Copepoda, Harpacticoida) and Cletodidae T

Total Page:16

File Type:pdf, Size:1020Kb

Copepoda, Harpacticoida) and Cletodidae T Zoosyst. Evol. 96 (2) 2020, 455–498 | DOI 10.3897/zse.96.51349 Restructuring the Ancorabolidae Sars (Copepoda, Harpacticoida) and Cletodidae T. Scott, with a new phylogenetic hypothesis regarding the relationships of the Laophontoidea T. Scott, Ancorabolidae and Cletodidae Kai Horst George1 1 Senckenberg am Meer, Abt. Deutsches Zentrum für Marine Biodiversitätsforschung DZMB, Südstrand 44, D-26382 Wilhelmshaven, Germany http://zoobank.org/96C924CA-95E0-4DF2-80A8-2DCBE105416A Corresponding author: Kai Horst George ([email protected]) Academic editor: Kay Van Damme ♦ Received 21 February 2020 ♦ Accepted 10 June 2020 ♦ Published 10 July 2020 Abstract Uncovering the systematics of Copepoda Harpacticoida, the second-most abundant component of the meiobenthos after Nematoda, is of major importance for any further research dedicated especially to ecological and biogeographical approaches. Based on the evolution of the podogennontan first swimming leg, a new phylogenetic concept of the Ancorabolidae Sars and Cletodidae T. Scott sensu Por (Copepoda, Harpacticoida) is presented, using morphological characteristics. It confirms the polyphyletic status of the Ancorabolidae and its subfamily Ancorabolinae Sars and the paraphyletic status of the subfamily Laophontodinae Lang. Moreover, it clarifies the phylogenetic relationships of the so far assigned members of the family. An exhaustive phylogenetic analysis was undertaken using 150 morphological characters, resulting in the establishment of a now well-justified monophylum Ancorabolidae. In that context, the Ancorabolus-lineage sensu Conroy-Dalton and Huys is elevated to sub-family rank. Furthermore, the mem- bership of Ancorabolina George in a rearranged monophylum Laophontodinae is confirmed. Conversely, the Ceratonotus-group sensu Conroy-Dalton is transferred from the hitherto Ancorabolinae to the Cletodidae. Within these, the Ceratonotus-group and its hypothesised sister-group Cletodes Brady are combined to form a monophyletic subfamily Cletodinae T. Scott, subfam. nov. Conse- quently, it was necessary to restructure the Ancorabolidae, Ancorabolinae and Laophontodinae and extend the Cletodidae to include the displacement and exclusion of certain taxa. Moreover, comparison of the Ancorabolidae, Cletodidae, Laophontoidea and other Podogennonta shows that the Ancorabolidae and Cletodidae form sister-groups in a monophylum Cletodoidea Bowman and Abele, which similarly has a sister-group-relationship with the Laophontoidea T. Scott. According to the present study, both taxa constitute a derived monophylum within the Podogennonta Lang. Key Words meiofauna, crustacea, Podogennonta, Cletodoidea, systematics, taxonomy Copyright Kai Horst George. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 456 George, K.H.: Restructuring the Ancorabolidae Table of contents Introduction ......................................................................................................................................................................2 Methods............................................................................................................................................................................3 Results ..............................................................................................................................................................................3 Discussion ......................................................................................................................................................................14 I. General remarks .......................................................................................................................................................14 II. The development of the P1 in the Podogennonta as the origin of the new phylogenetic concept ..........................15 III. Phylogenetic analysis: A new concept for a podogennontan Laophontoidea – Ancorabolidae ● – Cletodidae ● -clade, based on the re-evaluation of morphological characters ............................................................17 A. The Laophontoidea–Cletodoidea-clade (L–C-clade) ...........................................................................................17 B. Cletodoidea Bowman & Abele, 1982 ...................................................................................................................18 C. Ancorabolidae ● Sars, 1909 ..................................................................................................................................20 D. Laophontodinae ● Lang, 1944 .............................................................................................................................21 E. Ancorabolinae ● Sars, 1909 ..................................................................................................................................24 F. The Algensiella–Probosciphontodes-clade (A–P-clade) .......................................................................................27 G. Tapholaophontodes ...............................................................................................................................................28 H. The Calypsophontodes–Probosciphontodes-clade (C–P-clade) ...........................................................................28 I. Algensiella ..............................................................................................................................................................29 J. The Laophontodes–Probosciphontodes-clade (La–P-clade) .................................................................................29 K. Calypsophontodes .................................................................................................................................................29 L. The Rostrophontodes–Ancorabolina-clade (R–A-clade) ......................................................................................30 M. Rostrophontodes ..................................................................................................................................................31 N. The Laophontodes–Ancorabolina-clade (La–A-clade) ........................................................................................32 O. Laophontodes .......................................................................................................................................................32 P. The Bicorniphontodes–Ancorabolina-clade (B–A-clade) .....................................................................................33 Q. Bicorniphontodes ..................................................................................................................................................33 R. Ancorabolina ........................................................................................................................................................34 S. The Paralaophontodes–Probosciphontodes-clade (Pa–P-clade) ..........................................................................34 T. Paralaophontodes .................................................................................................................................................35 U. The Lobopleura–Probosciphontodes-clade (Lo–P-clade) ....................................................................................35 V. Lobopleura ............................................................................................................................................................35 W. Probosciphontodes ...............................................................................................................................................36 X. Cletodidae ● T. Scott, 1904 ..................................................................................................................................36 Y. Cletodinae T. Scott, 1904, subfam. nov. ...............................................................................................................36 Z. Remaining Cletodidae ● .......................................................................................................................................37 AA. The Ceratonotus-group (C-g) ............................................................................................................................37 BB. Cletodes ..............................................................................................................................................................39 CC. The status of Patagoniaella Pallares, 1968 ........................................................................................................39 Conclusions ....................................................................................................................................................................40 Acknowledgements ........................................................................................................................................................41 References ......................................................................................................................................................................41 Introduction With an estimated number of > 50,000 species (cf. George et al. 2020 and references therein), the Copepo- Um dahin zu gelangen, muß man sich indessen von da (Crustacea)
Recommended publications
  • Early Miocene Amber Inclusions from Mexico Reveal Antiquity Of
    www.nature.com/scientificreports OPEN Early Miocene amber inclusions from Mexico reveal antiquity of mangrove-associated copepods Received: 29 March 2016 Rony Huys1, Eduardo Suárez-Morales2, María de Lourdes Serrano-Sánchez3, Accepted: 16 September 2016 Elena Centeno-García4 & Francisco J. Vega4 Published: 12 October 2016 Copepods are aquatic microcrustaceans and represent the most abundant metazoans on Earth, outnumbering insects and nematode worms. Their position of numerical world predominance can be attributed to three principal radiation events, i.e. their major habitat shift into the marine plankton, the colonization of freshwater and semiterrestrial environments, and the evolution of parasitism. Their variety of life strategies has generated an incredible morphological plasticity and disparity in body form and shape that are arguably unrivalled among the Crustacea. Although their chitinous exoskeleton is largely resistant to chemical degradation copepods are exceedingly scarce in the geological record with limited body fossil evidence being available for only three of the eight currently recognized orders. The preservation of aquatic arthropods in amber is unusual but offers a unique insight into ancient subtropical and tropical ecosystems. Here we report the first discovery of amber-preserved harpacticoid copepods, represented by ten putative species belonging to five families, based on Early Miocene (22.8 million years ago) samples from Chiapas, southeast Mexico. Their close resemblance to Recent mangrove-associated copepods highlights the antiquity of the specialized harpacticoid fauna living in this habitat. With the taxa reported herein, the Mexican amber holds the greatest diversity of fossil copepods worldwide. Copepods are among the most speciose and morphologically diverse groups of crustaceans, encompassing 236 families and roughly 13,970 described species.
    [Show full text]
  • Seagrass Macrophytodetritus: a Copepod Hub: Species Diversity
    Seagrass macrophytodetritus: a copepod hub - Species diversity, dynamics and trophic ecology of the meiofauna community in Posidonia oceanica leaf litter accumulations University of Liège Faculty of Sciences Department of Biology, Ecology and Evolution Laboratory of Oceanology, MARE centre & Ghent University Faculty of Sciences Department of Biology Marine Biology research group Academic year 2014-2015 Publically defended on 10/6/2015 For citation to the published work reprinted in this thesis, please refer to the original publications (as mentioned at the beginning of each chapter). To refer to this thesis, please cite as: Mascart T., 2015. Seagrass macrophytodetritus: a copepod hub - Species diversity, dynamics and trophic ecology of the meiofauna community in Posidonia oceanica leaf litter accumulations. University of Liège/Ghent University, 256 pp. Front cover: Microscopic pictures of harpacticoid copepods. From top to bottom: Alteutha depressa, Phyllopodopsyllus bradyi, Paralaophonte brevirostris, Longipedia minor, Tegastes falcatus, Porcellidium ovatum, Laophontodes bicornis and Laophonte cornuta. Back cover: Underwater photography of a macrophytodetritus accumulation on a sand patch adjacent to a Posidonia oceanica meadow, Calvi, Corsica. Photographs back cover and between chapters: Courtesy of underwater photographer Arnaud Abadie Members of the examination committee Members of the reading committee* Prof. Dr. Bernard Tychon – Chairman ULg University of Liège, Belgium Prof. Dr. Tom Moens – Chairman UGent Ghent University, Belgium Prof. Dr. Patrick Dauby University of Liège, Belgium Prof. Dr. Magda Vincx Ghent University, Belgium Dr. Salvatrice Vizzini * Università degli Studi di Palermo, Italy Dr. Corine Pelaprat Stareso S.A., France Dr. Loïc Michel * University of Liège, Belgium Dr. Carl Van Colen * Ghent University, Belgium Dr. Gilles Lepoint – Promotor University of Liège, Belgium Prof.
    [Show full text]
  • New and Previously Known Species of Copepoda and Cladocera (Crustacea) from Svalbard, Norway – Who Are They and Where Do They Come From?
    Fauna norvegica 2018 Vol. 38: 18–29. New and previously known species of Copepoda and Cladocera (Crustacea) from Svalbard, Norway – who are they and where do they come from? Inta Dimante-Deimantovica1,4, Bjørn Walseng1, Elena S. Chertoprud2,3, and Anna A. Novichkova2,3 Dimante-Deimantovica I, Walseng B, Chertoprud ES and Novichkova A. 2018. New and previously known species of Copepoda and Cladocera (Crustacea) from Svalbard, Norway – who are they and where do they come from? Fauna norvegica 38: 18–29. Arctic landscapes are characterised by an immense number of fresh and brackish water habitats – lakes, ponds and puddles. Due to a rather harsh environment, there is a limited number of species inhabiting these ecosystems. Recent climate-driven regime shifts impact and change Arctic biological communities. New species may appear, and existing communities may become supressed or even disappear, depending on how ongoing changes match their ecological needs. This study provides data on presently existing and probably recently arrived fresh and brackish water microcrustacean species in the Norwegian High Arctic - Svalbard archipelago. The study focused on two taxonomic groups, Cladocera and Copepoda and altogether we found seven taxa new for Svalbard: Alona werestschagini, Polyphemus pediculus, Diaptomus sp., Diacyclops abyssicola, Nitokra spinipes, Epactophanes richardi and Geeopsis incisipes. Compared with an existing overview for the area, our study increased the number of species by more than 20 %, and some of the new species have never been found that far north. Finally, we present a complete and critically updated revised species list of fresh and brackish water cladocerans and copepods for Svalbard.
    [Show full text]
  • Zootaxa, Systematics and Phylogeny of Cristacoxidae
    Zootaxa 2568: 1–38 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Systematics and phylogeny of Cristacoxidae (Copepoda, Harpacticoida): a review RONY HUYS1,3 & TERUE CRISTINA KIHARA2 1Department of Zoology, Natural History Museum, Cromwell Road, SW7 5BD, London, UK. E-mail: [email protected] 2 Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, nº 321, 05508-900 São Paulo, Brazil. E-mail: [email protected] 3Corresponding author Table of contents Abstract ............................................................................................................................................................................... 2 Introduction ......................................................................................................................................................................... 2 Material and methods.......................................................................................................................................................... 3 Taxonomic account ............................................................................................................................................................. 4 Order Harpacticoida Sars, 1903 .......................................................................................................................................... 4 Family Cristacoxidae Huys, 1990 ......................................................................................................................................
    [Show full text]
  • 166, December 2016
    PSAMMONALIA The Newsletter of the International Association of Meiobenthologists Number 166, December 2016 Composed and Printed at: Lab. Of Biodiversity Dept. Of Life Science, College of Natural Sciences, Hanyang University, 222 Wangsimni–ro, Seongdong-gu, Seoul, 04763, Korea. Remembering the good times. Season’s Greetings, and Happy New Year! (2017) DONT FORGET TO RENEW YOUR MEMBERSHIP IN IAM! THE APPLICATION CAN BE FOUND AT: http://www.meiofauna.org/appform.html This newsletter is mailed electronically. Paper copies will be sent only upon request This Newsletter is not part of the scientific literature for taxonomic purposes 1 The International Association of Meiobenthologists Executive Committee Vadim Mokievsky P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Chairperson 36 Nakhimovskiy Prospect, 117218 Moscow, Russia [[email protected]] Wonchoel Lee Lab. of Biodiversity, (#505), Department of Life Science, Past Chairperson College of Natural Sciences, Hanyang University. [[email protected]] Ann Vanreusel Ghent University, Biology Department, Marine Biology Section, Gent, Treasurer B-9000, Belgium [[email protected]] Jyotsna Sharma Department of Biology, University of Texas at San Antonio, San Antonio, Asistant Treasurer TX 78249-0661, USA [[email protected]] Hanan Mitwally Faculty of Science, Oceanography, University of Alexandria, (Term expires 2019) Moharram Bay, 21151, Egypt. [[email protected]] Gustavo Fonseca Universidade Federal de São Paulo, Instituto do Mar, Av. AlmZ Saldanha (Term expires 2019) da Gama 89, 11030-400 Santos, Brazil. [[email protected]] Daniel Leduc National Institute of Water and Atmospheric Research, (Term expires 2022) Private Bag 14-901, Wellington, New Zealand [[email protected]] Nabil Majdi Bielefeld University, Animal Ecology, Konsequenz 45, 33615, Bielefeld, (Term expires 2022) Germany [[email protected]] Ex-Officio Executive Committee (Past Chairpersons) 1966-67 Robert Higgins (Founding Editor) 1987-89 John Fleeger 1968-69 W.
    [Show full text]
  • Biological Structures As a Source of Habitat Heterogeneity and Biodiversity on the Deep Ocean Margins Lene Buhl-Mortensen1, Ann Vanreusel2, Andrew J
    Marine Ecology. ISSN 0173-9565 SPECIAL TOPIC Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins Lene Buhl-Mortensen1, Ann Vanreusel2, Andrew J. Gooday3, Lisa A. Levin4, Imants G. Priede5,Pa˚ l Buhl-Mortensen1, Hendrik Gheerardyn2, Nicola J. King5 & Maarten Raes2 1 Institute of Marine Research, Benthic habitat group, Bergen, Norway 2 Ghent University, Marine Biology research group, Belgium 3 National Oceanography Centre Southampton, Southampton, UK 4 Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, La Jolla, CA, USA 5 Oceanlab, University of Aberdeen, Newburgh, Aberdeenshire, UK Keywords Abstract Biodiversity; biotic structures; commensal; continental slope; deep sea; deep-water coral; Biological structures exert a major influence on species diversity at both local and ecosystem engineering; sponge reefs; regional scales on deep continental margins. Some organisms use other species as xenophyophores. substrates for attachment, shelter, feeding or parasitism, but there may also be mutual benefits from the association. Here, we highlight the structural attributes Correspondence and biotic effects of the habitats that corals, sea pens, sponges and xenophyo- Lene Buhl-Mortensen, Institute of Marine phores offer other organisms. The environmental setting of the biological struc- Research, Benthic habitat group, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway tures influences their species composition. The importance of benthic species as E-mail: [email protected] substrates seems to increase with depth as the complexity of the surrounding geological substrate and food supply decline. There are marked differences in the Accepted: 30 December 2009 degree of mutualistic relationships between habitat-forming taxa. This is espe- cially evident for scleractinian corals, which have high numbers of facultative doi:10.1111/j.1439-0485.2010.00359.x associates (commensals) and few obligate associates (mutualists), and gorgonians, with their few commensals and many obligate associates.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Ivanenko V.N. 2006. Copepoda (Introduction). In: D. DESBRYERES, M
    Ivanenko V.N. 2006. Copepoda (Introduction). In: D. DESBRYERES, M. SEGONZAC & M. BRIGHT (Eds.) Handbook of Deep-Sea Hydrothermal Vent Fauna. Second edition. DENISIA, 18: 316-317 Ivanenko V.N. & Defaye D. 2006. Copepoda. In: D. DESBRYERES, M. SEGONZAC & M. BRIGHT (Eds.) Handbook of Deep-Sea Hydrothermal Vent Fauna. Second edition. DENISIA, 18: 318-355 Viatcheslav N. IVANENKO, Ph.D. Department of Invertebrate Zoology Biological Faculty, Moscow State University Leninskie Gory, 1-12 Moscow 119992, Russia http://www.nature.ok.ru/invertebrates/cv.html Handbook of Deep-Sea Hydrothermal Vent Fauna D. DESBRYÈRES, M. SEGONZAC & M. BRIGHT (Eds.) Denisia 18, 544 pages (27 x 21 cm) ISSN: 1608-8700; ISBN: 10 3-85474-154-5 or ISBN: 13 978-3-85474-154-1 Ordering via e-mail: [email protected] Price: 49 € (excl. shipping) The second extensively expanded edition of the "Handbook of Deep-Sea Hydrothermal Vent Fauna" gives on overview of our current knowledge on the animals living at hydrothermal vents. The discovery of hydrothermal vents and progresses made during almost 30 years are outlined. A brief introduction is given on hydrothermal vent meiofauna and parasites. Geographic maps and a table of mid-ocean ridges and back-arc basins with the major known hydrothermal vent fields, their location and depth range and the most prominent vent sites are provided. Higher taxa are presented individually with information on the current taxonomic and biogeographic status, the number of species described, recommendations for fixation, and schematic drawings, which aim to help non-specialists to identify the animals. 86 authors contributed with their expertise to create a comprehensive database on animals living at hydrothermal vents, which contains information on the morphology, biology, and geographic distribution of more than 500 currently described species belonging to one protist and 12 animal phyla.
    [Show full text]
  • A New Minute Ectosymbiotic Harpacticoid Copepod Living on the Sea Cucumber Eupentacta Fraudatrix in the East/Japan Sea
    A new minute ectosymbiotic harpacticoid copepod living on the sea cucumber Eupentacta fraudatrix in the East/Japan Sea Jisu Yeom1, Mikhail A. Nikitin2, Viatcheslav N. Ivanenko3 and Wonchoel Lee1 1 Department of Life Science, Hanyang University, Seoul, South Korea 2 A.N. Belozersky Institute of Physico-chemical Biology, Lomonosov Moscow State University, Moscow, Russia 3 Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia ABSTRACT The ectosymbiotic copepods, Vostoklaophonte eupenta gen. & sp. nov. associated with the sea cucumber Eupentacta fraudatrix, was found in the subtidal zone of Peter the Great Bay, East/Japan Sea. The new genus, Vostoklaophonte, is similar to Microchelonia in the flattened body form, reduced mandible, maxillule and maxilla, but with well-developed prehensile maxilliped, and in the reduced segmentation and setation of legs 1–5. Most appendages of the new genus are more primitive than those of Microchelonia. The inclusion of the symbiotic genera Microchelonia and Vostoklaophonte gen. nov. in Laophontidae, as well as their close phylogenetic relationships, are supported by morphological observations and molecular data. This is the third record of laophontid harpacticoid copepods living in symbiosis with sea cucumbers recorded from the Korean and Californian coasts. Subjects Biodiversity, Marine Biology, Taxonomy Keywords Copepoda, Laophontidae, Eupentacta fraudatrix, Ectosymbiosis, New genus, 18S rDNA INTRODUCTION 21 December 2017 Submitted Symbiotic harpacticoids that use holothurians as hosts are rarely reported compared to Accepted 16 May 2018 Published 14 June 2018 the orders Poecilostomatoida and Siphonostomatoida (Humes, 1980; Ho, 1982; Jangoux, Corresponding author 1990; Mahatma, Arbizu & Ivanenko, 2008; Avdeev, 2017). Among harpacticoids, only one Wonchoel Lee, [email protected] species of Tisbidae Stebbing, 1910—Sacodiscus humesi Stock, 1960— and two species of Academic editor Laophontidae T.
    [Show full text]
  • The Marine Arthropods of Turkey
    Turkish Journal of Zoology Turk J Zool (2014) 38: http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1405-48 The marine arthropods of Turkey 1, 1 1 2 Ahmet Kerem BAKIR *, Tuncer KATAĞAN , Halim Vedat AKER , Tahir ÖZCAN , 3 4 1 1 Murat SEZGİN , Abdullah Suat ATEŞ , Cengiz KOÇAK , Fevzi KIRKIM 1 Faculty of Fisheries, Ege University, İzmir, Turkey 2 Faculty of Marine Sciences and Technology, Mustafa Kemal University, İskenderun, Hatay, Turkey 3 Faculty of Fisheries, Sinop University, Sinop, Turkey 4 Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey Received: 29.05.2014 Accepted: 30.07.2014 Published Online: 00.00.2013 Printed: 00.00.2013 Abstract: This recent checklist of marine arthropods found on the coasts of Turkey represents a total of 1531 species belonging to 7 classes: Malacostraca (766 species), Maxillopoda (437 species), Ostracoda (263 species), Pycnogonida (27 species), Arachnida (26 species), Branchiopoda (7 species), and Insecta (5 species). Seventy-five species were classified as alien species in the region. This paper also includes the first record of the amphipod Melita valesi from the Levantine coast of Turkey (Kaş, Gulf of Antalya). Key words: Arthropoda, Black Sea, Sea of Marmara, Aegean Sea, Levantine Sea, Turkey 1. Introduction İzmir Bay (Smirnæ) and the Bosphorus (Constantinopoli). The arthropods, containing approximately 1.2 million Forskål died of malaria in July 1763 and Carsten Niebuhr described species and constituting almost 80% of all edited and published the work of his friend in 1775. In described living animal species, constitute the largest the 19th century, Ostroumoff (1896) participated in the and most successful of the animal phyla.
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]
  • On the Origin of Cryptic Species: Insights from the Stygocapitella Species Complex
    On the Origin of Cryptic Species: Insights from the Stygocapitella species complex José Cerca Thesis submitted for the degree of Philosophiae Doctor Natural History Museum Faculty of Mathematics and Natural Sciences University of Oslo 2019 "The beauty and brilliancy of this insect are indescribable, and none but a naturalist can understand the intense excitement I experienced when I at length captured it. On taking it out of my net and opening the glorious wings, my heart began to beat violently, the blood rushed to my head, and I felt much more like fainting than I have done when in apprehension of immediate death. I had a headache the rest of the day, so great was the excitement produced by what will appear to most people a very inadequate cause." Alfred Russel Wallace “Em cada esquina um amigo, em cada rosto igualdade.” (In each corner a friend, in each face equality) José Afonso – Zeca “Não sou nada. Nunca serei nada. Não posso querer ser nada. À parte disso, tenho em mim todos os sonhos do mundo.” (I am nobody. I will never be anything. I cannot desire to be anything. Other than this, I hold every dream in the world.) Fernando Pessoa Contents Acknowledgements Page 1 List of manuscripts and appendices included Page 5 Summary Page 7 Introduction Page 9 Methods and materials Page 13 Main findings and Discussion Page 21 References Page 46 Manuscripts and appendices Page 57 José Cerca – On the Origin of Cryptic Species: Insights from the Stygocapitella species complex Acknowledgments I belong to a lineage from Portugal’s rural interior.
    [Show full text]