Meander Migration Modeling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geomorphic Classification of Rivers
9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations. -
Seasonal Flooding Affects Habitat and Landscape Dynamics of a Gravel
Seasonal flooding affects habitat and landscape dynamics of a gravel-bed river floodplain Katelyn P. Driscoll1,2,5 and F. Richard Hauer1,3,4,6 1Systems Ecology Graduate Program, University of Montana, Missoula, Montana 59812 USA 2Rocky Mountain Research Station, Albuquerque, New Mexico 87102 USA 3Flathead Lake Biological Station, University of Montana, Polson, Montana 59806 USA 4Montana Institute on Ecosystems, University of Montana, Missoula, Montana 59812 USA Abstract: Floodplains are comprised of aquatic and terrestrial habitats that are reshaped frequently by hydrologic processes that operate at multiple spatial and temporal scales. It is well established that hydrologic and geomorphic dynamics are the primary drivers of habitat change in river floodplains over extended time periods. However, the effect of fluctuating discharge on floodplain habitat structure during seasonal flooding is less well understood. We collected ultra-high resolution digital multispectral imagery of a gravel-bed river floodplain in western Montana on 6 dates during a typical seasonal flood pulse and used it to quantify changes in habitat abundance and diversity as- sociated with annual flooding. We observed significant changes in areal abundance of many habitat types, such as riffles, runs, shallow shorelines, and overbank flow. However, the relative abundance of some habitats, such as back- waters, springbrooks, pools, and ponds, changed very little. We also examined habitat transition patterns through- out the flood pulse. Few habitat transitions occurred in the main channel, which was dominated by riffle and run habitat. In contrast, in the near-channel, scoured habitats of the floodplain were dominated by cobble bars at low flows but transitioned to isolated flood channels at moderate discharge. -
Variable Hydrologic and Geomorphic Responses to Intentional Levee Breaches Along the Lower Cosumnes River, California
Received: 21 April 2016 Revised: 29 March 2017 Accepted: 30 March 2017 DOI: 10.1002/rra.3159 RESEARCH ARTICLE Not all breaks are equal: Variable hydrologic and geomorphic responses to intentional levee breaches along the lower Cosumnes River, California A. L. Nichols1 | J. H. Viers1,2 1 Center for Watershed Sciences, University of California, Davis, California, USA Abstract 2 School of Engineering, University of The transport of water and sediment from rivers to adjacent floodplains helps generate complex California, Merced, California, USA floodplain, wetland, and riparian ecosystems. However, riverside levees restrict lateral connectiv- Correspondence ity of water and sediment during flood pulses, making the re‐introduction of floodplain hydrogeo- A. L. Nichols, Center for Watershed Sciences, morphic processes through intentional levee breaching and removal an emerging floodplain University of California, Davis, California, USA. restoration practice. Repeated topographic observations from levee breach sites along the lower Email: [email protected] Cosumnes River (USA) indicated that breach architecture influences floodplain and channel hydrogeomorphic processes. Where narrow breaches (<75 m) open onto graded floodplains, Funding information California Department of Fish and Wildlife archetypal crevasse splays developed along a single dominant flowpath, with floodplain erosion (CDFW) Ecosystem Restoration Program in near‐bank areas and lobate splay deposition in distal floodplain regions. Narrow breaches (ERP), Grant/Award Number: E1120001; The opening into excavated floodplain channels promoted both transverse advection and turbulent Nature Concervancy (TNC); Consumnes River Preserve diffusion of sediment into the floodplain channel, facilitating near‐bank deposition and potential breach closure. Wide breaches (>250 m) enabled multiple modes of water and sediment transport onto graded floodplains. -
Classifying Rivers - Three Stages of River Development
Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion. -
The Geography and Dialects of the Miwok Indians
UNIVERSITY OF CALIFORNIA PUBLICATIONS IN AMERICAN ARCHAEOLOGY AND ETHNOLOGY VOL. 6 NO. 2 THE GEOGRAPHY AND DIALECTS OF THE MIWOK INDIANS. BY S. A. BARRETT. CONTENTS. PAGE Introduction.--...--.................-----------------------------------333 Territorial Boundaries ------------------.....--------------------------------344 Dialects ...................................... ..-352 Dialectic Relations ..........-..................................356 Lexical ...6.................. 356 Phonetic ...........3.....5....8......................... 358 Alphabet ...................................--.------------------------------------------------------359 Vocabularies ........3......6....................2..................... 362 Footnotes to Vocabularies .3.6...........................8..................... 368 INTRODUCTION. Of the many linguistic families in California most are con- fined to single areas, but the large Moquelumnan or Miwok family is one of the few exceptions, in that the people speaking its various dialects occupy three distinct areas. These three areas, while actually quite near together, are at considerable distances from one another as compared with the areas occupied by any of the other linguistic families that are separated. The northern of the three Miwok areas, which may for con- venience be called the Northern Coast or Lake area, is situated in the southern extremity of Lake county and just touches, at its northern boundary, the southernmost end of Clear lake. This 334 University of California Publications in Am. Arch. -
Site Guide Reprinted from the Central Valley Bird Club Bulletin COSUMNES RIVER PRESERVE by John Trochet General Information: Co
Site Guide Reprinted from the Central Valley Bird Club Bulletin COSUMNES RIVER PRESERVE By John Trochet General information: Cosumnes River Preserve is a mosaic of wetlands, agricultural fields, grasslands, and the best remaining valley oak riparian woodland in California. The Preserve has 35,000 acres under management by The Nature Conservancy, Bureau of Land Management, Ducks Unlimited, County of Sacramento, and the California Departments of Fish and Game and Water Resources. It has been designated as a Globally Important Bird Area by the American Bird Conservancy and the National Audubon Society. Most of the Preserve is not open for public visitation. Opportunities for the public are described below. Directions: From the junction of Interstate 5 and Twin Cities Road about 22 miles south of Sacramento, go east 1 mile on Twin Cities Road to Franklin Blvd., and then south on Franklin Blvd. 1.3 miles to the parking lot for Willow Slough Trailhead on the left, 0.2 mile more to the parking lot for Lost Slough Boardwalk on the right, and then 0.2 mile more to the Visitor Center on the left. The Visitor Center is open from 9:00 a.m. to 5:00 p.m. Saturdays and Sundays, and sometimes on holidays. Directions for a Driving Tour are given in the next section. The birding: The Willow Slough Trail is a sampler of many of the habitats on the preserve, and is worth a visit at all seasons. It is, in my opinion, seriously under-birded. The trail makes a short descent from the parking lot, and is thereafter nearly level for the whole of its 3.3 mile length. -
Belt Width Delineation Procedures
Belt Width Delineation Procedures Report to: Toronto and Region Conservation Authority 5 Shoreham Drive, Downsview, Ontario M3N 1S4 Attention: Mr. Ryan Ness Report No: 98-023 – Final Report Date: Sept 27, 2001 (Revised January 30, 2004) Submitted by: Belt Width Delineation Protocol Final Report Toronto and Region Conservation Authority Table of Contents 1.0 INTRODUCTION......................................................................................................... 1 1.1 Overview ............................................................................................................... 1 1.2 Organization .......................................................................................................... 2 2.0 BACKGROUND INFORMATION AND CONTEXT FOR BELT WIDTH MEASUREMENTS …………………………………………………………………...3 2.1 Inroduction............................................................................................................. 3 2.2 Planform ................................................................................................................ 4 2.3 Meander Geometry................................................................................................ 5 2.4 Meander Belt versus Meander Amplitude............................................................. 7 2.5 Adjustments of Meander Form and the Meander Belt Width ............................... 8 2.6 Meander Belt in a Reach Perspective.................................................................. 12 3.0 THE MEANDER BELT AS A TOOL FOR PLANNING PURPOSES............................... -
Modification of Meander Migration by Bank Failures
JournalofGeophysicalResearch: EarthSurface RESEARCH ARTICLE Modification of meander migration by bank failures 10.1002/2013JF002952 D. Motta1, E. J. Langendoen2,J.D.Abad3, and M. H. García1 Key Points: 1Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, • Cantilever failure impacts migration 2National Sedimentation Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Oxford, Mississippi, through horizontal/vertical floodplain 3 material heterogeneity USA, Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA • Planar failure in low-cohesion floodplain materials can affect meander evolution Abstract Meander migration and planform evolution depend on the resistance to erosion of the • Stratigraphy of the floodplain floodplain materials. To date, research to quantify meandering river adjustment has largely focused on materials can significantly affect meander evolution resistance to erosion properties that vary horizontally. This paper evaluates the combined effect of horizontal and vertical floodplain material heterogeneity on meander migration by simulating fluvial Correspondence to: erosion and cantilever and planar bank mass failure processes responsible for bank retreat. The impact of D. Motta, stream bank failures on meander migration is conceptualized in our RVR Meander model through a bank [email protected] armoring factor associated with the dynamics of slump blocks produced by cantilever and planar failures. Simulation periods smaller than the time to cutoff are considered, such that all planform complexity is Citation: caused by bank erosion processes and floodplain heterogeneity and not by cutoff dynamics. Cantilever Motta, D., E. J. Langendoen, J. D. Abad, failure continuously affects meander migration, because it is primarily controlled by the fluvial erosion at and M. -
Meander Bend Migration Near River Mile 178 of the Sacramento River
Meander Bend Migration Near River Mile 178 of the Sacramento River MEANDER BEND MIGRATION NEAR RIVER MILE 178 OF THE SACRAMENTO RIVER Eric W. Larsen University of California, Davis With the assistance of Evan Girvetz, Alexander Fremier, and Alex Young REPORT FOR RIVER PARTNERS December 9, 2004 - 1 - Meander Bend Migration Near River Mile 178 of the Sacramento River Executive summary Historic maps from 1904 to 1997 show that the Sacramento River near the PCGID-PID pumping plant (RM 178) has experienced typical downstream patterns of meander bend migration during that time period. As the river meander bends continue to move downstream, the near-bank flow of water, and eventually the river itself, is tending to move away from the pump location. A numerical model of meander bend migration and bend cut-off, based on the physics of fluid flow and sediment transport, was used to simulate five future migration scenarios. The first scenario, simulating 50 years of future migration with the current conditions of bank restraint, showed that the river bend near the pump site will tend to move downstream and pull away from the pump location. In another 50-year future migration scenario that modeled extending the riprap immediately upstream of the pump site (on the opposite bank), the river maintained contact with the pump site. In all other future migration scenarios modeled, the river migrated downstream from the pump site. Simulations that included removing upstream bank constraints suggest that removing bank constraints allows the upstream bend to experience cutoff in a short period of time. Simulations show the pattern of channel migration after cutoff occurs. -
TRCA Meander Belt Width
Belt Width Delineation Procedures Report to: Toronto and Region Conservation Authority 5 Shoreham Drive, Downsview, Ontario M3N 1S4 Attention: Mr. Ryan Ness Report No: 98-023 – Final Report Date: Sept 27, 2001 (Revised January 30, 2004) Submitted by: Belt Width Delineation Protocol Final Report Toronto and Region Conservation Authority Table of Contents 1.0 INTRODUCTION......................................................................................................... 1 1.1 Overview ............................................................................................................... 1 1.2 Organization .......................................................................................................... 2 2.0 BACKGROUND INFORMATION AND CONTEXT FOR BELT WIDTH MEASUREMENTS …………………………………………………………………...3 2.1 Inroduction............................................................................................................. 3 2.2 Planform ................................................................................................................ 4 2.3 Meander Geometry................................................................................................ 5 2.4 Meander Belt versus Meander Amplitude............................................................. 7 2.5 Adjustments of Meander Form and the Meander Belt Width ............................... 8 2.6 Meander Belt in a Reach Perspective.................................................................. 12 3.0 THE MEANDER BELT AS A TOOL FOR PLANNING PURPOSES............................... -
Finley Creek Alluvial Fan Geomorphic and Hydraulic Analyses and Implications for Restoration
FINLEY CREEK ALLUVIAL FAN GEOMORPHIC AND HYDRAULIC ANALYSES AND IMPLICATIONS FOR RESTORATION Jeanne E. Godaire, Geomorphologist, Bureau of Reclamation, Denver, Colorado, [email protected]; Sean Kimbrel, Hydraulic Engineer, Bureau of Reclamation, Denver, Colorado, [email protected] INTRODUCTION Finley Creek, located on the Olympic Peninsula in western Washington, is a tributary of the Quinault River upstream of Lake Quinault. Previous observers have noted recent progressive lateral movement of the channel toward the eastern side of the Finley Creek alluvial fan, and aggradation and perching of the channel in the vicinity of the North Shore Road Bridge. The relationship between Finley Creek and the Quinault River is one of a long-term dynamic interaction between a large alluvial fan and mainstem river. The current sediment production from Finley Creek is of critical concern due to ongoing dredging at North Shore Road Bridge and the potential environmental effects of the dredging both upstream and downstream of the bridge (NPS, 2005) and sediment deposition and lateral Quinault River channel migration (GeoEngineers, 2011). Previous studies on Finley Creek have documented historical channel change using rectified aerial photography (Bountry et al. 2005) and the problems associated with aggradation and erosion on sections of Finley Creek (Kennard, 2009; Smillie, 2001; Jackson and Smillie, 1994). The objectives of this study are to (1) provide a geomorphic analysis of conditions on Finley Creek in order to place current conditions into a long term context and to identify areas of potential avulsion and lateral erosion; and (2) conduct hydraulic modeling of various scenarios to guide the evaluation of alternatives for addressing aggradation near the North Shore Road Bridge and improvement of aquatic habitat on Finley Creek. -
Riparian and Floodplain Restoration at the Cosumnes River Preserve
Restoring Floods to Floodplains: Riparian and Floodplain Restoration at the Cosumnes River Preserve RAMONA O. SWENSON, KEITH WHITENER, AND MIKE EATON The Nature Conservancy, Cosumnes River Preserve, Galt, CA 95616 ABSTRACT. Riparian and floodplain ecosystems are shaped and sustained by the river’s hydrologic processes, such as flooding. The Cosumnes River Preserve is a multi-partner effort to protect and restore natural habitats within the floodplain of the Cosumnes River. This landscape-scale project protects over 40,000 acres of riparian forest, wetlands, and vernal pool grasslands. Early restoration efforts relied on active measures, such as hand planting of oaks and willows. This method, however, was expensive and labor intensive, and sometimes plantings failed. In the last several years we have focused on restoring natural processes that sustain and create habitat, such as flooding. Natural process restoration is now an integral part of the restoration program and central to our planning for property acquisition. Intentional levee breaches have restored the hydrologic connection between the lower Cosumnes River and its floodplain. Floods passing through levee breaches created in 1995 and 1997 have deposited sediment, seeds and plant cuttings on former farm fields, and stimulated natural recruitment of cottonwood and willow riparian forests. This method also provided valuable habitat for chinook salmon and Sacramento splittail. Creating seasonally flooded habitat rather than permanent ponds benefits native fishes more than non-native fishes. Monitoring by the Cosumnes Research Group and others is providing feedback for adaptive management. INTRODUCTION California’s riparian and floodplain ecosystems Valley and, as such, it retains much of its natural have been greatly modified and impaired.