Porous Glass-Ceramics from Alkali Activation and Sinter-Crystallization of Mixtures of Waste Glass and Residues from Plasma Processing of Municipal Solid Waste

Total Page:16

File Type:pdf, Size:1020Kb

Porous Glass-Ceramics from Alkali Activation and Sinter-Crystallization of Mixtures of Waste Glass and Residues from Plasma Processing of Municipal Solid Waste Journal of Cleaner Production 188 (2018) 871e878 Contents lists available at ScienceDirect Journal of Cleaner Production journal homepage: www.elsevier.com/locate/jclepro Porous glass-ceramics from alkali activation and sinter-crystallization of mixtures of waste glass and residues from plasma processing of municipal solid waste * Patricia Rabelo Monich a, Acacio Rincon Romero a, Daniel Hollen€ b, Enrico Bernardo a, a Dipartimento di Ingegneria Industriale, Universita Degli Studi di Padova, Via Marzolo 9, 35131 Padova, Italy b Chair of Waste Processing Technology and Waste Management, Montanuniversitat€ Leoben, Franz-Josef-Str. 18, 8700 Leoben, Austria article info abstract Article history: Alkali-activated aqueous slurries of fine glass powders, mostly deriving from the plasma processing of Received 11 December 2017 municipal solid waste (‘Plasmastone’), were found to undergo progressive hardening at low temperature Received in revised form (75 C) owing to the formation of CeSeH (calcium silicate hydrate) gels. Before complete setting, slurries 27 February 2018 could be easily foamed by vigorous mechanical stirring, with the help of a surfactant; finally, the Accepted 16 March 2018 resulting open-celled structure could be ‘frozen’ by a subsequent sintering treatment, with crystallization Available online 6 April 2018 of CaeFe silicates. The densification of the struts upon firing was enhanced by mixing Plasmastone with up to 30 wt% recycled glasses and increasing the firing temperature from 800 to 1000 C. A total porosity Keywords: Alkali activation exceeding 75 vol%, comprising both well-interconnected macro- and micro-sized pores on cell walls, was Gel casting accompanied by good compressive strength, well above 1 MPa. The stabilization of pollutants generally Glass-ceramic foams increased with increasing firing temperature and glass content, with some exceptions; no practical Waste glasses leaching was observed from samples deriving from Plasmastone combined with 30 wt% boro-alumino- Upcycling silicate glass from the recycling of pharmaceutical vials. © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction the firing atmosphere could not reach C-containing foaming agents, so that further additives (‘oxidizers’, such as MnO2 and CaSO4)are Glass foams represent a very interesting class of materials due to needed for optimizing the gas release. In addition, in the case of high surface area and permeability, low density and specific heat, glass-ceramic foams, the situation is even more delicate, since glass high thermal and acoustic insulation and high chemical resistance. sintering and gas evolution must be combined with crystallization In addition, unlike polymeric foams, glass foams are non- (Rincon et al., 2016). flammable and flame resistant, chemically inert and not toxic In an effort to reduce the costs of glass foams processing, a new (Rincon et al., 2016). Therefore, cellular glass materials have the technique was developed by Rincon et al. (2017). The distinctive potential to replace polymeric foams as building insulation mate- character of the new technique is the separation between foaming rials, thus aiding in minimizing damages in case of fire. and sintering. The approach, applied to soda-lime glass, combined Compared to polymer foams, glass foams are currently far more alkali activation and firing. More specifically, suspensions of fine expensive, owing to the specific processing. The most established glass powders in alkaline aqueous solutions exhibited a marked method consists of the mixing of glass powders with a foaming pseudoplasticity, according to partial dissolution of glass and gel- agent, followed by firing. During the heat treatment, glass powders ification of the corrosion products. Air bubbles, incorporated by soften and form a ‘pyroplastic’ mass, foamed as an effect of gas intensive mechanical stirring (with the help of surfactants), at high evolution from the additive, in turn depending on decomposition shear rates and low viscosity, remained ‘frozen’ when stirring or oxidation reactions. The control of viscous flow sintering and stopped, at low shear rate and high viscosity, configuring an foaming phenomena is quite delicate: as an example, oxygen from ‘inorganic gel casting’. A cellular structure was thus available at low temperature, in samples in ‘green’ state. Firing treatments were applied after a drying step, at only 700 C, instead of 850e1000 C * Corresponding author. (necessary for the usual foaming reactions to occur), used for E-mail address: [email protected] (E. Bernardo). conventional glass foams. https://doi.org/10.1016/j.jclepro.2018.03.167 0959-6526/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 872 P.R. Monich et al. / Journal of Cleaner Production 188 (2018) 871e878 The low temperature foaming, after alkali activation, was glasses, such as soda-lime glass and boro-alumino-silicate glass conceptually close to that of geopolymer foams (Strozi Cilla et al., from disposed pharmaceutical vials, is discussed as a fundamental 2014). However, it must be noted that the activation was much tool for improving the sintering and the chemical stability of the weaker and the nature of the developed gels was completely developed foams. different. While in true geopolymers the hardening is associated to the formation of a three-dimensional network structure, from the 2. Experimental procedure polymerization of smaller units (in turn provided by the complete dissolution of alumino-silicate raw materials), glass suspensions Plasmastone (PS) was gently provided by Scanarc (Sweden) were stabilized by the formation and interlocking of calcium sili- (Scanarc, 2017). The chemical composition of this residue (deter- e e cate hydrates (C S H) at the surface of powders (Cyr et al., 2012; mined by X-Ray fluorescence) is reported in Table 1. Received in Garcia-Lodeiro et al., 2016; Rincon et al., 2017). form of granules with a mean particle size of 10 m, it was ground e e C S H are well known products of alkaline attack, in general, of into fine powders, below 75 mm, by dry ball milling. Soda-lime glass any CaO-rich silicate glass. As a consequence, the successful (SLG) powders (medium particle size equal to 30 mm) were gently e extension of the approach, from soda-lime glass, to Ca Mg silicate provided by SASIL SpA (Brusnengo, Biella, Italy), as the fraction bioglass, was not surprising (Elsayed et al., 2017). Interestingly, the obtained from glass cullet after colour selection and removal of open-celled structure available after low temperature foaming, in metallic and polymeric residues (essentially not employed due to e this case, was maintained with the precipitation of Ca and Ca Mg the presence of ceramic contaminations) (Rincon et al., 2017). Boro- fi silicate crystals (wollastonite and diopside), impeding signi cant alumino-silicate glass (BSG), from disposed pharmaceutical vials, fl fi viscous ow upon ring. was finally provided by Nuova OMPI (Piombino Dese, Padova, Italy); The present paper aims at further extending the approach to received in form of coarse fragments, it was ground into powders inorganic residues from municipal solid waste (MSW). Plasma below 45 mm, again by ball milling. The composition of the two heating has distinctive advantages in resource recovery from waste, recycled glasses is also reported in Table 1 (Ponsot et al., 2014). fi since it provides both gasi cation of organics, by pyrolysis, and Differential thermal analysis (DTA/TGA, STA409, Netzsch metal separation upon melting (owing to reducing conditions) Geratebau€ GmbH), with heating rate of 10 C/min) was done on (Scanarc, 2017). This approach is not attractive only with respect to Plasmastone, in form of coarse fragments as well as of fine powders the treatment of fresh MSW, but also with respect to the treatment of Plasmastone in order to determine the chemical reactions and of excavated MSW, which has been disposed of during the last physical changes which would occur during a sintering process. “ fi ” decades ( Land ll Mining , LFM). Material recovery from LFM is Plasmastone and soda-lime glass (quantities of 0e30 wt%) e limited to metals which are present only in amounts of 3 5 wt% powders were cast in an alkaline activating solution of 2.5 M NaOH/ (Krook et al., 2012; Wolfsberger et al., 2015b). Consequently, energy KOH (ratio 1:1), for an overall solid loading of 68 wt%, under me- recovery is the key technology in LFM projects. However, co- chanical stirring at 400 rpm. After 3 h of alkaline activation, the incineration in cement kilns is limited by high concentrations of suspension was poured in a closed polystyrene mould (60 mm heavy metals (Wolfsberger et al., 2015a). diameter) and cured at 75 C to undergo gelification (4 h for foams Incineration using grate furnace technology represents the state with only Plasmastone, and 3 h for foams from SLG-containing of the art for energy recovery of MSW and fractions thereof, which mixtures). Partially gelified suspension were added to 4 wt% fi do not ful l the requirements for co-incineration. However, this Triton X-100 (polyoxyethylene octyl phenyl ether e yields to the formation of large amounts of bottom ashes, which are C H O(C H O) ,n¼ 9e10, Sigma-Aldrich, Gillingham, UK) sur- fi 14 22 2 4 n even higher for land lled MSW than for fresh MSW, considering factant and then subjected to intensive mechanical stirring at the degradation of organics and the relative enrichment of the 2000 rpm. The resulting ‘green’ foams were then dried at 40 C, for fi fi mineral fraction in the land ll. Re-land lling of bottom ashes, due 48 h, before being demoulded. Finally, a sintering treatment was to the high total and leachable contents of heavy metals, is rec- applied to stabilize the foams at 800e1000 C, using a heating rate ommended (e.g.
Recommended publications
  • Fabrication of Porous Bioactive Glass-Ceramics Via Decomposition of Natural Fibres
    Journal of Metals, Materials and Minerals. Vol.18 No.2 pp.85-91, 2008 Fabrication of Porous Bioactive Glass-Ceramics via Decomposition of Natural Fibres Pat SOOKSAEN1*, Supakij SUTTIRUENGWONG1,2, Kunwadee ONIEM1, Khanamporn NGAMLAMIAD1 and Jitlada ATIREKLAPWARODOM1 1Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand 2Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Silpakorn University, Nakhon Pathom 73000, Thailand Received Sept. 22, 2008 Abstract Accepted Oct. 27, 2008 Porous bio glass-ceramics were prepared via natural fibres burning-out process. Glass-ceramics were fabricated by controlled crystallization of suitable glass compositions to give required crystalline phase/s. Porous structure was formed alongside during burning-out of natural fibres. Three glass batches were prepared in the SiO2-CaO-P2O5-K2O-Na2O-CaF2 glass system, then melted, quenched and milled to give fine glass powders. DTA thermograms for the three glass compositions showed crystallization temperatures between 720 and 760°C and Tg ranging between 508 and 645°C. Porous glass-ceramics were characterized for bulk density, phase evolution and microstructures. Different compositions resulted in different bulk densities and phases that crystallized out. Fluorapatite was found in all glass-ceramic samples, which indicated the biocompatibility and bioactivity and the potential future applications. Microstructures were also different from different
    [Show full text]
  • V 08916 S.Pdf
    Annotation The objective of this thesis is to describe in details the process of bonding of ZERODUR mirrors on CNC holder, and the influence of the heating and cooling of the wax on the final shape of mirror. For bonding of the ZERODUR glass to the aluminum holder we have used red wax, and we have monitor the influence of this material to the final shape of our optic by measuring the surface shape before and after bonding by using the LuphoScan. Furthermore the consecutive process of bonding numerically is verified by using MSC Marc& MSC Mentat 2015. This work shows that for manufacturing of ultra-precise optics bonding of the ZERODUR glass to the ZERODUR disk gives better results, compared to aluminum disk. Keywords: visco- elastic, precision machining, grinding, polishing, heat transfer, experiments, FEM 6 Table of Contents Annotation........................................................................................................................................6 Table of Contents .............................................................................................................................7 List of Tables ...................................................................................................................................9 List of Figures ................................................................................................................................10 List of Symbols ..............................................................................................................................12
    [Show full text]
  • Properties and Applications of Porous Glasses from Foamed Glasses and Gel-Derived Glasses to Allophanes
    MATERIA CONDENSADA REVISTA MEXICANA DE FISICA´ S 52 (3) 190–194 MAYO 2006 Properties and applications of porous glasses from foamed glasses and gel-derived glasses to allophanes T. Woigniera;b;¤, Adil Hafidi Alaouib, Juan Primeraa;c, and Jean Phalippoua aLaboratoire des collo¨ıdes, verres et nanocomposite du CNRS, Montpellier, France bIRD -Pole de Recherche Agronomique de la Martinique, Le Lamentin, France cDepartamento de fisica, FEC, LUZ. Maracaibo, Venezuela Recibido el 24 de noviembre de 2003; aceptado el 12 de octubre de 2004 Porous glasses can be synthesised by different methods: in the conventional ways such as foaming (foamed glasses) or phase separation and leaching process leading to the Vycor glass, and also by the sol-gel method (sintered xerogel and aerogel), or by geological alteration process of volcanic materials (allophanes). In this paper we will discuss different features of these porous materials related to their properties, and their possible applications such as biomaterials (foamed glasses), host matrices for nuclear wastes (Vycor and sintered gels), precursors for special glasses (xerogels and aerogels), and mitigation of the greenhouse gases by carbon sequestration (allophanes). Keywords: Porous glasses, sol gel process, allophanes. Los vidrios porosos pueden sintetizarse por diferentes v´ıas: por las tradicionales, tales como el espumado (vidrios espumosos) o la separacion´ de fase seguida de lixiviacion,´ (con lo que se produce el vidrio Vycor), y tambien´ mediante otras de desarrollo mas´ reciente como el metodo´ sol-gel (geles) o de procesos de alteracion´ geologicas´ de materiales volcanicos´ (alofanos). En este art´ıculo discutimos diferentes caracter´ısticas de estos materiales porosos y la relacion´ de estas´ con sus propiedades y las posibles aplicaciones como biomateriales (vidrios espumosos), matrices de almacenamiento para desechos nucleares (Vycor y geles), precursores de vidrios especiales (xerogeles y aerogeles), y en la disminucion´ del efecto invernadero por secuestracion´ de carbon´ (alofanos).
    [Show full text]
  • Glass-Ceramic Foams from Alkali-Activated Vitrified Bottom Ash
    applied sciences Article Glass-Ceramic Foams from Alkali-Activated Vitrified Bottom Ash and Waste Glasses Miroslava Hujova 1,*, Patricia Rabelo Monich 2, Jaroslav Sedlacek 3,4, Miroslav Hnatko 3,4, Jozef Kraxner 1, Dusan Galusek 1,5 and Enrico Bernardo 2 1 FunGlass, Alexander Dubcek University of Trencin, 91101 Trencin, Slovakia; [email protected] (J.K.); [email protected] (D.G.) 2 Dipartmento di Ingegneria Industriale Università degli Studi di Padova, 35112 Padova, Italy; [email protected] (P.R.M.); [email protected] (E.B.) 3 Institute of Inorganic Chemistry, Slovak Academy of Sciences, 81438 Bratislava, Slovakia; [email protected] (J.S.); [email protected] (M.H.) 4 Centre of Excellence for Advanced Materials Application, Slovak Academy of Sciences, 81438 Bratislava, Slovakia 5 Joint Glass Centre of the IIC SAS, TnUAD, and FChFT STU, 91101 Trencin, Slovakia * Correspondence: [email protected] Received: 21 July 2020; Accepted: 11 August 2020; Published: 18 August 2020 Abstract: Both vitrified bottom ashes (VBAs) and waste glasses are forms of inorganic waste material that are widely landfilled, despite having some economic potential. Building on previous studies, we prepared glass-ceramic foams by the combination of VBA with either soda-lime glass (SLG) or borosilicate glass (BSG). Suspensions of fine powders in weakly alkaline solution underwent gelation, followed by frothing at nearly room temperature. Hardened “green” foams were sintered, with concurrent crystallization, at 850–1000 ◦C. All foams were highly porous (>70%), with mostly open porosity. The glass addition was fundamental in both gelation (promoting the formation of carbonate and silicate hydrated phases) and firing steps.
    [Show full text]
  • Optical Model of Porous Glasses Using Genetic Algorithms
    Optik 124 (2013) 2093–2096 Contents lists available at SciVerse ScienceDirect Optik jou rnal homepage: www.elsevier.de/ijleo Optical model of porous glasses using genetic algorithms a,b a,∗ a a,b a,b a,b Ying Du , Hongbo He , Yunxia Jin , Fanyu Kong , Heyuan Guan , Zhenkun Yu a Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, No. 390 Qinghe Road, Jiading District, Shanghai 201800, China b Graduate School of Chinese Academy of Sciences, Beijing, China a r a t i b s c t l e i n f o r a c t Article history: Porous surfaces on glasses have been proved to be effective in suppressing light reflection due to the Received 1 February 2012 continuous variation in the refractive index with thickness. The porous structures were fabricated on Accepted 17 June 2012 BK7 glass by neutral-solution leaching process, and broadband transmittance was measured by a spec- trometer. An optical model was applied to determine gradient refractive index profiles of porous glasses using a genetic algorithm. Scanning electron microscopy (SEM) analysis of the nanostructure variants Keywords: will be shown, along with spectral transmittance that is matched to theoretical models. This model has Nanostructure fabrication potential applications in tracking optical properties according to the depth of nanostructures measured Gradient-index Antireflection by SEM, or obtaining gradient refractive index profiles of porous glasses by the measured transmittance. Therefore, it is useful to optimize experimental condition for special optical properties of porous glass. Subwavelength structures Genetic algorithm © 2012 Elsevier GmbH. All rights reserved.
    [Show full text]
  • Turbulent Heat Transfer and Pressure Drop
    ISSN 2176-5480 22nd International Congress of Mechanical Engineering (COBEM 2013) November 3-7, 2013, Ribeirão Preto, SP, Brazil Copyright © 2013 by ABCM ANALYSIS OF ZERODUR® MACHINABILITY USING SINGLE POINT DIAMOND TURNING José Antonio Otoboni Jaime Gilberto Duduch Renato Jasinevicius André da Motta Gonçalves Universidade de São Paulo, Escola de Engenharia de São Carlos, Departamento de Engenharia Mecânica - Av. Trabalhador Sancarlense, 400, 13566-590, São Carlos – SP – Brasil [email protected] [email protected] [email protected] [email protected] Juliana Keiko Sagawa Universidade Federal de São Carlos – UFSCar, Departamento de Engenharia de Produção – Rodovia Washington Luiz, km 235 - SP 310, 13565-905, São Carlos – SP – Brasil. [email protected] Laercio Javarez Junior UTFPR Universidade Tecnológica Federal do Paraná - Campus Ponta Grossa - Av. Sete de Setembro, 3165, 80230-901, Curitiba – PR – Brasil. [email protected] Abstract. Some mirrors used in satellite cameras must present a high surface quality. They are usually made of ZERODUR®, a brittle glass ceramic, by means of abrasive processes. It was observed that the surface quality of the material deteriorates some time after the machining, thus requiring rework. The most influential cause of this phenomenon is the crack growth due to stress corrosion. These cracks are generated by the conventional machining processes of lapping and polishing. This paper presents a analysis on the machinability of ZERODUR® using ultraprecision turning with single-point diamond tool as an alternative to these traditional methods. ZERODUR® samples were subjected to indentation and scribing tests in order to study the ductile-brittle transition and material removal mechanisms.
    [Show full text]
  • Fabrication of Ceramic Floor Tiles from Industrial Wastes
    Suranaree J. Sci. Technol. Vol. 21 No. 2; April - June 2014 65 FABRICATION OF CERAMIC FLOOR TILES FROM INDUSTRIAL WASTES Nuttawat Kummoonin1, Manat Jaimasith2, and Worapong Thiemsorn1* Received: August 22, 2012; Revised: July16, 2013, Accepted: August13, 2013 Abstract The present study focuses on the recycling of red mud waste (RM) from zinc hydrometallurgy, furnace slag (FS), and recycled cullet (RC) for manufacturing vitrified floor tile products. Incorporation was attempted aiming at designing new formulations intended to be less costly and possessing low water absorption and high flexural strength. The floor tiles containing RM 60-70 wt%, FS 10-20 wt%, and RC 10-20 wt% were uniaxially pressed. The green tiles were vitrified at 900-1050oC in an oxidizing atmosphere in a gas furnace with a firing rate of 5oC/min for 30 min. The fabricated floor tiles were tested for linear shrinkage, water absorption, apparent density, and flexural strength. The chemical and mineralogical analyses by X-ray fluorescence and X-ray diffraction (XRF and XRD) were also investigated. Microstructural evolution was carried out by scanning electron microscopy (SEM). The floor tiles fired at 1050oC showed linear shrinkage at 11 + 0.45% approximately, a density of 2.4 + 0.09 g/cm3, and low water absorption at 2.6 + 0.36%. The flexural strength was achieved at 26.31 + 0.46 MPa due to the formation of needle-like crystals of mullite, wollastonite, and the flake crystals of anorthite. The dominant compositions were SiO2, Al2O3, CaO, Fe2O3, Na2O, and ZnO. The results indicated that all the industrial wastes (RM, FS, and RC) could be used for floor tile production.
    [Show full text]
  • Design and Development of Mesoporous Glass- Based Biomaterials for Bone Tissue Engineering and Drug Release Systems
    Design and development of mesoporous glass- based biomaterials for bone tissue engineering and drug release systems Konzeption und Entwicklung von Biomaterialien auf Basis von mesoporösem Glas zum Einsatz im Bereich des Tissue Engineerings von Knochen mit integrierter Wirkstofffreisetzung Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen Nürnberg zur Erlangung des Grades DOKTOR-INGENIEUR vorgelegt von Anahí Philippart aus Caracas Als Dissertation genehmigt von der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 06.07.2016 Vorsitzende/r des Promotionsorgans: Prof. Dr. Peter Greil Gutachter: Prof. Dr. Aldo R. Boccaccini Prof. Dr. María Vallet-Regí ii « Savoir, penser, rêver. Tout est là.» Océan prose, Victor Hugo A mis padres y a mi hermana por siempre darme tanto amor. iii Acknowledgments This research project was carried out within the framework of the EU ITN FP-7 project “GlaCERCo”. I would like to acknowledge its financial support. First and foremost I would like to thank Prof. Dr.-Ing. habil. Aldo R. Boccaccini, supervisor and head of the Biomaterials Institute for having given me this opportunity of being part of his research group and giving me the trust to develop my topic following my instincts. Another important thank you goes to the coordinators from the GlaCERCo project, consortium in which I was able to take part during almost my entire PhD. Thank you Monica Ferraris, Milena Salvo and Cristiana Contardi for all you have put together, this experience has been very important for me, allowing me to grow professionally and personally in a unique way. Members from the university of Erlangen-Nürnberg my special thanks to Dr.
    [Show full text]
  • Redalyc.Properties and Applications of Porous Glasses from Foamed Glasses and Gel-Derived Glasses to Allophanes
    Revista Mexicana de Física ISSN: 0035-001X [email protected] Sociedad Mexicana de Física A.C. México Woignier, T.; Hafidi Alaoui, Adil; Primera, Juan; Phalippou, Jean Properties and applications of porous glasses from foamed glasses and gel-derived glasses to allophanes Revista Mexicana de Física, vol. 52, núm. 3, mayo, 2006, pp. 190-194 Sociedad Mexicana de Física A.C. Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=57020393055 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative MATERIA CONDENSADA REVISTA MEXICANA DE FISICA´ S 52 (3) 190–194 MAYO 2006 Properties and applications of porous glasses from foamed glasses and gel-derived glasses to allophanes T. Woigniera;b;¤, Adil Hafidi Alaouib, Juan Primeraa;c, and Jean Phalippoua aLaboratoire des collo¨ıdes, verres et nanocomposite du CNRS, Montpellier, France bIRD -Pole de Recherche Agronomique de la Martinique, Le Lamentin, France cDepartamento de fisica, FEC, LUZ. Maracaibo, Venezuela Recibido el 24 de noviembre de 2003; aceptado el 12 de octubre de 2004 Porous glasses can be synthesised by different methods: in the conventional ways such as foaming (foamed glasses) or phase separation and leaching process leading to the Vycor glass, and also by the sol-gel method (sintered xerogel and aerogel), or by geological alteration process of volcanic materials (allophanes). In this paper we will discuss different features of these porous materials related to their properties, and their possible applications such as biomaterials (foamed glasses), host matrices for nuclear wastes (Vycor and sintered gels), precursors for special glasses (xerogels and aerogels), and mitigation of the greenhouse gases by carbon sequestration (allophanes).
    [Show full text]
  • A Bright Future for Glass-Ceramics
    A bright future for glass-ceramics From their glorious past, starting with their accidental discovery, to successful commercial products, the impressive range of properties and exciting potential applications of glass-ceramics indeed ensure a bright future! by Edgar Dutra Zanotto lass-ceramics were discovered – somewhat accidently G – in 1953. Since then, many exciting papers have been published and patents granted related to glass-ceram- ics by research institutes, universities and companies worldwide. Glass-ceramics (also known as vitro- cerams, pyrocerams, vitrocerâmicos, vitroceramiques and sittals) are produced by controlled crystal- lization of certain glasses – generally induced by nucleating additives. This is in contrast with sponta- neous sur- face crys- tallization, which is normally not wanted in glass manufacturing. They always con- tain a residual glassy phase and one or more embedded crystalline phases. The crystallinity varies between 0.5 and 99.5 percent, most frequently between 30 and 70 percent. Controlled ceramization yields an (Credit: Schott North America.) array of materials with interesting, sometimes unusual, combinations of properties. American Ceramic Society Bulletin, Vol. 89, No. 8 19 A bright future for glass-ceramics Unlike sintered ceramics, glass- ceramics are inherently free from poros- ity. However, in some cases, bubbles or pores develop during the latter stages of crystallization. Glass-ceramics have, in principle, several advantages. • They can be mass produced by any glass-forming technique. • It is possible to design their nano- structure or microstructure for a given application. Fig. 1. Standing, from left to right, TC-7 members Ralf Muller, Guenter VoelKsch, Linda • They have zero or very low porosity.
    [Show full text]
  • Thick Transparent Nanoparticle-Based Mesoporous Silica Monolithic Slabs for Thermally Insulating Window Materials † ‡ ‡ † † † Michal Marszewski, Sophia C
    Article Cite This: ACS Appl. Nano Mater. 2019, 2, 4547−4555 www.acsanm.org Thick Transparent Nanoparticle-Based Mesoporous Silica Monolithic Slabs for Thermally Insulating Window Materials † ‡ ‡ † † † Michal Marszewski, Sophia C. King, Yan Yan, Tiphaine Galy, Man Li, Ali Dashti, § † § § § ∥ † Danielle M. Butts, Joon Sang Kang, Patricia E. McNeil, Esther Lan, Bruce Dunn, , Yongjie Hu, ‡ § ∥ † ∥ ⊥ Sarah H. Tolbert, , , and Laurent Pilon*, , , † ‡ § Mechanical and Aerospace Engineering Department, Department of Chemistry and Biochemistry, Department of Materials ∥ ⊥ Science and Engineering, California NanoSystems Institute, and Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, California 90095, United States *S Supporting Information ABSTRACT: This paper presents a novel template-free water-based sol−gel method to synthesize thick transparent and thermally insulating mesoporous silica monolithic slabs by gelation and drying of a colloidal suspension of silica nanoparticles under ambient conditions. For the first time, mesoporous silica slabs were synthesized on perfluorocarbon liquid substrates to reduce adhesion and enable the gels to shrink freely during aging and drying without incurring significant stress that could cause fracture. The free-standing nanoparticle-based mesoporous silica slabs were disks or squares, with thickness between 1 and 6 mm and porosity around 50%. The slabs had high transmittance and low haze in the visible spectrum due to small nanoparticles (6−12 nm) and pore size (<10 nm), narrow pore size distribution, and optically smooth surfaces (roughness <15 nm). The slabs’ effective thermal conductivity of 104−160 mW m−1 K−1 at room temperature was smaller than that of other mesoporous silicas with similar or even larger porosity reported in the literature.
    [Show full text]
  • Glass Processing Lecture #26
    Glass Processing Lecture #26. Porous Glass Himanshu Jain International Materials Institute for New Functionality in Glass Lehigh University, Bethlehem, PA, USA [email protected] Spring 2015 Lectures available at: www.lehigh.edu/imi Sponsored by US National Science Foundation (DMR-0844014) 1 IMI-NFG’s Glass Processing course, Spring 2015. Outline 1. Why porous glass? 2. What is porous glass? 3. Common applications 4. Fabrication methods Especially, phase separation 5.Recent progress Multi-porous glass for tissue engineering 2 IMI-NFG’s Glass Processing course, Spring 2015. Why porous glass? • Glass containers are superior to ceramic vessels due to the lack of porosity! • Glass-ceramic is better than glass or ceramic because of higher strength that results from lack of porosity – see lectures by Edgar Zanotto. • Glass manufacturers must work hard to eliminate pores – the fining process – see lectures by Mathieu Hubert Following Kelly (1988), consider pores as a second phase i.e. porous glass as a two-phase material. Then design or engineer the second phase for enhanced performance! A. Kelly, Phil. Trans. R. Soc. A (2006) 364, 5–14 3 IMI-NFG’s Glass Processing course, Spring 2015. What is porous? Nomenclature Porous material (broad term), foam, cellular solid, sponge (flexible foam) Key Parameters • Closed vs. interconnected pores • Constitutively (inherent) vs. subtractively (artificial) porous • Size and size-distribution • Volume fraction, Vp/Vtot. 15-75% for flitration, fluid flow control, self-lubricating bearings, battery electrodes 80-90% in foams for energy/sound/ absorption, T management, vibration dampening • Aspect ratio, alignment of pores IUPAC: Micropores <2nm. Mesopores 2-50 nm.
    [Show full text]