Human White Adipose Tissue Displays Selective Insulin Resistance in the Obese State

Total Page:16

File Type:pdf, Size:1020Kb

Human White Adipose Tissue Displays Selective Insulin Resistance in the Obese State 1486 Diabetes Volume 70, July 2021 Human White Adipose Tissue Displays Selective Insulin Resistance in the Obese State Enrichetta Mileti,1 Kelvin H.M. Kwok,1 Daniel P. Andersson,2 Anthony Mathelier,3,4 Amitha Raman,5 Jesper B€ackdahl,2 Jutta Jalkanen,2 Lucas Massier,2 Anders Thorell,6,7 Hui Gao,1 Peter Arner,2 Niklas Mejhert,2 Carsten O. Daub,1,5 and Mikael Ryden2 Diabetes 2021;70:1486–1497 | https://doi.org/10.2337/db21-0001 Selective hepatic insulin resistance is a feature of obesi- Excess white adipose tissue (WAT) mass is linked to a ty and type 2 diabetes. Whether similar mechanisms op- number of cardiometabolic complications, including insu- erate in white adipose tissue (WAT) of those with lin resistance, type 2 diabetes, and atherosclerotic vascu- obesity and to what extent these are normalized by lar diseases (1). While this likely depends on several weight loss are unknown. We determined insulin sensi- mechanisms, recent data from both animals and humans tivity by hyperinsulinemic euglycemic clamp and insulin suggest that reduced insulin sensitivity in adipocytes is an response in subcutaneous WAT by RNA sequencing in early event in the development of disturbed WAT func- 23 women with obesity before and 2 years after bariatric tion and whole-body insulin resistance (2,3). Insulin ex- surgery. To control for effects of surgery, women post- erts a complex action on its target cells by triggering surgery were matched to never-obese women. Multidi- several pathways controlling glucose and lipid homeosta- mensional analyses of 138 samples allowed us to sis (4), and the short-term effects in liver and skeletal classify the effects of insulin into three distinct expres- muscle have recently been reported in mice (5). Despite sion responses: a common set was present in all three this, it remains unclear to what degree and at what level groups and included genes encoding several lipid/cho- OBESITY STUDIES white adipocytes become insulin resistant in the obese lesterol biosynthesis enzymes; a set of obesity-attenu- (OB) state. ated genes linked to tissue remodeling and protein Bariatric surgery is the most efficient treatment to re- translation was selectively regulated in the two nonob- store insulin sensitivity, reduce type 2 diabetes risk (6), ese states; and several postobesity-enriched genes en- and normalize WAT function in individuals with obesity coding proteins involved in, for example, one-carbon metabolism were only responsive to insulin in the wom- (7). Given the large number of pathways regulated by in- en who had lost weight. Altogether, human WAT dis- sulin, identifying how pronounced weight loss normalizes plays a selective insulin response in the obese state, WAT insulin signaling at the cellular level requires global where most genes are normalized by weight loss. This analyses (e.g., [phospho]proteomics, metabolomics, or transcriptomics). Using an RNA sequencing technology comprehensive atlas provides insights into the tran- 0 scriptional effects of insulin in WAT and may identify tar- termed 5 cap analysis of gene expression (CAGE), we re- gets to improve insulin action. cently demonstrated that obesity is a major determinant 1Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Corresponding author: Carsten O. Daub, [email protected], and Mikael Sweden Ryden, [email protected]. 2 Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Received 19 February 2021 and accepted 14 April 2021 Stockholm, Sweden 3Centre for Molecular Medicine Norway, Nordic European Molecular Biology Clinical trial reg. no. NCT01727245, clinicaltrials.gov. Laboratory Partnership, University of Oslo, Oslo, Norway This article contains supplementary material online at https://doi.org/10.2337/ 4 Department of Medical Genetics, Institute of Clinical Medicine, University of figshare.14414495. Oslo and Oslo University Hospital, Oslo, Norway © 2021 by the American Diabetes Association. Readers may use this article 5Science for Life Laboratory, Stockholm, Sweden as long as the work is properly cited, the use is educational and not for 6Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, profit, and the work is not altered. More information is available at https:// Stockholm, Sweden www.diabetesjournals.org/content/license. 7Department of Surgery, Ersta Hospital, Stockholm, Sweden Diabetes Publish Ahead of Print, published online June 21, 2021 diabetes.diabetesjournals.org Mileti and Associates 1487 of the transcriptional response to insulin in human WAT infusion rate, hepatic glucose output is completely inhib- (8). ited, and the glucose infusion rate reflects peripheral (pri- The cross-sectional design of our previous (8) as well as marily skeletal muscle) glucose uptake (11,12). Plasma other studies (9) only provides interindividual compari- glucose values were measured in duplicate every fifth mi- sons and cannot provide insights into how insulin resis- nute (HemoCue, Angelholm,€ Sweden). Euglycemia was tance is normalized by weight loss. To this end, we maintained between 4.5 and 5.5 mmol/L (81 and 99 mg/ followed women with obesity 2 years after bariatric sur- dL) by a variable intravenous infusion of glucose (200 gery and performed new WAT biopsies and CAGE when mg/mL). The mean glucose infusion rate (glucose dispos- they had reached a nonobese state (herein termed postob- al) between 60 and 120 min was determined (M value; ese [PO]). Because all patients underwent Roux-en-Y mg of glucose uptake per kg body weight per minute) and gastric bypass surgery, a technique that may in itself in- was also expressed corrected for mean plasma insulin dur- fluence hormonal responses, we included additional nev- ing steady state. During the clamp, serum samples were er-obese (NO) control women who were matched for age, collected at À15, À5, 15, 45, 75, and 115 min and main- BMI, and whole-body insulin sensitivity with the PO indi- tained at À70C for subsequent analyses. Insulin was de- viduals. By comparing the OB, PO, and NO women, we termined at all time points, while FFA levels were were able to dissect to what extent the effect of insulin determined at À5 and 115 min. The antilipolytic effect of was influenced by obesity and whether it was partly or insulin was calculated as the quotient between FFA value fully restored by weight loss. at the end of the clamp (115 min) and the baseline value (À5 min). The average values of plasma glucose and insu- RESEARCH DESIGN AND METHODS lin at steady state during the clamp were 4.95 ± 0.13 Cohort Selection mmol/L and 210 ± 47 mU/L, respectively. Mean FFA level Participants were enrolled in a clinical trial studying out- was 0.64 ± 0.16 mmol/L before and 0.03 ± 0.03 mmol/L comes of Roux-en-Y gastric bypass surgery. Baseline data at the end of the clamp. The second WAT biopsy was ob- from part of the cohort have been reported (8). Given tained from the contralateral paraumbilical side during that pronounced weight loss and surgery themselves may the last 5 min of the clamp. As discussed (8), this time influence hormonal responses, we compared the insulin point was chosen because the glucose infusion rate has effect in the same women who had reached a nonobese reached a steady state, and it allows detection of direct state 2 years after bariatric surgery with that in age-, transcriptional responses rather than the secondary ef- BMI-, and M value–matched NO women. Because the pri- fects induced by insulin signaling (e.g., changes in tran- mary outcome measure was the transcriptomic response scription factor [TF] expression) that may influence the to insulin, it was important to obtain balanced group sizes results. The study was approved by the regional ethics to avoid statistical power issues that could influence data board. Informed written consent was obtained from all interpretation. We therefore recruited 23 healthy NO participants before enrollment. women who were matched to PO individuals, resulting in 0 a balanced cohort of 23 OB women, 23 PO women, and 5 CAGE Profiling and Data Processing 23 NO controls. Gene transcripts were analyzed by high-throughput se- 0 Clinical investigations were performed in the morning quencing of the 5 ends of RNAs using CAGE. This tech- after an overnight fast. Height, weight, and hip and waist nique assesses the start sites of transcripts and their circumferences, resting pulse rate, and blood pressure respective expression with high resolution. Protein coding were determined. Venous blood samples were obtained as well as noncoding transcripts are identified by CAGE and analyzed by the accredited routine clinical chemistry tag clusters (TCs). One gene can be described by more laboratory of the hospital, except for insulin and free fatty than one TC, reflecting expression from more than one acids (FFAs), which were analyzed by ELISA (Mercodia, promoter. In comparison with microarrays, CAGE is not Uppsala, Sweden) and a colorimetric kit method (FUJI- biased for a preselected set of target transcripts; it has FILM Wako Chemicals Europe GmbH, Neuss, Germany), higher sensitivity and a larger dynamic expression range respectively. Adipose tissue insulin resistance was calcu- and provides quantitative data that are reliably mirrored lated as fasting serum insulin  fasting serum FFAs (10) by, for example, quantitative polymerase chain reaction and correlated with M value (r 5 À0.74; P < 0.0001). Ab- (8,13). dominal subcutaneous WAT biopsies were obtained from Total RNA from WAT was extracted using the RNeasy the paraumbilical region by needle aspiration under local Lipid Tissue Mini Kit (QIAGEN), and the RNA concentra- anesthesia. Thereafter, a hyperinsulinemic euglycemic tions were measured using Nanodrop ND-1000 (Thermo clamp was performed as described (8). An intravenous bo- Fisher Scientific). Total RNA quality was determined using lus dose of insulin (1.6 units/m2 body surface area) the Bioanalyzer RNA 6000 Pico Kit (Agilent Technolo- (Actrapid; Novo Nordisk, Copenhagen, Denmark) was ad- gies).
Recommended publications
  • Peripheral T Cells Ets-1 Maintains IL-7 Receptor Expression In
    The Journal of Immunology Ets-1 Maintains IL-7 Receptor Expression in Peripheral T Cells Roland Grenningloh,*,† Tzong-Shyuan Tai,* Nicole Frahm,†,‡,1 Tomoyuki C. Hongo,‡ Adam T. Chicoine,‡ Christian Brander,†,‡,x,{ Daniel E. Kaufmann,†,‡,‖ and I-Cheng Ho*,† The expression of CD127, the IL-7–binding subunit of the IL-7 R, is tightly regulated during the development and activation of T cells and is reduced during chronic viral infection. However, the molecular mechanism regulating the dynamic expression of CD127 is still poorly understood. In this study, we report that the transcription factor Ets-1 is required for maintaining the expression of CD127 in murine peripheral T cells. Ets-1 binds to and activates the CD127 promoter, and its absence leads to reduced CD127 expression, attenuated IL-7 signaling, and impaired IL-7–dependent homeostatic proliferation of T cells. The expression of CD127 and Ets-1 is strongly correlated in human T cells. Both CD127 and Ets-1 expression are decreased in CD8+ T cells during HIV infection. In addition, HIV-associated loss of CD127 is only observed in Ets-1low effector memory and central memory but not in Ets-1high naive CD8+ T cells. Taken together, our data identify Ets-1 as a critical regulator of CD127 expression in T cells. The Journal of Immunology, 2011, 186: 969–976. nterleukin-7 signals are required for T cell development, GABPa or another Ets protein is responsible for maintaining maintaining the naive T cell pool, mounting proper primary CD127 expression in peripheral T cells is unknown. I responses, and inducing and maintaining CD4+ and CD8+ Ets-1 (E26 transformation-specific sequence) is the founding T cell memory (1–3).
    [Show full text]
  • The REST/NRSF Pathway As a Central Mechanism in CNS Dysfunction
    The REST/NRSF Pathway as a Central Mechanism in CNS Dysfunction Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Alix Warburton April 2015 Disclaimer The data in this thesis is a result of my own work. The material collected for this thesis has not been presented, nor is currently being presented, either wholly or in part for any other degree or other qualification. All of the research, unless otherwise stated, was performed in the Department of Physiology and Department of Pharmacology, Institute of Translational Medicine, University of Liverpool. All other parties involved in the research presented here, and the nature of their contribution, are listed in the Acknowledgements section of this thesis. i Acknowledgements First and foremost, I would like to express my upmost gratitude to my primary and secondary supervisors Professor John Quinn (a.k.a Prof. Quinny) and Dr Jill Bubb for all of their support, guidance, wisdom (thank you Jill) and encouragement throughout my PhD; I could not have wished for a better pair. I am also extremely grateful to the BBSRC for funding my PhD project. I would also like to extend my thanks to Dr Graeme Sills for providing samples and assistance with my work on the SANAD epilepsy project, Dr Fabio Miyajima for offering his knowledge and knowhow on many occasions, Dr Gerome Breen for being a bioinformatics wizard and providing support on several projects, Dr Minyan Wang’s lab for their help and hospitality during my 3 month visit to Xi'an Jiaotong-Liverpool University, Dr Roshan Koron for assisting with the breast cancer study, Dr Chris Murgatroyd for his invaluable advice on ChIP and Professor Dan Rujescu’s lab for providing clinical samples and support with statistical analyses on the schizophrenia project.
    [Show full text]
  • Amplitude Modulation of Androgen Signaling by C-MYC
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Amplitude modulation of androgen signaling by c-MYC Min Ni,1,2 Yiwen Chen,3,4 Teng Fei,1,2 Dan Li,1,2 Elgene Lim,1,2 X. Shirley Liu,3,4,5 and Myles Brown1,2,5 1Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; 2Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA; 3Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; 4Harvard School of Public Health, Boston, Massachusetts 02215, USA Androgen-stimulated growth of the molecular apocrine breast cancer subtype is mediated by an androgen receptor (AR)-regulated transcriptional program. However, the molecular details of this AR-centered regulatory network and the roles of other transcription factors that cooperate with AR in the network remain elusive. Here we report a positive feed-forward loop that enhances breast cancer growth involving AR, AR coregulators, and downstream target genes. In the absence of an androgen signal, TCF7L2 interacts with FOXA1 at AR-binding sites and represses the basal expression of AR target genes, including MYC. Direct AR regulation of MYC cooperates with AR-mediated activation of HER2/HER3 signaling. HER2/HER3 signaling increases the transcriptional activity of MYC through phosphorylation of MAD1, leading to increased levels of MYC/MAX heterodimers. MYC in turn reinforces the transcriptional activation of androgen-responsive genes. These results reveal a novel regulatory network in molecular apocrine breast cancers regulated by androgen and AR in which MYC plays a central role as both a key target and a cooperating transcription factor to drive oncogenic growth.
    [Show full text]
  • An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Netwo
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis Sriram Devanathan Washington University School of Medicine in St. Louis Timothy Whitehead Washington University School of Medicine in St. Louis George G. Schweitzer Washington University School of Medicine in St. Louis Nicole Fettig Washington University School of Medicine in St. Louis Attila Kovacs Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Devanathan, Sriram; Whitehead, Timothy; Schweitzer, George G.; Fettig, Nicole; Kovacs, Attila; Korach, Kenneth S.; Finck, Brian N.; and Shoghi, Kooresh I., ,"An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis." PLoS One.9,7. e101900. (2014). https://digitalcommons.wustl.edu/open_access_pubs/3326 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Sriram Devanathan, Timothy Whitehead, George G. Schweitzer, Nicole Fettig, Attila Kovacs, Kenneth S. Korach, Brian N. Finck, and Kooresh I. Shoghi This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/3326 An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Network Analysis Sriram Devanathan1, Timothy Whitehead1, George G. Schweitzer2, Nicole Fettig1, Attila Kovacs3, Kenneth S.
    [Show full text]
  • Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Co-Regulator in Invasive 6 Lobular Carcinoma of the Breast 7 8 Evelyn K
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423142; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Running Title: MDC1 co-regulates ER in ILC 2 3 Research article 4 5 Mediator of DNA damage checkpoint 1 (MDC1) is a novel estrogen receptor co-regulator in invasive 6 lobular carcinoma of the breast 7 8 Evelyn K. Bordeaux1+, Joseph L. Sottnik1+, Sanjana Mehrotra1, Sarah E. Ferrara2, Andrew E. Goodspeed2,3, James 9 C. Costello2,3, Matthew J. Sikora1 10 11 +EKB and JLS contributed equally to this project. 12 13 Affiliations 14 1Dept. of Pathology, University of Colorado Anschutz Medical Campus 15 2Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center 16 3Dept. of Pharmacology, University of Colorado Anschutz Medical Campus 17 18 Corresponding author 19 Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, 20 CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: 21 @mjsikora 22 23 Authors' contributions 24 MJS conceived of the project. MJS, EKB, and JLS designed and performed experiments. JLS developed models 25 for the project. EKB, JLS, SM, and AEG contributed to data analysis and interpretation. SEF, AEG, and JCC 26 developed and performed informatics analyses. MJS wrote the draft manuscript; all authors read and revised the 27 manuscript and have read and approved of this version of the manuscript.
    [Show full text]
  • Intrinsic Specificity of DNA Binding and Function of Class II Bhlh
    INTRINSIC SPECIFICITY OF BINDING AND REGULATORY FUNCTION OF CLASS II BHLH TRANSCRIPTION FACTORS APPROVED BY SUPERVISORY COMMITTEE Jane E. Johnson Ph.D. Helmut Kramer Ph.D. Genevieve Konopka Ph.D. Raymond MacDonald Ph.D. INTRINSIC SPECIFICITY OF BINDING AND REGULATORY FUNCTION OF CLASS II BHLH TRANSCRIPTION FACTORS by BRADFORD HARRIS CASEY DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas December, 2016 DEDICATION This work is dedicated to my family, who have taught me pursue truth in all forms. To my grandparents for inspiring my curiosity, my parents for teaching me the value of a life in the service of others, my sisters for reminding me of the importance of patience, and to Rachel, who is both “the beautiful one”, and “the smart one”, and insists that I am clever and beautiful, too. Copyright by Bradford Harris Casey, 2016 All Rights Reserved INTRINSIC SPECIFICITY OF BINDING AND REGULATORY FUNCTION OF CLASS II BHLH TRANSCRIPTION FACTORS Publication No. Bradford Harris Casey The University of Texas Southwestern Medical Center at Dallas, 2016 Jane E. Johnson, Ph.D. PREFACE Embryonic development begins with a single cell, and gives rise to the many diverse cells which comprise the complex structures of the adult animal. Distinct cell fates require precise regulation to develop and maintain their functional characteristics. Transcription factors provide a mechanism to select tissue-specific programs of gene expression from the shared genome.
    [Show full text]
  • Agonists and Knockdown of Estrogen Receptor Β Differentially Affect
    Schüler-Toprak et al. BMC Cancer (2016) 16:951 DOI 10.1186/s12885-016-2973-y RESEARCH ARTICLE Open Access Agonists and knockdown of estrogen receptor β differentially affect invasion of triple-negative breast cancer cells in vitro Susanne Schüler-Toprak1*, Julia Häring1, Elisabeth C. Inwald1, Christoph Moehle2, Olaf Ortmann1 and Oliver Treeck1 Abstract Background: Estrogen receptor β (ERβ) is expressed in the majority of invasive breast cancer cases, irrespective of their subtype, including triple-negative breast cancer (TNBC). Thus, ERβ might be a potential target for therapy of this challenging cancer type. In this in vitro study, we examined the role of ERβ in invasion of two triple-negative breast cancer cell lines. Methods: MDA-MB-231 and HS578T breast cancer cells were treated with the specific ERβ agonists ERB-041, WAY200070, Liquiritigenin and 3β-Adiol. Knockdown of ERβ expression was performed by means of siRNA transfection. Effects on cellular invasion were assessed in vitro by means of a modified Boyden chamber assay. Transcriptome analyses were performed using Affymetrix Human Gene 1.0 ST microarrays. Pathway and gene network analyses were performed by means of Genomatix and Ingenuity Pathway Analysis software. Results: Invasiveness of MBA-MB-231 and HS578T breast cancer cells decreased after treatment with ERβ agonists ERB-041 and WAY200070. Agonists Liquiritigenin and 3β-Adiol only reduced invasion of MDA-MB-231 cells. Knockdown of ERβ expression increased invasiveness of MDA-MB-231 cells about 3-fold. Transcriptome and pathway analyses revealed that ERβ knockdown led to activation of TGFβ signalling and induced expression of a network of genes with functions in extracellular matrix, tumor cell invasion and vitamin D3 metabolism.
    [Show full text]
  • Accompanies CD8 T Cell Effector Function Global DNA Methylation
    Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer, Benjamin G. Barwick, Benjamin A. Youngblood, Rafi Ahmed and Jeremy M. Boss This information is current as of October 1, 2021. J Immunol 2013; 191:3419-3429; Prepublished online 16 August 2013; doi: 10.4049/jimmunol.1301395 http://www.jimmunol.org/content/191/6/3419 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130139 Material 5.DC1 References This article cites 81 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/191/6/3419.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 1, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer,* Benjamin G. Barwick,* Benjamin A. Youngblood,*,† Rafi Ahmed,*,† and Jeremy M.
    [Show full text]
  • Spatial Protein Interaction Networks of the Intrinsically Disordered Transcription Factor C(%3$
    Spatial protein interaction networks of the intrinsically disordered transcription factor C(%3$ Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie/Molekularbiologie eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Von Evelyn Ramberger, M.Sc. Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing.Dr. Sabine Kunst Dekan der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Prof. Dr. Bernhard Grimm Gutachter: 1. Prof. Dr. Achim Leutz 2. Prof. Dr. Matthias Selbach 3. Prof. Dr. Gunnar Dittmar Tag der mündlichen Prüfung: 12.8.2020 For T. Table of Contents Selbstständigkeitserklärung ....................................................................................1 List of Figures ............................................................................................................2 List of Tables ..............................................................................................................3 Abbreviations .............................................................................................................4 Zusammenfassung ....................................................................................................6 Summary ....................................................................................................................7 1. Introduction ............................................................................................................8 1.1. Disordered proteins
    [Show full text]
  • Stemmacs™ Cebpb Mrna
    StemMACS™ Cebpb mRNA human Order no. 130-104-377 Contents 1.3 Applications 1. Description ● Differentiation of pluripotent stem cells into adipose tissue. 1.1 Principle 1.2 Background information 2. Protocol: Reconstitution of lyophilizate 1.2 Applications ▲ RNA is susceptible to degradation by exogenous ribonucleases. 2. Protocol: Dissolving of lyophilizate Wear gloves, use RNase-free reagents, tubes, and pipette tips. 1. Dissolve StemMACS Cebpb mRNA in 200 µL of Double- 1. Description distilled Water. Vortex thoroughly. The final concentration will be 0.1 µg/µL. Components 20 µg StemMACS™ Cebpb mRNA encoding the transcription factor C/EBP-beta (CEBPB, 2. Briefly centrifuge to collect the content at the bottom of the LAP, CRP2, TCF5; Entrez Gene ID 1051). tube. 1 mL Double-distilled Water, RNase-free 3. Prepare aliquots and store at –70 °C to –80 °C. Do not subject Specifications In vitro transcribed, polyadenylated and aliquots to more than two freeze-thaw cycles. capped mRNA that has been modified with pseudouridine and 5-methyl-cytidine to reduce For satisfactory transfection results, use a protocol that is the innate antiviral response to single-stranded optimized for your specific cell type. StemMACS™ eGFP mRNA RNA. or StemMACS™ Nuclear eGFP mRNA allow easy evaluation of Formulation Lyophilized from a filtered (0.2 µm) solution. transfection efficiency and are recommended as positive controls. Storage Store the lyophilized product at –20 °C. The Refer to www.miltenyibiotec.com for all data sheets and protocols. expiration date is indicated on the label. After Miltenyi Biotec provides technical support worldwide. Visit reconstitution, the product can be stored at www.miltenyibiotec.com/local to find your nearest Miltenyi Biotec –70°C for up to 3 month.
    [Show full text]
  • Oestrogen Receptor α AF-1 and AF-2 Domains Have Cell
    ARTICLE DOI: 10.1038/s41467-018-07175-0 OPEN Oestrogen receptor α AF-1 and AF-2 domains have cell population-specific functions in the mammary epithelium Stéphanie Cagnet1, Dalya Ataca 1, George Sflomos1, Patrick Aouad1, Sonia Schuepbach-Mallepell2, Henry Hugues3, Andrée Krust4, Ayyakkannu Ayyanan1, Valentina Scabia1 & Cathrin Brisken 1 α α 1234567890():,; Oestrogen receptor (ER ) is a transcription factor with ligand-independent and ligand- dependent activation functions (AF)-1 and -2. Oestrogens control postnatal mammary gland development acting on a subset of mammary epithelial cells (MECs), termed sensor cells, which are ERα-positive by immunohistochemistry (IHC) and secrete paracrine factors, which stimulate ERα-negative responder cells. Here we show that deletion of AF-1 or AF-2 blocks pubertal ductal growth and subsequent development because both are required for expres- sion of essential paracrine mediators. Thirty percent of the luminal cells are ERα-negative by IHC but express Esr1 transcripts. This low level ERα expression through AF-2 is essential for cell expansion during puberty and growth-inhibitory during pregnancy. Cell-intrinsic ERα is not required for cell proliferation nor for secretory differentiation but controls transcript levels of cell motility and cell adhesion genes and a stem cell and epithelial mesenchymal transition (EMT) signature identifying ERα as a key regulator of mammary epithelial cell plasticity. 1 Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. 2 Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland. 3 Centre Hospitalier Universitaire Vaudois, Department of Laboratory Medecine, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland.
    [Show full text]
  • 2 to Modulate Hepatic Lipolysis and Fatty Acid Metabolism
    Original article Bioenergetic cues shift FXR splicing towards FXRa2 to modulate hepatic lipolysis and fatty acid metabolism Jorge C. Correia 1,2, Julie Massart 3, Jan Freark de Boer 4, Margareta Porsmyr-Palmertz 1, Vicente Martínez-Redondo 1, Leandro Z. Agudelo 1, Indranil Sinha 5, David Meierhofer 6, Vera Ribeiro 2, Marie Björnholm 3, Sascha Sauer 6, Karin Dahlman-Wright 5, Juleen R. Zierath 3, Albert K. Groen 4, Jorge L. Ruas 1,* ABSTRACT Objective: Farnesoid X receptor (FXR) plays a prominent role in hepatic lipid metabolism. The FXR gene encodes four proteins with structural differences suggestive of discrete biological functions about which little is known. Methods: We expressed each FXR variant in primary hepatocytes and evaluated global gene expression, lipid profile, and metabolic fluxes. Gene À À delivery of FXR variants to Fxr / mouse liver was performed to evaluate their role in vivo. The effects of fasting and physical exercise on hepatic Fxr splicing were determined. Results: We show that FXR splice isoforms regulate largely different gene sets and have specific effects on hepatic metabolism. FXRa2 (but not a1) activates a broad transcriptional program in hepatocytes conducive to lipolysis, fatty acid oxidation, and ketogenesis. Consequently, FXRa2 À À decreases cellular lipid accumulation and improves cellular insulin signaling to AKT. FXRa2 expression in Fxr / mouse liver activates a similar gene program and robustly decreases hepatic triglyceride levels. On the other hand, FXRa1 reduces hepatic triglyceride content to a lesser extent and does so through regulation of lipogenic gene expression. Bioenergetic cues, such as fasting and exercise, dynamically regulate Fxr splicing in mouse liver to increase Fxra2 expression.
    [Show full text]