Cold Air Intake for Jackson Racing Superchargers 99-05 1.8L Miatas

Total Page:16

File Type:pdf, Size:1020Kb

Cold Air Intake for Jackson Racing Superchargers 99-05 1.8L Miatas Cold Air Intake for Jackson Racing Superchargers 99-05 1.8L Miatas Packing List: The Following Parts should be in your intake kit when it arrives. If you can not find all of the parts listed be- low, please contact DDMWorks, or Rspeed for assis- tance. 1 Stainless Steel Intake Box 2 Stainless Steel Lid 3 3” diameter intake tube with hose adapter fitted 4 3” Inlet Uni Foam Filter 5 Bag of Installation hardware - 5 10mm Hex Head bolts - 7 Flat Washers - 5 lock washers 6 Bag of Hardware for Lid Installation - 6 Phillips Head Stainless Steel Screws DDMWorks 1990 Augusta ST. Suite 1100 Greenville, SC 29605 Tech Support (864) 907-6004 [email protected] Rev. 12-12-05 DM Page 1 Cold Air Intake for Jackson Racing Superchargers 99-05 1.8L Miatas This Cold Air intake improves on the Jackson Racing Tools you will need: Supercharger by supplying cold air to the supercharger, and pro- viding a larger 3” intake pipe increasing the power potential of Wrenches: 10mm the kit. Sockets: 10mm socket Socket wrench Installation time of the Cold air intake depends on you and your Long 8” socket extension mechanical skills. It is suggested that you read through these Screwdriver: Phillips, Flat Head directions a few times to familiarize yourself with the compo- nents of the kit, and your car. If you are pretty handy with tools the intake can be installed in under 30 minutes, however we suggest that you schedule at least an hour for the install. Removal of Stock Filter Assembly 1. Loosen the hose clamp on the Idle Air Control hose that is located just under the brake master cylinder. It is a 3/4” inch hose. Once the hose clamp is loose pull the hose off and move it close to the radiator, we just want it out of the way for now. 2. Now loosen the two nuts on the front of the stock air filter, this will require a 10mm wrench or socket depending on what you can fit in there. Once the two nuts are removed, re- move the cast aluminum cover plate and filter from the car. These parts will not be re-used. 3. There is a hex head bolt in the aluminum plate attached to the front of Air Flow meter, using a Remove 5mm hex key, remove this bolt and set it this hose aside, it will not be re-used. Loosen the hose connector clamp that is on the back of the aluminum plate. Now pull the cast aluminum base out of the silicone connector, Do not pull to hard on the plate as there is still a wire for the intake air temperature attached. 4. To remove the intake air temperature sensor, gently pull from the base of the sensor and it Power should come easily out of the rubber grommet steering it is installed in. At this point you car should Reservoir look like the picture to the right: 5. If your car is equipped with power steering you will need to also remove the 10mm head bolt at the back of the power steering reservoir. 6. Using a Blade screwdriver remove the remaining hose clamp on the hose connector that attached the air flow meter to the stock intake you just removed. With the hose clamp removed you should be able to pull the Page 2 Installation of the Cold Air Intake 1. Now that we have removed all of the old intake, it is time to start to install the parts for the new intake. 2. Look in your intake kit and find the 2. 1/4” long adapter pipe that is 3” in diameter with the hose adapter attached to it, insert the rubber connector onto the air flow meter and tighten down the hose clamp. 3. Now get the main box portion of your intake. Place the box into your car watching to make sure the intake tube you just installed fits through the large hole in the back of the intake box. 4. Now that the intake box in in place, find three 10mm hex head bolts, lock washers and flat washers in your hard- ware kit. Use the bolts to secure the intake to the car. 5. With the intake securely fastened to the car, find the air filter supplied with the kit and place it over the intake tube and secure the filter using the hose clamp. 6. With the filter in place find the intake air temp sensor that we removed earlier and secure it to the new intake box by push- ing it through the rubber grommet on the front of the intake. 7. Now we are going to secure the electrical relays that are found behind the drivers side headlight. Find two 10mm hex head bolts, nuts, lock washers and flat washers in your hardware kit. Use the bolts to attach the relays to the inside of the air box us- ing the two holes by the power steering reservoir. 8. Find the cover for the intake and the spe- cial bag of bolts to secure it to the intake. Intake Air Temperature Place the cover on the intake lining up the probe goes here: six holes and finger tightening the 10mm head bolts into the intake. Electrical relays are 9. Once you have all six of the bolts started attached on the inside and finger tight, tighten them using a Phil- of the cold air intake lips screwdriver. here: 10. Now that the intake is installed we need to re-attach the idle air hose to the supercharger inlet tube that we removed it from earlier. Place the hose over the top of the intake and push back onto the supercharger inlet tube, securing it with the original hose clamp. idle air hose goes over the intake. Congratulations! You did it! With the cold air intake installed your super- charger will be able to develop more power and im- prove your supercharger kit. If you have any questions feel free to call or send us an email. If you have a digi- tal camera, send us a pic of the intake installed on your car, we would love to see it! Page 3 .
Recommended publications
  • STRIA – Alternative Fuels
    STRIA – Alternative Fuels Authors: Ausilio Bauen, Inmaculada Gomez, Dave OudeNijeweme, Maria Paraschiv 2016-09-21 Contents 1 Introduction .......................................................................................................................................... 3 1.1 Context for the STRIAs .................................................................................................................. 3 1.2 Transport energy and alternative fuels use ................................................................................. 3 1.3 The case for alternative fuels in transport ................................................................................... 6 1.4 GHG emissions savings from alternative fuels in the EU 28......................................................... 8 2 Objective, scope and approach of the STRIA on Alternative Fuels end-use ...................................... 10 2.1 Scope .......................................................................................................................................... 10 2.2 Approach .................................................................................................................................... 12 3 State of the art on alternative fuel end-use ....................................................................................... 12 3.1 Light Duty Vehicles ..................................................................................................................... 14 3.2 Heavy Duty Vehicles ..................................................................................................................
    [Show full text]
  • Small Engine Parts and Operation
    1 Small Engine Parts and Operation INTRODUCTION The small engines used in lawn mowers, garden tractors, chain saws, and other such machines are called internal combustion engines. In an internal combustion engine, fuel is burned inside the engine to produce power. The internal combustion engine produces mechanical energy directly by burning fuel. In contrast, in an external combustion engine, fuel is burned outside the engine. A steam engine and boiler is an example of an external combustion engine. The boiler burns fuel to produce steam, and the steam is used to power the engine. An external combustion engine, therefore, gets its power indirectly from a burning fuel. In this course, you’ll only be learning about small internal combustion engines. A “small engine” is generally defined as an engine that pro- duces less than 25 horsepower. In this study unit, we’ll look at the parts of a small gasoline engine and learn how these parts contribute to overall engine operation. A small engine is a lot simpler in design and function than the larger automobile engine. However, there are still a number of parts and systems that you must know about in order to understand how a small engine works. The most important things to remember are the four stages of engine operation. Memorize these four stages well, and everything else we talk about will fall right into place. Therefore, because the four stages of operation are so important, we’ll start our discussion with a quick review of them. We’ll also talk about the parts of an engine and how they fit into the four stages of operation.
    [Show full text]
  • K&N Air Intakes Installation Instructions
    ® 69-7080-1TS INFINITI D A E A F 2003-06 G35 Coupe C V6-3.5L A G H TOOLS NEEDED: B Ratchet A Flat blade screw J driver I Pliers K 4” extension L 10mm socket 3mm allen wrench M N PARTS LIST Description Qty. Part # A Hose Clamp, #44 4 08560 F Cold-air Tube 1 27130 K Washer, 6mm 1 08269 B Hose, Step, Black 1 084031 G Hose Clamp #48 1 08601 L Vibration Mount 1 07027 C Short Ram Tube 1 27129 H Air filter 1 RU-4730 M Washer 1 1-3027 D Bolt; 4mm Caphead 2 07733 I Drycharger®, Black 1 RX-4730DK N Spacer, Nylock 1 06502 E Hose, Hump, Black 1 08696 J Nut, 6mm Nylock 1 07512 Warning: The K&N® Drycharger® included with this kit must be installed on the K&N® air filter when used with a K&N® Typhoon® cold air intake system. The K&N Typhoon intake system is a performance product that can be used safely during mild weather conditions. During harsh and inclement weather conditions, you must convert your cold air intake system to a short ram configuration, or return your vehicle to the stock OEM airbox and intake tract configuration. Failure to follow these instructions can void your warranty. NOTE: FAILURE TO FOLLOW INSTALLATION INSTRUCTIONS AND NOT USING THE PROVIDED HARDWARE MAY DAMAGE THE INTAKE TUBE, THROTTLE BODY AND ENGINE. TO START: 1. Turn the ignition OFF and disconnect the vehicle's negative battery cable. 6. Disconnect the mass air sensor electri- 9.
    [Show full text]
  • Not for Reproduction
    use back code C BRIGGS & STRATTON CORPORATION 1 2 16 3 718 46 615 Illustrated Parts List 404 VERTICAL CRANKSHAFT SHORT BLOCK ASSEMBLIES 616 792738, 792739, 792740, 792741, 792742, 792743 22 51 For use on Engine Model Series 120K00, 121K00, 122K00, 122L00, 146 163 9 123J00, 123K00, 124K00, 124L00, 741 125K00,126L00, 127H00, 128H00, 617 128L00, 129H00 7 668 842 INSTRUCTIONS 883 To obtain the correct part numbers for an engine 869 45 40 4 which has been rebuilt with a Short Block Assem- 870 36 524 bly, follow these instructions: 871 868 45 684 12 A. For all parts shown in the illustrated view to the 40 28 33 left, use this Parts List. 35 584 B. For all other parts, refer to the Illustrated Parts 34 List which is appropriate for your engine by 27 Model, Type and Code (Serial) Number. 585 TO INSTALLER: GIVE THIS PARTS LIST TO 25 27 CUSTOMER AFTER SHORT BLOCK INSTALLATION. 43 51A 15 20 THIS IPL IS SPECIFIC TO THE SHORT 29 BLOCK(S) LISTED. RETAIN FOR FUTURE PARTS REFERENCE. 26 32 32A REF. PART REF. PART REF. PART NO. NO. DESCRIPTION NO. NO. DESCRIPTION NO. NO. DESCRIPTION 1 697322 Cylinder Assembly 25 797302 Piston Assembly 524 692296 Seal−Dipstick Tube 2 399269 Kit−Bushing/Seal (Mag- (Standard) 585 691879 Gasket−Breather Passage neto Side) for 797303 Piston Assembly 615 690340 Retainer−Governor Shaft 3 299819s Seal−Oil (.020” Oversize) 616 698801 Crank−Governor (Magneto Side) 26 797304 Ring Set (Standard) 617 270344s Seal−O Ring 4 493279 Sump−Engine 797305 Ring Set (Intake Manifold) −−−−−−− Note −−−−− (.020” Oversize) 668 493823 Spacer 696294
    [Show full text]
  • India's New-Age Jeep
    MOBILITY ENGINEERINGTM AUTOMOTIVE, AEROSPACE, OFF-HIGHWAY A quarterly publication of and Alt-fuels for aircraft India’s new-age Jeep What lies ahead IC’s next big thing Tata to build Safari Storme Achates Power’s opposed-piston for Indian Armed Forces engine heads for production Volume 4, Issue 2 June 2017 ME AR Associates Ad 0617.qxp_Mobility FP 4/4/17 5:07 PM Page 1 Why AR Solid State Pulsed Amplifi ers Should Be On Your Radar For automotive and military EMC radiated immunity susceptibility testing, as well as radar and communication applications, there is now a very attractive alternative to Traveling Wave Tube Amplifi ers (TWTA’s). AR’s new offerings include various frequency ranges and output power levels to meet several standards, or Nine New designs can be tailored to suit your specifi c application. These amplifi ers feature a touchscreen control panel, Amplifi ers GPIB interface, TTL gating, fault monitoring, and forced air cooling. Recently Added! Features & Benefi ts For These Rugged Amplifi ers Are: t Octave Frequencies: 1-2 GHz and 2-4 GHz t Narrowband Frequencies: 1.2-1.4 GHz & 2.7-3.1 GHz t Power Levels: 1 kW to 150 kW Watch Our Pulsed Amps Video Visit www.arworld.us/pavid or t Harmonic Distortion of -18dBc @ 1dB compression point scan this page with the Layar app t Pulse Widths to 100 μsec. & Duty Cycles to 10% to watch on your mobile device. t High Mean Time To Failure (MTTF) t Mismatch Tolerance - Will operate without damage or oscillation with any magnitude and phase of source and load impedance t Numerous Applications Possible - Automotive, MIL STD 464, DO-160 and Military Radar To learn more, visit www.arworld.us/pulsedamps and download Application Note #72A or call us at 215-723-8181.
    [Show full text]
  • Timing Belt Replacement 2008 Audi A4 2.0Tdi
    Tech Tips Timing belt Malcolm Short, Schaeffler 2008 Audi A4 2.0TDi The Audi A4 may sound like a daunting vehicle on which to change a cambelt, but with a little know how and the appropriate tools, it will prove to be an ideal repair. INA takes a closer look at this popular model. n this article we tackle the A4 2.0TDi, plug connectors on both sides (fig 2) . Iwith an engine code of CAGA. The Remove the bumper by removing the engine on this vehicle has been two bolts one in each wheel arch (fig 3) identified as an interference type, so the and the two bolts from the brackets likelihood of engine damage, if the one on each side next to the headlights cambelt breaks is very high. It is very (fig 4) . Disconnect both headlight multi important that the belt installation is plugs and the bonnet release sensor performed on a cold engine, so plan the wire. Disconnect the bonnet release job carefully. Always turn the engine in cable. Remove two bolts located on the the normal direction of rotation only top of the modular front end (MFE), (unless advised otherwise by the OEM next to the headlights. Remove the fitting instructions), recommended bolts, there are three on each side on manufacturers torque values should the longitudinal member, and replace always be used and it is recommended the top two bolts on each side with to change the tensioners and the either a longer bolt or all thread to slide pulleys when replacing the cambelt. 2 the MFE into its service position.
    [Show full text]
  • Flow Through a Throttle Body a Comparative Study of Heat Transfer, Wall Surface Roughness and Discharge Coefficient
    Flow Through a Throttle Body A Comparative Study of Heat Transfer, Wall Surface Roughness and Discharge Coefficient LIU-IEI-TEK-A–07/0071-SE Per Carlsson, Linköping February 23, 2007 Copyright The publishers will keep this document online on the Internet – or its possible replace- ment – for a period of 25 years starting from the date of publication barring exceptional circumstances. The online availability of the document implies permanent permission for anyone to read, to download, or to print out single copies for his/her own use and to use it unchanged for non-commercial research and educational purposes. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional upon the consent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility. Accord- ing to intellectual property law, the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement. For additional information about Linköping University Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its www home page: http://www.ep.liu.se/. c 2007 Per Carlsson. Abstract When designing a new fuel management system for a spark ignition engine the amount of air that is fed to the cylinders is highly important. A tool that is being used to improve the performance and reduce emission levels is engine modeling were a fuel management system can be tested and designed in a computer environment thus saving valuable setup time in an engine test cell.
    [Show full text]
  • Banks Ram-Air® Intake System
    Banks Ram-Air® Intake System 1997-2006 Jeep 4.0L THIS MANUAL IS FOR USE WITH KITS 41816 Gale Banks Engineering 546 Duggan Avenue • Azusa, CA 91702 (626) 969-9600 • Fax (626) 334-1743 Product Information & Sales: (888) 635-4565 bankspower.com ©2009 Gale Banks Engineering 02/17/09 PN 96575 v.3.0 General Installation Practices 5. Route and tie wires and hoses Dear Customer, a minimum of 6 inches away from If you have any questions exhaust heat, moving parts and sharp concerning the installation of edges. Clearance of 8 inches or more your Banks Ram-Air System, is recommended where possible. please call our Technical Service 6. During installation, keep the Hotline at (888) 839-2700 work area clean. If foreign debris between 7:00 am and 5:00 pm is transferred to any Banks system (PT). If you have any questions component, clean it thoroughly before relating to shipping or billing, installing. please contact our Customer Service Department at 7. When raising the vehicle, support (888) 839-5600. it on properly weight-rated safety stands, ramps or a commercial hoist. Thank you.1 Follow the manufacturer’s safety precautions. Take care to balance the vehicle to prevent it from slipping or 1. For ease of installation of your falling. When using ramps, be sure the Banks Ram-air intake system, front wheels are centered squarely on familiarize yourself with the procedure the topsides; put the transmission in by reading the entire manual before park; set the parking brake; and place starting work. This manual contains blocks behind the rear wheels.
    [Show full text]
  • 3.4L (DOHC) Engine Mechanical Specifications
    60DegreeV6.com 3.4L (DOHC) Engine Mechanical Specifications Millimeters Inches Application General Data Engine Type -- 60° V-6 Displacement -- 240 Cu In Liter (VIN) -- 3.4 (X) RPO -- LQ1 Bore 92 3.622 Stroke 84 3.307 Deck Height 224 8.818 Compression Ratio -- 9.50:1 Firing Order -- 1-2-3-4-5-6 Oil Pressure @ Operating 103 kPa @ 1100 RPM 15 psi min @ 1100 RPM Temperature Cylinder Bore Diameter 92.020-92.038 3.6228-3.6235 Out Of Round Maximum 0.010 0.0004 Taper -- Thrust Side Maximum 0.013 0.00051 Center Distance 111.76 4.4 Piston Diameter-gauged at skirt 91.985-92.000 3.6215-3.6220 10.44 mm (0.413 in) below centerline of piston pin bore Clearance 0.020-0.052 0.0008-0.0020 Pin Bore 23.003-23.010 0.9056-0.9059 Piston Ring Compression Groove 0.033-0.079 0.0013-0.0031 Clearance 1st and 2nd Gap (at gauge diameter) 1st 0.20-0.45 0.008-0.018 1 60DegreeV6.com Gap (at gauge diameter) 2nd 0.56-0.81 0.022-0.032 Oil Groove Clearance 0.028-0.206 0.0011-0.0081 Gap (segment at gauge 0.25-0.76 0.0098-0.0299 diameter) Tension 1st 27.6 N 6.2 lbs Tension 2nd 19.8 N 4.5 lbs Tension Oil 31.2 N 7.0 lbs Piston Pin Diameter 22.9915-22.9964 0.9052-0.9054 Clearance 0.0066-0.0185 0.00026-0.00073 Fit In Rod 0.0165-0.0464 0.0006-0.0018 Crankshaft Main Journal Diameter-All 67.239-67.257 2.6472-2.6479 Taper-Maximum 0.005 0.0002 Out Of Round-Maximum 0.005 0.0002 Cylinder Block Main Bearing 72.155-72.168 2.8407-2.8412 Bore Diameter Crankshaft Main Bearing Inner 67.289-67.316 2.6492-2.6502 Diameter Main Bearing Clearance 0.019-0.064 0.0008-0.0025 Main Thrust Bearing Clearance
    [Show full text]
  • K&N 69-6020TS Air Intake Kit Installation Instructions
    Warning: Please follow these installation instructions carefully. The K&N Drycharger included with this kit must be installed on the K&N air filter when used with a K&N Typhoon Cold Air Intake System. The K&N Typhoon Intake System is a performance product that can be used safely during mild weather conditions. During harsh and inclement weather conditions, you must convert your Cold Air Intake System to a short ram configuration, or return your vehicle to the stock OEM airbox and intake tract configuration. Failure to follow these instructions can void your warranty. INSTALLATION INSTRUCTIONS C 69-6020 A D A Stock mass air sensor Mazda A H B G 2002-03 Protege 5, MP3 A I G L4-2.0L J F TOOLS NEEDED: A N K M A L A D Flat Blade screwdriver Phillips screwdriver A P Pliers G 10mm wrench O G R 12mm wrench Q 13mm wrench S 14mm wrench 4mm Allen wrench Prior to the installation process, please inspect the contents of this package to ensure that all parts are included in this kit. T Please see parts list for description and quantities. Parts List U Description Qty. P/N Description Qty. P/N TO START: A Hose Clamp, #44 8 08560 N Typhoon Cold Air Tube 1 27099 B Silicone Hose, Black 1 08441 O 6mm Hex Bolt, 12mm L. 1 07727 1. Turn the ignition OFF and disconnect C Typhoon Throttle Body Tube 1 27097 P 6mm Nylock Nut 1 07512 the vehicle's negative battery cable. D Silicone Step Hose, Black 2 084016 Q 6mm Rubber Mounted Stud 1 07027 F "Z" Bracket, Large 1 070028 R "Z" Bracket, Small 1 070027 G Flat Washer 5 08269 S Hose Clamp, #40 1 08554 H "L" Bracket 1 070029 T Filtercharger 1 KRU4950E I 6mm Hex Bolt, 16mm L.
    [Show full text]
  • AREVA Design Control Document Rev. 4
    U.S. EPR FINAL SAFETY ANALYSIS REPORT 9.5.8 Diesel Generator Air Intake and Exhaust System The diesel generator air intake and exhaust system (DGAIES) provides the diesel engine with combustion air from the outside. The combustion air passes through a filter, silencer, and heater before being compressed by a turbocharger and cooled by the coolant system before entering the individual cylinders for combustion. The exhaust gas system collects the exhaust gas from the individual cylinders and conveys them via the engine-mounted turbocharger, emissions equipment, and an exhaust gas silencer to the outside. 9.5.8.1 Design Basis The design of the system and EPGB establishes that the arrangement and location of the combustion air intake and exhaust gas discharge are such that dilution and contamination of the intake air will not prevent operation of the EDG at rated power output or cause engine shutdown as a consequence of any metrological or accident condition. Each EDG set has a separate, independent diesel engine combustion air and exhaust gas system, as shown in Figure 9.5.8-1—Emergency Diesel Generator Air Intake and Exhaust System. ● The safety-related portions of the DGAIES are designed in accordance with Seismic Category I. Safety-related systems are required to function following a DBA, and are required to achieve and maintain a safe shutdown condition. ● Safety functions can be performed, assuming a single active component failure coincident with the LOOP (GDC 17). ● None of the safety-related components of the DGAIES are shared with any other division or unit (GDC 5).
    [Show full text]
  • Trick Flow Specialties—Your Source for Ultimate Bolt-On Performance!™
    Trick Flow Specialties—Your Source for Ultimate Bolt-On Performance!™ Ultimate Bolt-On Performance There’s only one name you need to know when it comes to high performance—Trick Flow Specialties. Trick Flow products give automotive enthusiasts and racers the edge they need to compete and win. Trick Flow engineers use advanced 3D solid modeling and Computer-Aided Design (CAD) tools to design and analyze parts. Trick Flow machinists use state-of-the-art rapid prototyping and CNC-machining centers to turn those designs into high performance parts. Trick Flow’s in-house engine specialists evaluate components and engine combinations using extensive dynamometer, road, and race track data to guarantee all Trick Flow products will exceed your expectations for quality, durability, and performance. Your 2013 Trick Flow Specialties catalog has hundreds of performance products for classic, late model muscle, and race cars: cylinder heads, intake manifolds, camshaft and valvetrain components, nitrous kits, valve covers, and much more. And every single one is designed with one goal in mind—providing you with Ultimate Bolt-On Performance!™ Engine Science—Dynomometer Testing Trick Flow uses engine dynamometer (dyno) testing to compare the power-building effects of different parts and to tune engine combos for maximum performance. Because it measures engine brake torque, monitors a wide array of engine functions, and tests under controlled conditions, an engine dyno provides very accurate data for repeatable results. These are the results you see in the dyno charts listed throughout this catalog. Engine dynos make better engine tuning tools than chassis dynos. Chassis dynos are best for tuning vehicle set-ups because they measure the overall efficiency of the vehicle’s drivetrain (the engine plus the transmission, driveshaft, axle, wheels, and tires).
    [Show full text]