptions of papers. The American Ceramic Society accepts no responsibility for the content or quality of the abstract content. Abstracts are arranged by day, then by symposium and session title. An Author Index appears at the back of this book. The Meeting Guide contains locations of sessions with times, titles and authors of papers, but not presentation abstracts. How to Use the Abstract Book Refer to the Table of Contents to determine page numbers on which specific session abstracts begin. At the beginning of each session are headings that list session title, location and session chair. Starting times for presentations and paper numbers precede each paper title. The Author Index lists each author and the page number on which their abstract can be found. Copyright © 2019 The American Ceramic Society (www.ceramics.org). All rights reserved. MEETING REGULATIONS The American Ceramic Society is a nonprofit scientific organization that facilitates whether in print, electronic or other media, including The American Ceramic Society’s the exchange of knowledge meetings and publication of papers for future reference. website. By participating in the conference, you grant The American Ceramic Society The Society owns and retains full right to control its publications and its meetings.
    [Show full text]
  • Fabrication of Porous Bioactive Glass-Ceramics Via Decomposition of Natural Fibres
    Journal of Metals, Materials and Minerals. Vol.18 No.2 pp.85-91, 2008 Fabrication of Porous Bioactive Glass-Ceramics via Decomposition of Natural Fibres Pat SOOKSAEN1*, Supakij SUTTIRUENGWONG1,2, Kunwadee ONIEM1, Khanamporn NGAMLAMIAD1 and Jitlada ATIREKLAPWARODOM1 1Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand 2Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Silpakorn University, Nakhon Pathom 73000, Thailand Received Sept. 22, 2008 Abstract Accepted Oct. 27, 2008 Porous bio glass-ceramics were prepared via natural fibres burning-out process. Glass-ceramics were fabricated by controlled crystallization of suitable glass compositions to give required crystalline phase/s. Porous structure was formed alongside during burning-out of natural fibres. Three glass batches were prepared in the SiO2-CaO-P2O5-K2O-Na2O-CaF2 glass system, then melted, quenched and milled to give fine glass powders. DTA thermograms for the three glass compositions showed crystallization temperatures between 720 and 760°C and Tg ranging between 508 and 645°C. Porous glass-ceramics were characterized for bulk density, phase evolution and microstructures. Different compositions resulted in different bulk densities and phases that crystallized out. Fluorapatite was found in all glass-ceramic samples, which indicated the biocompatibility and bioactivity and the potential future applications. Microstructures were also different from different
    [Show full text]
  • Teng-Cheong Ong Thesis
    This is the author’s version of a work that was submitted/accepted for pub- lication in the following source: Ong, Teng-Cheong (2018) Research of the suppression effects of cooling rate on crystallization in ZBLAN glass. PhD thesis, Queensland University of Technology. This file was downloaded from: https://eprints.qut.edu.au/116614/ Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source: https://doi.org/10.5204/thesis.eprints.116614 Research of the suppression effects of cooling rate on crystallization in ZBLAN glass Teng-Cheong Ong Bachelor of Engineering (Mechanical) (Hons) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Chemistry, Physics and Mechanical Engineering Science & Engineering Faculty Queensland University of Technology 2018 Abstract ZBLAN glass is a heavy metal fluoride glass that has great potential in the application of long- haul telecommunication cables. However, during processing in the fibre-drawing temperature region, the material tends to undergo heavy devitrification, resulting in a crystalline fibre that is not usable for such purposes. There are many papers exploring various processing techniques in the aims of creating a test sample that can transmit with the theoretical minimum attenuation loss predicted for ZBLAN. As ZBLAN glass is cooled from its melt, crystallites form throughout the medium, their size and structure dependent on the rate of cooling and degree of undercooling. These crystallites act as scattering centres that degrade a signal that is propagated through the glass.
    [Show full text]
  • V 08916 S.Pdf
    Annotation The objective of this thesis is to describe in details the process of bonding of ZERODUR mirrors on CNC holder, and the influence of the heating and cooling of the wax on the final shape of mirror. For bonding of the ZERODUR glass to the aluminum holder we have used red wax, and we have monitor the influence of this material to the final shape of our optic by measuring the surface shape before and after bonding by using the LuphoScan. Furthermore the consecutive process of bonding numerically is verified by using MSC Marc& MSC Mentat 2015. This work shows that for manufacturing of ultra-precise optics bonding of the ZERODUR glass to the ZERODUR disk gives better results, compared to aluminum disk. Keywords: visco- elastic, precision machining, grinding, polishing, heat transfer, experiments, FEM 6 Table of Contents Annotation........................................................................................................................................6 Table of Contents .............................................................................................................................7 List of Tables ...................................................................................................................................9 List of Figures ................................................................................................................................10 List of Symbols ..............................................................................................................................12
    [Show full text]
  • Properties and Applications of Porous Glasses from Foamed Glasses and Gel-Derived Glasses to Allophanes
    MATERIA CONDENSADA REVISTA MEXICANA DE FISICA´ S 52 (3) 190–194 MAYO 2006 Properties and applications of porous glasses from foamed glasses and gel-derived glasses to allophanes T. Woigniera;b;¤, Adil Hafidi Alaouib, Juan Primeraa;c, and Jean Phalippoua aLaboratoire des collo¨ıdes, verres et nanocomposite du CNRS, Montpellier, France bIRD -Pole de Recherche Agronomique de la Martinique, Le Lamentin, France cDepartamento de fisica, FEC, LUZ. Maracaibo, Venezuela Recibido el 24 de noviembre de 2003; aceptado el 12 de octubre de 2004 Porous glasses can be synthesised by different methods: in the conventional ways such as foaming (foamed glasses) or phase separation and leaching process leading to the Vycor glass, and also by the sol-gel method (sintered xerogel and aerogel), or by geological alteration process of volcanic materials (allophanes). In this paper we will discuss different features of these porous materials related to their properties, and their possible applications such as biomaterials (foamed glasses), host matrices for nuclear wastes (Vycor and sintered gels), precursors for special glasses (xerogels and aerogels), and mitigation of the greenhouse gases by carbon sequestration (allophanes). Keywords: Porous glasses, sol gel process, allophanes. Los vidrios porosos pueden sintetizarse por diferentes v´ıas: por las tradicionales, tales como el espumado (vidrios espumosos) o la separacion´ de fase seguida de lixiviacion,´ (con lo que se produce el vidrio Vycor), y tambien´ mediante otras de desarrollo mas´ reciente como el metodo´ sol-gel (geles) o de procesos de alteracion´ geologicas´ de materiales volcanicos´ (alofanos). En este art´ıculo discutimos diferentes caracter´ısticas de estos materiales porosos y la relacion´ de estas´ con sus propiedades y las posibles aplicaciones como biomateriales (vidrios espumosos), matrices de almacenamiento para desechos nucleares (Vycor y geles), precursores de vidrios especiales (xerogeles y aerogeles), y en la disminucion´ del efecto invernadero por secuestracion´ de carbon´ (alofanos).
    [Show full text]
  • Ultrafast-Laser-Inscribed 3D Integrated Photonics: Challenges and Emerging Applications
    Nanophotonics 2015; 4:332–352 Review Article Open Access S. Gross* and M. J. Withford Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications DOI 10.1515/nanoph-2015-0020 ing methods used to create photonic chips are relatively Received July 7, 2015; accepted July 30, 2015 immature, and the common approach is to adapt the pla- nar (2D) lithography methods originally developed for sil- Abstract: Since the discovery that tightly focused fem- icon microelectronics. Unfortunately, this is akin to push- tosecond laser pulses can induce a highly localised and ing a square peg into a round hole because photons, the permanent refractive index modification in a large num- elementary particle of light, have many degrees of free- ber of transparent dielectrics, the technique of ultrafast dom, in contrast to electrons which have few. For exam- laser inscription has received great attention from a wide ple, a stream of electrons can be characterised in terms range of applications. In particular, the capability to create of current and voltage. A stream of photons, on the other three-dimensional optical waveguide circuits has opened hand, can exhibit different traits based on velocity and up new opportunities for integrated photonics that would brightness, the optical equivalent to current and voltage as not have been possible with traditional planar fabrication well as wavelength, polarisation, spatial mode and orbital techniques because it enables full access to the many de- angular momentum. These additional features reflect the grees of freedom in a photon. This paper reviews the basic three dimensionality of light, features that cannot be fully techniques and technological challenges of 3D integrated exploited with planar circuitry.
    [Show full text]
  • Glass-Ceramic Foams from Alkali-Activated Vitrified Bottom Ash
    applied sciences Article Glass-Ceramic Foams from Alkali-Activated Vitrified Bottom Ash and Waste Glasses Miroslava Hujova 1,*, Patricia Rabelo Monich 2, Jaroslav Sedlacek 3,4, Miroslav Hnatko 3,4, Jozef Kraxner 1, Dusan Galusek 1,5 and Enrico Bernardo 2 1 FunGlass, Alexander Dubcek University of Trencin, 91101 Trencin, Slovakia; [email protected] (J.K.); [email protected] (D.G.) 2 Dipartmento di Ingegneria Industriale Università degli Studi di Padova, 35112 Padova, Italy; [email protected] (P.R.M.); [email protected] (E.B.) 3 Institute of Inorganic Chemistry, Slovak Academy of Sciences, 81438 Bratislava, Slovakia; [email protected] (J.S.); [email protected] (M.H.) 4 Centre of Excellence for Advanced Materials Application, Slovak Academy of Sciences, 81438 Bratislava, Slovakia 5 Joint Glass Centre of the IIC SAS, TnUAD, and FChFT STU, 91101 Trencin, Slovakia * Correspondence: [email protected] Received: 21 July 2020; Accepted: 11 August 2020; Published: 18 August 2020 Abstract: Both vitrified bottom ashes (VBAs) and waste glasses are forms of inorganic waste material that are widely landfilled, despite having some economic potential. Building on previous studies, we prepared glass-ceramic foams by the combination of VBA with either soda-lime glass (SLG) or borosilicate glass (BSG). Suspensions of fine powders in weakly alkaline solution underwent gelation, followed by frothing at nearly room temperature. Hardened “green” foams were sintered, with concurrent crystallization, at 850–1000 ◦C. All foams were highly porous (>70%), with mostly open porosity. The glass addition was fundamental in both gelation (promoting the formation of carbonate and silicate hydrated phases) and firing steps.
    [Show full text]
  • Porous Glass-Ceramics from Alkali Activation and Sinter-Crystallization of Mixtures of Waste Glass and Residues from Plasma Processing of Municipal Solid Waste
    Journal of Cleaner Production 188 (2018) 871e878 Contents lists available at ScienceDirect Journal of Cleaner Production journal homepage: www.elsevier.com/locate/jclepro Porous glass-ceramics from alkali activation and sinter-crystallization of mixtures of waste glass and residues from plasma processing of municipal solid waste * Patricia Rabelo Monich a, Acacio Rincon Romero a, Daniel Hollen€ b, Enrico Bernardo a, a Dipartimento di Ingegneria Industriale, Universita Degli Studi di Padova, Via Marzolo 9, 35131 Padova, Italy b Chair of Waste Processing Technology and Waste Management, Montanuniversitat€ Leoben, Franz-Josef-Str. 18, 8700 Leoben, Austria article info abstract Article history: Alkali-activated aqueous slurries of fine glass powders, mostly deriving from the plasma processing of Received 11 December 2017 municipal solid waste (‘Plasmastone’), were found to undergo progressive hardening at low temperature Received in revised form (75 C) owing to the formation of CeSeH (calcium silicate hydrate) gels. Before complete setting, slurries 27 February 2018 could be easily foamed by vigorous mechanical stirring, with the help of a surfactant; finally, the Accepted 16 March 2018 resulting open-celled structure could be ‘frozen’ by a subsequent sintering treatment, with crystallization Available online 6 April 2018 of CaeFe silicates. The densification of the struts upon firing was enhanced by mixing Plasmastone with up to 30 wt% recycled glasses and increasing the firing temperature from 800 to 1000 C. A total porosity Keywords: Alkali activation exceeding 75 vol%, comprising both well-interconnected macro- and micro-sized pores on cell walls, was Gel casting accompanied by good compressive strength, well above 1 MPa. The stabilization of pollutants generally Glass-ceramic foams increased with increasing firing temperature and glass content, with some exceptions; no practical Waste glasses leaching was observed from samples deriving from Plasmastone combined with 30 wt% boro-alumino- Upcycling silicate glass from the recycling of pharmaceutical vials.
    [Show full text]
  • Optical Model of Porous Glasses Using Genetic Algorithms
    Optik 124 (2013) 2093–2096 Contents lists available at SciVerse ScienceDirect Optik jou rnal homepage: www.elsevier.de/ijleo Optical model of porous glasses using genetic algorithms a,b a,∗ a a,b a,b a,b Ying Du , Hongbo He , Yunxia Jin , Fanyu Kong , Heyuan Guan , Zhenkun Yu a Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, No. 390 Qinghe Road, Jiading District, Shanghai 201800, China b Graduate School of Chinese Academy of Sciences, Beijing, China a r a t i b s c t l e i n f o r a c t Article history: Porous surfaces on glasses have been proved to be effective in suppressing light reflection due to the Received 1 February 2012 continuous variation in the refractive index with thickness. The porous structures were fabricated on Accepted 17 June 2012 BK7 glass by neutral-solution leaching process, and broadband transmittance was measured by a spec- trometer. An optical model was applied to determine gradient refractive index profiles of porous glasses using a genetic algorithm. Scanning electron microscopy (SEM) analysis of the nanostructure variants Keywords: will be shown, along with spectral transmittance that is matched to theoretical models. This model has Nanostructure fabrication potential applications in tracking optical properties according to the depth of nanostructures measured Gradient-index Antireflection by SEM, or obtaining gradient refractive index profiles of porous glasses by the measured transmittance. Therefore, it is useful to optimize experimental condition for special optical properties of porous glass. Subwavelength structures Genetic algorithm © 2012 Elsevier GmbH. All rights reserved.
    [Show full text]
  • Turbulent Heat Transfer and Pressure Drop
    ISSN 2176-5480 22nd International Congress of Mechanical Engineering (COBEM 2013) November 3-7, 2013, Ribeirão Preto, SP, Brazil Copyright © 2013 by ABCM ANALYSIS OF ZERODUR® MACHINABILITY USING SINGLE POINT DIAMOND TURNING José Antonio Otoboni Jaime Gilberto Duduch Renato Jasinevicius André da Motta Gonçalves Universidade de São Paulo, Escola de Engenharia de São Carlos, Departamento de Engenharia Mecânica - Av. Trabalhador Sancarlense, 400, 13566-590, São Carlos – SP – Brasil [email protected] [email protected] [email protected] [email protected] Juliana Keiko Sagawa Universidade Federal de São Carlos – UFSCar, Departamento de Engenharia de Produção – Rodovia Washington Luiz, km 235 - SP 310, 13565-905, São Carlos – SP – Brasil. [email protected] Laercio Javarez Junior UTFPR Universidade Tecnológica Federal do Paraná - Campus Ponta Grossa - Av. Sete de Setembro, 3165, 80230-901, Curitiba – PR – Brasil. [email protected] Abstract. Some mirrors used in satellite cameras must present a high surface quality. They are usually made of ZERODUR®, a brittle glass ceramic, by means of abrasive processes. It was observed that the surface quality of the material deteriorates some time after the machining, thus requiring rework. The most influential cause of this phenomenon is the crack growth due to stress corrosion. These cracks are generated by the conventional machining processes of lapping and polishing. This paper presents a analysis on the machinability of ZERODUR® using ultraprecision turning with single-point diamond tool as an alternative to these traditional methods. ZERODUR® samples were subjected to indentation and scribing tests in order to study the ductile-brittle transition and material removal mechanisms.
    [Show full text]
  • Fabrication of Ceramic Floor Tiles from Industrial Wastes
    Suranaree J. Sci. Technol. Vol. 21 No. 2; April - June 2014 65 FABRICATION OF CERAMIC FLOOR TILES FROM INDUSTRIAL WASTES Nuttawat Kummoonin1, Manat Jaimasith2, and Worapong Thiemsorn1* Received: August 22, 2012; Revised: July16, 2013, Accepted: August13, 2013 Abstract The present study focuses on the recycling of red mud waste (RM) from zinc hydrometallurgy, furnace slag (FS), and recycled cullet (RC) for manufacturing vitrified floor tile products. Incorporation was attempted aiming at designing new formulations intended to be less costly and possessing low water absorption and high flexural strength. The floor tiles containing RM 60-70 wt%, FS 10-20 wt%, and RC 10-20 wt% were uniaxially pressed. The green tiles were vitrified at 900-1050oC in an oxidizing atmosphere in a gas furnace with a firing rate of 5oC/min for 30 min. The fabricated floor tiles were tested for linear shrinkage, water absorption, apparent density, and flexural strength. The chemical and mineralogical analyses by X-ray fluorescence and X-ray diffraction (XRF and XRD) were also investigated. Microstructural evolution was carried out by scanning electron microscopy (SEM). The floor tiles fired at 1050oC showed linear shrinkage at 11 + 0.45% approximately, a density of 2.4 + 0.09 g/cm3, and low water absorption at 2.6 + 0.36%. The flexural strength was achieved at 26.31 + 0.46 MPa due to the formation of needle-like crystals of mullite, wollastonite, and the flake crystals of anorthite. The dominant compositions were SiO2, Al2O3, CaO, Fe2O3, Na2O, and ZnO. The results indicated that all the industrial wastes (RM, FS, and RC) could be used for floor tile production.
    [Show full text]