Gical Argwnentsmaybe Incorrect, but the Research Paradigm Is Notintrinsicallyflawed

Total Page:16

File Type:pdf, Size:1020Kb

Gical Argwnentsmaybe Incorrect, but the Research Paradigm Is Notintrinsicallyflawed Kroeber Anthropological Society Papers, Nos. 71-72, 1990 Is Sociobiology Methodologically Flawed? P. Thomas Schoenemann The argument between human sociobiologists and their critics is a case ofcompeting paradigms. Two frequent criticisms ofsociobiology are: 1) it is inherently dangerous to assume that biology has an important influence on behavior; and 2) the assumption ofevolutionary adaptation is a methodological error. These criticisms are aimed at the underlying assumptions of sociobiology with the intent of demonstrating that sociobiology isfundamentallyflawed. It is argued that thefirst criticism disregards examples ofhwnan suffering that have occurred because ofan ignorance ofbiology and insteadfocuses exclusively on suffering that has occurred because ofa misuse ofbiology, while the second criticism represents a misunderstanding ofthe nature ofevolutionary biological research. Individual sociobiolo- gical argwnents may be incorrect, but the researchparadigm is not intrinsicallyflawed. INTRODUCTION sociobiology suffers from serious methodologi- cal flaws because it emphasizes a search for Human sociobiology means different things adaptations. As we shall see, however, this cri- to different people. The classic definition (Wil- ticism betrays a profound lack of insight into son 1975:2) states that sociobiology is "...the how the field of evolutionary biology allows us systematic study of the biological basis of all to understand the world around us. social behavior." Because it is recognized that an organism's biology evolved (as opposed to being specially created), sociobiology necessarily THE PURSUIT OF KNOWLEDGE involves an application of evolutionary biological principles to the understanding of social be- My basic argument will hinge on the fact that havior. There remains, however, an extreme humans are severely limited in their ability to diversity of views on sociobiology's goals, perceive and understand the complexity of the methods and accomplishments (or lack thereof, world around them. As scientists, we are con- depending on one's perspective). This can be fronted with a bewildering array of empirical traced to the fact that sociobiology deals with observations which no human is able to compre- something that no one can claim to be agnostic hend as a single unit. In order to make sense of about. You may not, for example, have a vested this knowledge, we have no option but to break it interest in the truths of ceramic tile heat conduc- down into smaller, manageable pieces. We use tion, or of cloud formation, but you are likely to hypotheses, or theoretical constructs (which in have some understanding of human behavior. turn derive from our current scientific paradigm; Because humans are highly interactive social ani- Kuhn 1970) to guide our explorations. Whether mals, one simply cannot afford to be ignorant of the history of scientific understanding has pro- other people's behavior. To its severest critics, ceeded in a tortuous and twisted route, as Kuhn human sociobiology is seen as a dangerous and (1970) has argued, or simply by a series of suc- misguided attempt to speculate on the limits to cessive modifications of existing theories, it is human behavior; so dangerous and misguided, in clear that the process requires intermediate steps. fact, that they feel it should be rejected out of Paradigms are constructed precisely because our hand as a research paradigm. How valid is this search for understanding proceeds at a snail's claim? pace through a series ofintermediate steps. Para- In this article I will assess two of the most digms serve not only to organize and make sense common a priori reasons for rejecting the of the mass of empirical observations, but be- sociobiological paradigm. The first criticism cause they represent ways of perceiving the emphasizes the potential negative effects of faulty world, they also serve to guide future research. studies that attempt to detect/explain biological Paradigms define which questions "make sense" influences on behavior. This viewpoint ignores to ask; that is, which questions are likely to pro- the other side of the coin, that there are serious vide meaning when answered. Even "holists" negative consequences to the assumption that (those who emphasize that the whole is more biology is irrelevant to behavior, even as a than the sum of its parts) reject the "...romantic working hypothesis. The second argument, ad- notions that one can grasp the functional intri- vanced by some evolutionary biologists, is that cacies of complex systems without conducting 50 scientific and technological studies of individual potential for the abuse of biological ideas in components" (Soule 1985:728). We simply can- political arenas, then any theories purporting to not go from a position of complete ignorance to explain human behavior should operate under the one ofcomplete knowledge in a single step. assumption that biology is irrelevant. It is impor- Human sociobiology is an attempt to explain tant to keep in mind that there are two basic types behavior within an evolutionary biological oferrors that can be made when discussing beha- framework, using exactly the same theoretical vior. The first error is to assume that biology is foundation that evolutionists have used to explain irrelevant when it is in fact relevant. The second morphological variation. In this sense, it repre- error is to assume that biology is relevant when it sents nothing more than a simple extension of a is in fact irrelevant. Critics of sociobiology feel much larger research program. The diversity of that this second kind of error is inherently more opinions about the merits of sociobiology stem dangerous (and likely) than the first. They feel from an extremely basic dichotomy (a conflict of that it is safer to ignore biology in discussions of paradigms) in how people choose to study be- human behavior than to acknowledge it. havior. There are those who are fundamentally That this fear is central to criticisms of interested in differences between human groups, sociobiology is evidenced by the opening chapter and consequently feel that cultural variability in- of Kitcher's (1985) critique of sociobiology. In dicates human transcendence over biology; and it he describes a policy in England which placed there are others who see meaning only in com- children into either academic or trade schools on mon underlying behavioral patterns, and are the basis of psychometric tests given at age ele- consequently more receptive to biological expla- ven. His point is that children were made to feel nations. like failures if they did not pass these tests, and These two basic points of view define quite that this quite possibly scarred them for life. In a nicely (but obviously only on a very general sense, he believes that the tests created the differ- level) the fundamental difference between the ences between children, rather then pinpointing sociocultural anthropology paradigm and the existing differences. He feels that the risks of as- evolutionary biology paradigm. No graduate stu- suming a biological basis ofbehavior are greater dent in sociocultural anthropology, for instance, than the potential benefits that such a belief might could get away with claiming that the people she bring, and therefore we should always operate studied in her fieldwork in East Africa were for under the assumption that biology is irrelevant. all practical purposes essentially the same as the Furthermore, he argues that we should hold re- Balinese. It is the nature of this field to empha- search on such subjects to a higher level of size uniqueness, and because of this, there is no scrutiny than other fields of inquiry. As Kitcher unifying theme that ties the field together, save (1985) wrote: the omnipotence of culture. In contrast, it is the nature ofevolutionary biology to emphasize com- If a single scientist, or even the whole monalities, links and underlying threads. A community of scientists, comes to graduate student in zoology could not get away adopt an incorrect view ofthe origins of with studying desert pupfish without putting a distant galaxy, an inadequate model of them into an evolutionary framework. Evolu- foraging behavior in ants, or a crazy tionary biology, like the rest of the natural explanation of the extinction of the sciences, is a field that attempts to explain the dinosaurs, then the mistake will not greatest number of differences with the least prove tragic. By contrast, if we are number of principles. Human sociobiology is wrong about the bases of human social nothing more than the application ofevolutionary behavior, if we abandon the goal of a biological analyses to human behavior (Ruse fair distribution of the benefits and 1985; Barash 1977), and therefore shares all the burdens of society because we accept detriments as well as all the benefits ofthis larger faulty hypotheses about ourselves and paradigm. our evolutionary history, then the con- sequences of a scientific mistake may be grave indeed (1985:9). THE DANGER OF BIOLOGY There is nothing wrong with the argument Perhaps the most frequent criticism of that we should weigh the costs and benefits of sociobiology stems from the historical record of implementing policies and doing research. The abuse of biology to support racist, ethnocentrist question is whether the second kind of error and sexist ideologies. The argument is that (being wrong in assuming that biological because there is, and has historically been, such a differences influence a particular
Recommended publications
  • Animal Behaviour, Animal Welfare and the Scientific Study of Affect
    WellBeing International WBI Studies Repository 5-2009 Animal Behaviour, Animal Welfare and the Scientific Study of Affect David Fraser University of British Columbia Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/emotio Part of the Animal Studies Commons, Comparative Psychology Commons, and the Other Animal Sciences Commons Recommended Citation Fraser, D. (2009). Animal behaviour, animal welfare and the scientific study of affect. Applied Animal Behaviour Science, 118(3), 108-117. This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact [email protected]. Animal Behaviour, Animal Welfare and the Scientific Study of Affect David Fraser University of British Columbia KEYWORDS animal behaviour, animal welfare, affect, emotion, qualitative research ABSTRACT Many questions about animal welfare involve the affective states of animals (pain, fear, distress) and people look to science to clarify these issues as a basis for practices, policies and standards. However, the science of the mid twentieth century tended to be silent on matters of animal affect for both philosophical and methodological reasons. Philosophically, under the influence of Positivism many scientists considered that the affective states of animals fall outside the scope of science. Certain methodological features of the research also favoured explanations that did not involve affect. The features included the tendency to rely on abstract, quantitative measures rather than description, to use controlled experiments more than naturalistic observation, and to focus on measures of central tendency (means, medians) rather than individual differences.
    [Show full text]
  • Functional Aspects of Emotions in Fish
    Behavioural Processes 100 (2013) 153–159 Contents lists available at ScienceDirect Behavioural Processes jou rnal homepage: www.elsevier.com/locate/behavproc Functional aspects of emotions in fish ∗ Silje Kittilsen Norwegian School of Veterinary Science, Norway a r t i c l e i n f o a b s t r a c t Article history: There is an ongoing scientific discussion on whether fish have emotions, and if so how they experience Received 19 March 2013 them? The discussion has incorporated important areas such as brain anatomy and function, physiological Received in revised form and behavioural responses, and the cognitive abilities that fish possess. Little attention has however, been 10 September 2013 directed towards what functional aspects emotions ought to have in fish. If fish have emotions – why? Accepted 11 September 2013 The elucidation of this question and an assessment of the scientific evidences of emotions in fish in an evolutionary and functional framework would represent a valuable contribution in the discussion on Keywords: whether fish are emotional creatures. Here parts of the vast amount of literature from both biology and Emotions Behaviour psychology relating to the scientific field of emotions, animal emotion, and the functional aspects that Cognition emotions fulfil in the lives of humans and animals are reviewed. Subsequently, by viewing fish behaviour, Psychology physiology and cognitive abilities in the light of this functional framework it is possible to infer what Fish functions emotions may serve in fish. This approach may contribute to the vital running discussion on Evolution the subject of emotions in fish. In fact, if it can be substantiated that emotions are likely to serve a function in fish similar to that of other higher vertebrate species, the notion that fish do have emotions will be strengthened.
    [Show full text]
  • AVMA Guidelines for the Euthanasia of Animals: 2020 Edition*
    AVMA Guidelines for the Euthanasia of Animals: 2020 Edition* Members of the Panel on Euthanasia Steven Leary, DVM, DACLAM (Chair); Fidelis Pharmaceuticals, High Ridge, Missouri Wendy Underwood, DVM (Vice Chair); Indianapolis, Indiana Raymond Anthony, PhD (Ethicist); University of Alaska Anchorage, Anchorage, Alaska Samuel Cartner, DVM, MPH, PhD, DACLAM (Lead, Laboratory Animals Working Group); University of Alabama at Birmingham, Birmingham, Alabama Temple Grandin, PhD (Lead, Physical Methods Working Group); Colorado State University, Fort Collins, Colorado Cheryl Greenacre, DVM, DABVP (Lead, Avian Working Group); University of Tennessee, Knoxville, Tennessee Sharon Gwaltney-Brant, DVM, PhD, DABVT, DABT (Lead, Noninhaled Agents Working Group); Veterinary Information Network, Mahomet, Illinois Mary Ann McCrackin, DVM, PhD, DACVS, DACLAM (Lead, Companion Animals Working Group); University of Georgia, Athens, Georgia Robert Meyer, DVM, DACVAA (Lead, Inhaled Agents Working Group); Mississippi State University, Mississippi State, Mississippi David Miller, DVM, PhD, DACZM, DACAW (Lead, Reptiles, Zoo and Wildlife Working Group); Loveland, Colorado Jan Shearer, DVM, MS, DACAW (Lead, Animals Farmed for Food and Fiber Working Group); Iowa State University, Ames, Iowa Tracy Turner, DVM, MS, DACVS, DACVSMR (Lead, Equine Working Group); Turner Equine Sports Medicine and Surgery, Stillwater, Minnesota Roy Yanong, VMD (Lead, Aquatics Working Group); University of Florida, Ruskin, Florida AVMA Staff Consultants Cia L. Johnson, DVM, MS, MSc; Director,
    [Show full text]
  • 1 "Principles of Phylogenetics: Ecology
    "PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION" Integrative Biology 200 Spring 2016 University of California, Berkeley D.D. Ackerly March 7, 2016. Phylogenetics and Adaptation What is to be explained? • What is the evolutionary history of trait x that we see in a lineage (homology) or multiple lineages (homoplasy) - adaptations as states • Is natural selection the primary evolutionary process leading to the ‘fit’ of organisms to their environment? • Why are some traits more prevalent (occur in more species): number of origins vs. trait- dependent diversification rates (speciation – extinction) Some high points in the history of the adaptation debate: 1950s • Modern Synthesis of Genetics (Dobzhansky), Paleontology (Simpson) and Systematics (Mayr, Grant) 1960s • Rise of evolutionary ecology – synthesis of ecology with strong adaptationism via optimality theory, with little to no history; leads to Sociobiology in the 70s • Appearance of cladistics (Hennig) 1972 • Eldredge and Gould – punctuated equilibrium – argue that Modern Synthesis can’t explain pervasive observation of stasis in fossil record; Gould focuses on development and constraint as explanations, Eldredge more on ecology and importance of migration to minimize selective pressure 1979 • Gould and Lewontin – Spandrels – general critique of adaptationist program and call for rigorous hypothesis testing of alternatives for the ‘fit’ between organism and environment 1980’s • Debate on whether macroevolution can be explained by microevolutionary processes • Comparative methods
    [Show full text]
  • Testing Darwin's Hypothesis About The
    vol. 193, no. 2 the american naturalist february 2019 Natural History Note Testing Darwin’s Hypothesis about the Wonderful Venus Flytrap: Marginal Spikes Form a “Horrid q1 Prison” for Moderate-Sized Insect Prey Alexander L. Davis,1 Matthew H. Babb,1 Matthew C. Lowe,1 Adam T. Yeh,1 Brandon T. Lee,1 and Christopher H. Martin1,2,* 1. Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599; 2. Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720 Submitted May 8, 2018; Accepted September 24, 2018; Electronically published Month XX, 2018 Dryad data: https://dx.doi.org/10.5061/dryad.h8401kn. abstract: Botanical carnivory is a novel feeding strategy associated providing new ecological opportunities (Wainwright et al. with numerous physiological and morphological adaptations. How- 2012; Maia et al. 2013; Martin and Wainwright 2013; Stroud ever, the benefits of these novel carnivorous traits are rarely tested. and Losos 2016). Despite the importance of these traits, our We used field observations, lab experiments, and a seminatural ex- understanding of the adaptive value of novel structures is of- periment to test prey capture function of the marginal spikes on snap ten assumed and rarely directly tested. Frequently, this is be- traps of the Venus flytrap (Dionaea muscipula). Our field and labora- cause it is difficult or impossible to manipulate the trait with- fi tory results suggested inef cient capture success: fewer than one in four out impairing organismal function in an unintended way; prey encounters led to prey capture. Removing the marginal spikes de- creased the rate of prey capture success for moderate-sized cricket prey however, many carnivorous plant traits do not present this by 90%, but this effect disappeared for larger prey.
    [Show full text]
  • Exapting Exaptation
    Spotlight Exapting exaptation 1 2 3 3 Greger Larson , Philip A. Stephens , Jamshid J. Tehrani , and Robert H. Layton 1 Durham Evolution and Ancient DNA, Department of Archaeology, Durham University, South Road, Durham, DH1 3LE, UK 2 School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK 3 Department of Anthropology, Durham University, South Road, Durham, DH1 3LE, UK The term exaptation was introduced to encourage biol- As a result, all adaptations can also be said to be exapta- ogists to consider alternatives to adaptation to explain tions, thus rendering the term redundant [4]. the origins of traits. Here, we discuss why exaptation has proved more successful in technological than biological Technology and the exaptation of exaptation contexts, and propose a revised definition of exaptation Despite failing to catch on in evolutionary biology, exapta- applicable to both genetic and cultural evolution. tion has been adopted with considerable success in studies of the history of technology [5]. Technological innovations frequently involve the use of a process or artefact in a new The rise and fall of biological exaptation context [6]. A classic example is microwave radiation, Last year marked a decade since the death of Stephen Jay which was originally used in the radar magnetron to Gould, and 30 years since the publication of one of his most intercept and reflect off target objects, and was subse- provocative challenges to orthodox evolutionary theory quently exapted as a means to heat food. Similarly, tech- [1,2]. Concerned about a perceived lack of rigour, Gould, nologies that were initially developed as part of NASA’s together with Elizabeth Vrba, introduced a vocabulary space research program were later exploited for new com- intended to undermine the primacy of adaptation for mercial uses.
    [Show full text]
  • Book of Abstracts
    Dr. John Miller (University of Sheffield) Animals, Capital, Literature and the Victorians: Writing the Fur Trade The difference between what we think of as ‘animal’ and what we think of as ‘human’ is routinely conceptualised as a fullness on the side of the human against a poverty on the side of the animal. In response, animal studies, in its emergence over the last twenty years or so, has set about dismantling this crude logic and broadening the scope of humanities research to include the nonhuman. Although at this juncture of the twenty first century, animal studies has the status of an emerging field of study, many of its central concerns are significant ingredients of nineteenth-century thought. Evolutionary theory radically destabilised entrenched ideas of human–animal difference; animal advocacy flowered, through the work of the RSPCA, the vegetarian society and the humanitarian League amongst others; the connections of discourses of species to discourses of race, class and gender became increasingly clear, and increasingly subject to debate, as the century progressed. At the same time, the use of animal bodies in a developing commodity culture accelerated to a remarkable degree, marking the Victorian period, in particular, as an era of extraordinary violence. This paper explores one of the most disturbing examples of this objectification of animal life: the global fur trade. I am interested especially in the ways in which literary fiction both bolstered and contested the conceptions of value behind the fur trade’s commodifying processes. How, I ask, do literature and capital entwine in the imagining of animals as resources to be consumed? Simone Rebora (Università di Verona) “It’s as semper as oxhousehumper!” James Joyce’s animalisation of the human Few animals can be met through the works of James Joyce.
    [Show full text]
  • Evolution # 6 Tempoandmode
    Bio 1B Lecture Outline (please print and bring along) Fall, 2008 B.D. Mishler, Dept. of Integrative Biology 2-6810, [email protected] Evolution lecture #6 -- Tempo and Mode in Macroevolution -- Nov. 14th, 2008 Reading: pp. 521-531 (ch. 25) 8th ed. pp. 480-488 (ch. 24) 7th ed. • Summary of topics • Define and contrast adaptation and exaptation • Give examples of how adaptive radiations lead to diversity within an evolutionary lineage • Give examples of how convergent evolution shows the action of selection on organisms that are not closely related but have a shared way of life • Contrast punctuated equilibria and gradualism • Describe the features of developmental changes that can lead to evolution ("evo-devo") • Define macroevolution • Adaptation Adaptation: Based on the observation that organism matches environment closely. Darwin & many Darwinians thought that all structures must be adaptive for something. But, this has come under severe challenge in recent years. Not all structures and functions are adaptive. Some matches between organism and environment are accidental, or the causality is reverse (i.e., the structure came first, function much later). • By definition, an adaptation in a formal sense requires fulfillment of four different tests: Engineering. Structure must indeed function in hypothesized sense. Heritability. Differences between organisms must be passed on to offspring. Natural Selection. Difference in fitness must occur because of differences in the hypothesized adaptation. Phylogeny. Hypothesized adaptive state must have evolved in the context of the hypothesized cause. Think in terms of problem (e.g., environmental change) and solution (adaptation). Requires correct phylogenetic polarity (i.e., correct sequence of events on a cladogram).
    [Show full text]
  • Ingestion and Nutrient Utilization
    INGESTION AND NUTRIENT UTILIZATION 9·1 VARIATIONS IN NUTRIENT INTAKE There is a continuous flow of nutrients through the metabolic pathways in an animal-range relationship. There is variation in both the ingestion rate and the turnover rate of different forages as the food is processed by the animal. A time lag also occurs in the conversion of forage to metabolically useful energy for activity and tissue synthesis. An analysis of the characteristics associated with ingestion and the subsequent use of food material provides an understanding of the chemical communication between the animal and its range at a fundamental life-support level. SEASONAL VARIATIONS. Wild ruminants exhibit seasonal differences in the rate of ingestion of different forages. The general pattern observed by many investi­ gators shows a marked drop in consumption that begins ~ n the fall and continues through the winter, with a reversal in the trend in the spring and summer. Males show a greater reduction than females. Silver (unpublished data) reports a 60% decline in intake from September through March for penned adult white-tailed deer on a pelleted diet of grains and alfalfa. Fowler, Newsom, and Short (1967) observed a decline in food consumption of white-tailed deer in Louisiana during the winter, accompanied by a 10% weight loss in bucks and a 3% weight loss in does. A decline in both feeding activity and cedar consumption was recorded for penned animals at the Cusino Wildlife Research Station in Upper Michigan during January and February (Ozoga and Verme 1970). 164 9·1 VAR IATIONS IN NUTRIENT INTAKE 165 Nordan, Cowan, and Wood (1968) have studied the intake of black-tailed deer through several annual cycles, and they observed a very obvious decline in feed intake that begins when male deer exhibit rutting behavior.
    [Show full text]
  • Exaptation, Grammaticalization, and Reanalysis
    Heiko Narrog Tohoku University Exaptation, Grammaticalization, and Reanalysis Abstract The goal of this paper is to argue that exaptation, as introduced into the study of language change by Lass (1990, 1997), in specific functional domains, is a limited alternative to grammaticalization. Exaptation, similarly to grammaticalization, leads to the formation of grammatical elements. Like grammaticalization, exaptation is based on the mechanism of reanalysis. It decisively differs from grammaticalization, however, as it implies change in the opposite direction, namely from material absorbed in the lexicon back to grammatical material. Two sets of data are presented as evidence for the replicability of this process. One involves the occurrence of exaptation across languages in a specific semantic domain, namely, the evolution of morphological causatives out of lexical verb patterns. The other data pertain to recurrent processes of exaptation in one language, namely in Japanese, where exaptation figures in the development of various morphological categories. In all cases of exaptation, reanalysis is crucially involved. This serves to show that reanalysis may be more fundamental to grammatical change than both grammaticalization and exaptation. Furthermore, it allows for change both with the usual directionality of grammaticalization and against it. 1. Introduction Even detractors of grammaticalization theory do not seriously challenge the fact that in the majority of cases the morphosyntactic and semantic development of grammatical material follows the paths outlined in the standard literature on grammaticalization. The two following California Linguistic Notes Volume XXXII No. 1 Winter, 2007 2 issues, however, potentially pose a critical challenge to the validity of the theory. First, there is the question of the theoretical status of grammaticalization as a coherent and unique concept.
    [Show full text]
  • Exaptation-A Missing Term in the Science of Form Author(S): Stephen Jay Gould and Elisabeth S
    Paleontological Society Exaptation-A Missing Term in the Science of Form Author(s): Stephen Jay Gould and Elisabeth S. Vrba Reviewed work(s): Source: Paleobiology, Vol. 8, No. 1 (Winter, 1982), pp. 4-15 Published by: Paleontological Society Stable URL: http://www.jstor.org/stable/2400563 . Accessed: 27/08/2012 17:43 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Paleontological Society is collaborating with JSTOR to digitize, preserve and extend access to Paleobiology. http://www.jstor.org Paleobiology,8(1), 1982, pp. 4-15 Exaptation-a missing term in the science of form StephenJay Gould and Elisabeth S. Vrba* Abstract.-Adaptationhas been definedand recognizedby two differentcriteria: historical genesis (fea- turesbuilt by naturalselection for their present role) and currentutility (features now enhancingfitness no matterhow theyarose). Biologistshave oftenfailed to recognizethe potentialconfusion between these differentdefinitions because we have tendedto view naturalselection as so dominantamong evolutionary mechanismsthat historical process and currentproduct become one. Yet if manyfeatures of organisms are non-adapted,but available foruseful cooptation in descendants,then an importantconcept has no name in our lexicon (and unnamed ideas generallyremain unconsidered):features that now enhance fitnessbut were not built by naturalselection for their current role.
    [Show full text]
  • Exaptation, Adaptation, and Evolutionary Psychology
    Exaptation, Adaptation, and Evolutionary Psychology Armin Schulz Department of Philosophy, Logic, and Scientific Method London School of Economics and Political Science Houghton St London WC2A 2AE UK [email protected] (0044) 753-105-3158 Abstract One of the most well known methodological criticisms of evolutionary psychology is Gould’s claim that the program pays too much attention to adaptations, and not enough to exaptations. Almost as well known is the standard rebuttal of that criticism: namely, that the study of exaptations in fact depends on the study of adaptations. However, as I try to show in this paper, it is premature to think that this is where this debate ends. First, the notion of exaptation that is commonly used in this debate is different from the one that Gould and Vrba originally defined. Noting this is particularly important, since, second, the standard reply to Gould’s criticism only works if the criticism is framed in terms of the former notion of exaptation, and not the latter. However, third, this ultimately does not change the outcome of the debate much, as evolutionary psychologists can respond to the revamped criticism of their program by claiming that the original notion of exaptation is theoretically and empirically uninteresting. By discussing these issues further, I also seek to determine, more generally, which ways of approaching the adaptationism debate in evolutionary biology are useful, and which not. Exaptation, Adaptation, and Evolutionary Psychology Exaptation, Adaptation, and Evolutionary Psychology I. Introduction From a methodological point of view, one of the most well known accusations of evolutionary psychology – the research program emphasising the importance of appealing to evolutionary considerations in the study of the mind – is the claim that it is overly “adaptationist” (for versions of this accusation, see e.g.
    [Show full text]