polymers Review Potential Uses of Musaceae Wastes: Case of Application in the Development of Bio-Based Composites Juan Pablo Castañeda Niño 1 , José Herminsul Mina Hernandez 1,* and Alex Valadez González 2 1 Grupo Materiales Compuestos, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
[email protected] 2 Unidad de Materiales, Centro de Investigación Científica de Yucatán, A.C., Calle 43 #. No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico;
[email protected] * Correspondence:
[email protected]; Tel.: +57-2-321-2170; Fax: +57-2-339-2450 Abstract: The Musaceae family has significant potential as a source of lignocellulosic fibres and starch from the plant’s bunches and pseudostems. These materials, which have traditionally been considered waste, can be used to produce fully bio-based composites to replace petroleum-derived synthetic plastics in some sectors such as packaging, the automotive industry, and implants. The fibres extracted from Musaceae have mechanical, thermal, and physicochemical properties that allow them to compete with other natural fibres such as sisal, henequen, fique, and jute, among others, which are currently used in the preparation of bio-based composites. Despite the potential use of Musaceae residues, there are currently not many records related to bio-based composites’ developments using starches, flours, and lignocellulosic fibres from banana and plantain pseudostems. In this sense, the present study focusses on the description of the Musaceae components and the Citation: Castañeda Niño, J.P.; Mina review of experimental reports where both lignocellulosic fibre from banana pseudostem and flour Hernandez, J.H.; Valadez González, and starch are used with different biodegradable and non-biodegradable matrices, specifying the A.