Borehole Construction Report R4 Revised Sept 17

Total Page:16

File Type:pdf, Size:1020Kb

Borehole Construction Report R4 Revised Sept 17 KM8 MONITORING BOREHOLES AS BUILT CONSTRUCTION REPORT KM8 WELL, KIRBY MISPERTON A WELLSITE, NORTH YORKSHIRE For Third Energy UK Gas Limited Knapton Generating Station East Knapton Malton North Yorkshire YO17 8JF By Envireau Water Aske Stables Aske Tel: 01748 889 268 Richmond E mail: [email protected] North Yorkshire Web: www.envireauwater.co.uk DL10 5HG Ref: P:\Third Energy KMA (1996)\40 - Reporting\PreOp Conditions\PO4\Borehole Construction Report r4.docx September 2017 TABLE OF CONTENTS 1 INTRODUCTION .......................................................................................................................................... 1 2 KMA WELLSITE MONITORING BOREHOLES. .............................................................................................. 2 2.1 Location .............................................................................................................................................. 2 2.2 Construction Details ........................................................................................................................... 2 2.3 Geological Sequence .......................................................................................................................... 2 2.4 Borehole Development ...................................................................................................................... 6 2.5 Groundwater Levels on Completion .................................................................................................. 6 2.6 Field Water Chemistry ....................................................................................................................... 6 2.7 WR-38 Borehole Record Forms .......................................................................................................... 6 FIGURES Figure 1 KM8 Monitoring Borehole Locations Figure 2 As built – Shallow Monitoring Boreholes Figure 3 As built – Intermediate Monitoring Borehole (BHD) Figure 4 As built – Deep Monitoring Borehole (BHE) TABLES Table 1 Borehole Coordinates and Elevations (OSGB 36) Table 2 Borehole Construction Details Table 3 Geological Sequence Table 4 Field Water Chemistry Results APPENDICES Appendix A Borehole Locations Survey Map Appendix B Driller’s logs Appendix C WR-38 Borehole Record Forms © Envireau Ltd. 2017 Envireau Ltd. Registered in England & Wales No. 6647619. Registered office: Cedars Farm Barn, Market Street, Draycott, Derbyshire, DE72 3NB, UK. Any report provided by Envireau Ltd. is for the client's use and may be reproduced by the client for internal use. The report must not be issued to third parties without the express written consent of Envireau Ltd. If the report is released to any third party, Envireau Ltd will not accept responsibility or liability of any nature to that third party to whom the report (or part thereof) is released. Moreover, Envireau Ltd will accept no liability for damage or loss as a result of any report being made known to, or relied upon by, a third party, unless expressly agreed with Envireau Ltd in writing. Revision Details Completed by Date Checked by Date REV01 1st Draft AB 12/05/2016 PH 12/05/2016 REV02 Final JS 26/07/2016 PH 26/07/2016 REV03 Update after discussion with EA JS/PH 27/06/2017 PH 28/06/2017 REV04 Reissue after discussion with EA JS 05/09/2017 PH 08/09/2017 Ref: P:\Third Energy KMA (1996)\40 - Reporting\PreOp Conditions\PO4\Borehole Construction Report r4.docx September 2017 MONITORING BOREHOLES CONSTRUCTION REPORT KM8 WELL, KIRBY MISPERTON A WELLSITE, NORTH YORKSHIRE 1 INTRODUCTION Third Energy UK Gas Limited (Third Energy) is proposing to hydraulically fracture an existing hydrocarbon production well (KM8) at Kirby Misperton A Wellsite, North Yorkshire (“the KMA wellsite”). To comply with the Environment Agency requirement to establish a water quality baseline ahead of the proposed hydraulic fracturing, five (5) monitoring boreholes were constructed at the KMA wellsite in December 2015, as follows: • Three (3) shallow boreholes (BHA, BHB, BHC) targeting the superficial deposits/weathered zone of the Kimmeridge Clay Formation. • One (1) intermediate borehole (BHD) targeting the un-weathered Kimmeridge Clay Formation/Ampthill Clay Formation (Ancholme Group). • One (1) deep borehole (BHE) targeting the top ~30m of the Corallian Group. A mining waste and groundwater activity permit (Ref. EPR/DB3002HE) was issued by the Environment Agency for the hydraulic fracturing operation in April 2016. The permit includes five pre-operational measures (PO1 – PO5). PO4 states: Prior to the operation of the regulated facility the operator shall provide a written report that provides the following information for each groundwater monitoring borehole installed: (a) casing/linings (length, diameter, material, type of grout or filter media and whether slotted or plain); (b) depths and diameters of unlined sections; (c) records of groundwater ingress during construction and standing groundwater levels on completion; (d) details of strata encountered during drilling; (e) reference levels for the individual criteria specified in 4(a) to (c) above in metres above ordnance datum; (f) a location plan at a suitable scale showing the boreholes in relation to the point of discharge; (g) national grid references of the boreholes in the form AB 12345 67890 any other information obtained from the boreholes relevant to the interpretation of water sample analysis. This report has been prepared by Envireau Water to fulfil the requirements of PO4 and is intended to be submitted to the Environment Agency prior to the hydraulic fracturing operation. Please note that this report does not provide a description of the regional geology and hydrogeology, which is covered in detail in the Hydrogeological Risk Assessment that was prepared by Envireau Water in May 2015 [Ref. 1]. North Office, Aske Stables, Aske, t 01748 889268 e [email protected] Richmond, North Yorkshire, DL10 5HG w www.envireauwater.co.uk Envireau Ltd. Registered in England & Wales No. 6647619 Registered office: Cedars Farm Barn, Market Street, Draycott, Derbyshire, DE72 3NB Envireau Water 2 KMA WELLSITE MONITORING BOREHOLES. 2.1 Location The location of the five wellsite monitoring boreholes is presented on a site layout plan on Figure 1. Also shown on Figure 1 is the location of the point of discharge. Table 1 below presents the surveyed borehole coordinates including ground and wellhead elevations to Ordnance Datum. The surveying map is presented in Appendix A. Table 1: Borehole Coordinates and Elevations (OSGB 36) Ground Elevation Top of Wellhead Borehole ID National Grid Reference (NGR) (mAOD) Elevation (mAOD) BHA SE 77153 79025 31.69 32.34 BHB SE 77099 78989 31.98 32.55 BHC SE 77162 78964 31.87 32.31 BHD SE 77132 78963 29.01 29.64 BHE SE 77110 78969 28.94 29.73* *Top of wellhead taken as the top of the borehole cover. When open, the lower stub flange is at 29.71mAOD 2.2 Construction Details The monitoring boreholes were constructed by Magpie Environmental Drilling Ltd, with Envireau Water providing technical support when required. The construction of the monitoring boreholes commenced on the 27 November 2015 and was completed on the 9 December 2015. The final depth of all the boreholes was based on the observed geological sequence and was agreed with the Environment Agency prior to completion. The driller’s logs are provided in Appendix B. Summary construction details are presented in Table 2 below together with records of groundwater ingress (water strikes) during construction and groundwater levels on completion. 2.3 Geological Sequence The geological sequence has been determined by Envireau Water based on the logging of recovered drilling returns. The geology encountered is summarised in Table 3 below and presented on the borehole construction diagrams on Figures 2, 3 and 4. The geological sequence at the KMA wellsite consists of made ground / top soil up to 4 meters in depth, overlying mudstone and clay of the Kimmeridge Clay Formation/Ampthill Clay Formation (Ancholme Group) to a depth of approximately 177mbgl. The Ancholme Group is underlain by oolitic limestone of the Corallian Group. The transition between the Ancholme Group and the Corallian Group is not abrupt and appears to occur over a depth between 177mgl and 190mbgl. Ref: P:\Third Energy KMA (1996)\40 - Reporting\PreOp Conditions\PO4\Borehole Construction Report r4.docx Page 2 of 6 Rev: 08/09/2017 12:31 Envireau Water Table 2: Borehole Construction Details Borehole Rest Water Level Completion Depth Drill Diameter Casing Details Filter Pack Details Water Strikes ID (mbtow) (mAOD) BHA 11.5mbgl 254mm (10”) from 0 50mm ND uPVC casing. Cement from 0 to 0.5mbgl (31.9 to 11.2mbgl 9.04 on 23.27 (20.4mAOD) to 12.0mbgl (31.9 to 31.4mAOD) (20.7mAOD) 20/04/2016 19.9mAOD) Blank from 0 to 8.0mbgl (31.9 to 23.9mAOD) Bentonite pellets from 0.5 to 6.7mbgl (31.4 to 25.2mAOD) Slotted section from 8.0 to 11.0mbgl (23.9 to 20.9mAOD) Sand blinding layer from 6.7 to 7mbgl (25.2 to 24.9mAOD) Blank section from 11.0 to 11.5mbgl (20.9 to 20.4mAOD) 2-4mm Gravel from 7 to 11.5mbgl 24.9 to 20.4mAOD) BHB 11.5mbgl 254mm (10”) from 0 50mm ND uPVC casing. Cement from 0 to 0.5mbgl (32 to 11.3mbgl 9.52 on 23.03 (20.5mAOD) to 12.0mbgl (32.0 to 31.5mAOD) (20.7mAOD) 20/04/2016 20.0mAOD) Blank from 0 to 8.0mbgl (32.0 to 24.0mAOD) Bentonite pellets from 0.5 to 6.7mbgl (31.5 to 25.3mAOD) Slotted section from 8.0 to 11.0mbgl (24.0 to 21.0mAOD) Sand blinding layer from 6.7 to 7mbgl (25.3 to 25.0mAOD) Blank section from 11.0
Recommended publications
  • Strategic Stone Study a Building Stone Atlas of Cambridgeshire (Including Peterborough)
    Strategic Stone Study A Building Stone Atlas of Cambridgeshire (including Peterborough) Published January 2019 Contents The impressive south face of King’s College Chapel, Cambridge (built 1446 to 1515) mainly from Magnesian Limestone from Tadcaster (Yorkshire) and Kings Cliffe Stone (from Northamptonshire) with smaller amounts of Clipsham Stone and Weldon Stone Introduction ...................................................................................................................................................... 1 Cambridgeshire Bedrock Geology Map ........................................................................................................... 2 Cambridgeshire Superficial Geology Map....................................................................................................... 3 Stratigraphic Table ........................................................................................................................................... 4 The use of stone in Cambridgeshire’s buildings ........................................................................................ 5-19 Background and historical context ........................................................................................................................................................................... 5 The Fens ......................................................................................................................................................................................................................... 7 South
    [Show full text]
  • Chapter 2 Physical Characteristics of the Study Area
    CHAPTER 2 PHYSICAL CHARACTERISTICS OF THE STUDY AREA 2.1. Location of study area The study area incorporates part of north Hertfordshire, south and mid- Bedfordshire as well as the southwest corner of Cambridgeshire and lies approximately 40 km north of London (Figure 1.1). Coverage of the area by British Geological Survey (BGS) 1:50,000 map sheets is shown in Figure 2.1. 2.2. Bedrock geology The strikes of the solid geological formations are approximately northeast- southwest across the study area (Figure 2.2). The solid geological succession is shown in Table 2.1. To the northwest of the Chiltern Hills the Gault Clay forms a rich agricultural landscape, representing a continuation of the Vale of Aylesbury. Beyond this, running approximately from Bow Brickhill (SP915343) to Gamlingay (TL234525) is a discontinuous ridge formed by the Woburn Sands Formation, part of the Lower Greensand. This prominent ‘Greensand Ridge’, rising to 170 m O.D. at Bow Brickhill, separates the Cretaceous clays from the Jurassic Oxford and Ampthill Clays to the northwest. The oldest formation is recorded in a borehole (TL23NE1) at Ashwell (TL286390), where Devonian strata were reached at a depth of 186.54 m, i.e. 93 m below O.D. (Smith, 1992). Lying just beyond the northern boundary of the present study area, north of the River Ouse, a borehole (TL15NE2) at Wyboston (TL175572) penetrated Ordovician rocks of Tremadoc age at a depth of approximately 230 m (Moorlock et al ., 2003). The Oxford Clay of the Upper Jurassic represents the oldest formation outcropping within the study area.
    [Show full text]
  • Baseline Report Series: 14
    Baseline Report Series: 14. The Corallian of Oxfordshire and Wiltshire Groundwater Systems and Water Quality Commissioned Report CR/04/262N Science Group: Air, Land & Water Technical Report NC/99/74/14 The Natural Quality of Groundwater in England and Wales A joint programme of research by the British Geological Survey and the Environment Agency BRITISH GEOLOGICAL SURVEY Commissioned Report CR/04/262N ENVIRONMENT AGENCY Science Group: Air, Land & Water Technical Report NC/99/74/14 This report is the result of a study jointly funded by the British Baseline Report Series: Geological Survey’s National Groundwater Survey and the 14. The Corallian of Oxfordshire and Environment Agency Science Group. No part of this work may be Wiltshire reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright proprietors. J Cobbing, M Moreau, P Shand, A Lancaster All rights are reserved by the copyright proprietors. Contributors Disclaimer The officers, servants or agents of both the British Geological Survey and the R Hargreaves (GIS) Environment Agency accept no liability whatsoever for loss or damage arising from the interpretation or use of the information, or reliance on the views contained herein. Environment Agency Dissemination status Internal: Release to Regions External: Public Domain ISBN: 978-1-84432-639-6 Product code: SCHO0207BLYL-E-P ©Environment Agency, 2004 Statement of use This document forms one of a series of reports describing the baseline chemistry of selected reference aquifers in England and Wales. Cover illustration Shelly, oolitic Corallian limestone near Baulking, Vale of White Horse.
    [Show full text]
  • Back Matter (PDF)
    Index of Subjects abstraction and East London and Thames Gateway Chalk geology Isle of Wight 166–169 419–444 and the law 152, 155–156 in Lincolnshire Limestone 97–100 see also boreholes; wells petrophysical temperature logs 374–375 acidic groundwater 110, 199–209 surveys in tufa areas 132 aggregates in Weardale Granite, Eastgate, Co. Durham 405–407 petrography of geomaterials 458, 461–463, 464–466 World War I British exploratory boreholes in Belgium suitability of dune sand from Libya 277–280 295–298, 300 airborne electromagnetic (EM) surveys 389–390 yields in Antrim Lava Group and Ulster White Limestone Aksu Basin, Turkey 124 66–69 algae, and tufa formation 124–125 yields in Isle of Wight aquifers 161–162, 165, 166 alkali-silica reaction 463–464 boudinage structures in highway rock cuttings 411–418 alluvia, properties of coarse grained 141–144 Boulder Clay 174 aluminium, in acidic groundwater treatment 199, 200, 201, Bouldnor Formation 165 205, 206–208 Bracklesham Group 166, 392 American Expeditionary Force 302 Brazilian tension tests, rock salt 448–450 Ancholme Group 94 bricks and brickwork, petrography 460, 461, 465–466 anhydrite, and mechanical properties of rock salt 445–454 Bridgewick Marls 420, 426 Anstrude limestone, petrography 462 Brighstone Anticline 160 anthropogenic heat sources 373 brine-pumping 445–446 Antrim Lava Group, groundwater flow 63–73 British Cement Association 464 aquifers British Expeditionary Force 293–294, 295, 299 aquifer boundaries, and environmental sensitivity analysis British Geological Survey 302 311, 312
    [Show full text]
  • Stratigraphical Framework for the Middle Jurassic Strata of Great
    Stratigraphical framework for the Middle Jurassic strata of Great Britain and the adjoining continental shelf Geology and Landscape Programme Research Report RR/11/06 BRITISH GEOLOGICAL SURVEY RESEARCH REPORT RR/11/06 The National Grid and other Stratigraphical framework for the Ordnance Survey data © Crown copyright and database rights 2012. Ordnance Survey Licence Middle Jurassic strata of Great No. 100021290 Britain and the adjoining Key words Geology, stratigraphy, lithostratigraphy, Inferior Oolite continental shelf Group, Great Oolite Group, Ravenscar Group, Great Estuarine Group, Sutherland Group, Ancholme Group, Jurassic. A J M Barron, G K Lott, J B Riding Front cover Hilltop Quarry, Leckhampton Hill, Cheltenham, Glos.: the Birdlip Limestone Formation overlain by the Aston Limestone Formation. (P775213, A J M Barron) Bibliographical reference BARRON, A J M, LOTT, G K, AND RIDING, J B. 2012. Stratigraphical framework for the Middle Jurassic strata of Great Britain and the adjoining continental shelf. British Geological Survey Research Report, RR/11/06. 187pp. ISBN 978 0 85272 695 2 Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided
    [Show full text]
  • 3D Groundwater Vulnerability
    3D Groundwater Vulnerability Groundwater Programme Internal Report OR/18/12 BRITISH GEOLOGICAL SURVEY GROUNDWATER PROGRAMME OPEN REPORT OR/18/12 3D Groundwater Vulnerability S Loveless, M A Lewis, J P Bloomfield, R Terrington, M E Stuart, R S Ward Contributor/editor The National Grid and other Ordnance Survey data © Crown Ian Davey, Alwyn Hart (Environment Agency) Copyright and database rights 20178. Ordnance Survey Licence No. 100021290 EUL. Keywords Report; keywords. Bibliographical reference LOVELESS, S, LEWIS, M A, BLOOMFIELD, J P, TERRINGTON, R, STUART, M E AND WARD, R S. 20178. 3D Groundwater Vulnerability. British Geological Survey Internal Report, OR/18/12. 201pp. Copyright in materials derived from the British Geological Survey’s work is owned by United Kingdom Research and Innovation (UKRI) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. Maps and diagrams in this book use topography based on Ordnance Survey mapping. © UKRI 2018. All rights reserved Keyworth, Nottingham British Geological Survey 2018 BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS shops at British Geological Survey offices Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or shop online at www.geologyshop.com BGS Central Enquiries Desk Tel 0115 936 3143 Fax 0115 936 3276 The London Information Office also maintains a reference collection of BGS publications, including maps, for consultation.
    [Show full text]
  • Mineral Safeguarding Areas for North York Moors National Park Authority
    Mineral Safeguarding Areas for North York Moors National Park Authority Minerals and Waste Programme Commissioned Report CR/13/073 BRITISH GEOLOGICAL SURVEY MINERALS AND WASTE PROGRAMME COMMISSIONED REPORT CR/13/073 Mineral Safeguarding Areas for North York Moors National Park Authority C E Wrighton, T P Bide, S Parry and K A Linley Contributor/editor The National Grid and other Ordnance Survey data © Crown R A Shaw and J M Mankelow Copyright and database rights 2013. Ordnance Survey Licence No. 100021290. Keywords Mineral resources; mineral safeguarding. Bibliographical reference WRIGHTON, C E, BIDE, T P, PARRY, S, AND LINLEY, K A. 2013. Mineral Safeguarding Areas for North York Moors National Park Authority . British Geological Survey Commissioned Report, CR/13/073. 51pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. Maps and diagrams in this book use topography based on Ordnance Survey mapping. © NYMNPA 2013. All rights reserved Keyworth, Nottingham British Geological Survey 2013 BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS shops at British Geological Survey offices Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or shop online at www.geologyshop.com BGS Central Enquiries Desk Tel 0115 936 3143 Fax 0115 936 3276 The London Information Office also maintains a reference collection of BGS publications, including maps, for consultation.
    [Show full text]
  • National Geological Screening: London and the Thames Valley
    National Geological Screening: London and the Thames Valley Minerals and Waste Programme Commissioned Report CR/17/101 BRITISH GEOLOGICAL SURVEY MINERALS AND WASTE PROGRAMME COMMISSIONED REPORT CR/17/101 National Geological Screening: London and the Thames Valley R Ellison1, D Schofield1, D T Aldiss2, R Haslam2, M Lewis3, B Ó’Dochartaigh3, J P Bloomfield3, J R Lee4, B Baptie4, R P Shaw5, T Bide5 and F M McEvoy 1Rock type, 2Rock structure, 3Groundwater, 4Natural processes, 5Resources Contributors/editors L P Field, R Terrington, P Williamson, I Mosca, N J P Smith, D E Evans, C Gent, M Barron, A Howard, G Baker, R M Lark, A Lacinska S Thorpe, H Holbrook, I Longhurst and L Hannaford The National Grid and other Ordnance Survey data © Crown Copyright and database rights 7. Ordnance Survey Licence No. 100021290 EUL. Keywords National geological screening, GDF, rock type, structure, groundwater, natural processes, resources, London, Thames. Bibliographical reference ELLISON, R, SCHOFIELD, D, ALDISS, D T, HASLAM, R, LEWIS, M, O’DOCHARTAIGH, B, BLOOMFIELD, J P, LEE, J, BAPTIE, B, SHAW, R P, BIDE, T, AND MCEVOY, F M. 2018. National Geological Screening: London and the Thames Valley Commissioned Report, CR/17/101. 71pp. BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS shops at Nottingham, Edinburgh, London and Cardiff (Welsh British Geological Survey offices publications only) see contact details below or shop online at www.geologyshop.com Environmental Science Centre, Keyworth, Nottingham The London Information Office also maintains a reference NG12 5GG collection of BGS publications, including maps, for Tel 0115 936 3100 consultation.
    [Show full text]
  • National Geological Screening: East Anglia Region
    National Geological Screening: East Anglia region Minerals and Waste Programme Commissioned Report CR/17/100 BRITISH GEOLOGICAL SURVEY MINERALS AND WASTE PROGRAMME COMMISSIONED REPORT CR/17/100 National Geological Screening: East Anglia region M A Woods1, D Schofield1, T Pharaoh2, R Haslam2, E Crane3, J P Bloomfield3, J R Lee4, B Baptie4, R P Shaw5, T Bide5 and F M McEvoy 1Rock type, 2Rock structure, 3Groundwater, 4Natural processes, 5Resources Contributors/editors L P Field, R Terrington, P Williamson, I Mosca, N J P Smith, D E Evans, C Gent, M Barron, A Howard, G Baker, R M Lark, A Lacinska, S Thorpe, H Holbrook, I Longhurst and L Hannaford The National Grid and other Ordnance Survey data © Crown Copyright and database rights 7. Ordnance Survey Licence No. 100021290 EUL. Keywords National geological screening, GDF, East Anglia, rock type, structure, groundwater, natural processes, resources Bibliographical reference WOODS, M A, SCHOFIELD, D, PHARAOH, T, HASLAM, R, CRANE, E, BLOOMFIELD, J P, LEE, J R, BAPTIE, B, SHAW, R P, BIDE T AND F M MCEVOY. 2018. National geological screening: East Anglia region. British Geological Survey Commissioned Report, CR/17/100. 69pp. BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS shops at Nottingham, Edinburgh, London and Cardiff (Welsh British Geological Survey offices publications only), See contact details below or shop online at www.geologyshop.com Environmental Science Centre, Keyworth, Nottingham The London Information Office also maintains a reference NG12 5GG collection of BGS publications, including maps, for Tel 0115 936 3100 consultation. We publish an annual catalogue of our maps and other BGS Central Enquiries Desk publications; this catalogue is available online or from any of Tel 0115 936 3143 the BGS shops.
    [Show full text]
  • Central England Regional Geology RWM | Central England Regional Geology
    Central England regional geology RWM | Central England Regional Geology Contents 1 Introduction Subregions Central England: summary of the regional geology Available information for this region 2 Rock type Younger sedimentary rocks Older sedimentary rocks 3 Basement rocks Rock structure 4 Groundwater 5 Resources 6 Natural processes Further information 7 - 16 Figures 17 - 18 Glossary Clicking on words in green, such as sedimentary or lava will take the reader to a brief non-technical explanation of that word in the Glossary section. By clicking on the highlighted word in the Glossary, the reader will be taken back to the page they were on. Clicking on words in blue, such as Higher Strength Rock or groundwater will take the reader to a brief talking head video or animation providing a non-technical explanation. For the purposes of this work the BGS only used data which was publicly available at the end of February 2016. The one exception to this was the extent of Oil and Gas Authority licensing which was updated to include data to the end of June 2018. 1 RWM | Central England Regional Geology Introduction This region covers the English Midlands including Northamptonshire, Leicestershire, Rutland, Warwickshire, Staffordshire and West Midlands and parts of Derbyshire, Nottinghamshire, Worcestershire, Cheshire and Shropshire. Subregions To present the conclusions of our work in a concise and accessible way, we have divided the region into 3 subregions (see Figure 1 below). We have selected subregions with broadly similar geological attributes relevant to the safety of a GDF, although there is still considerable variability in each subregion.
    [Show full text]
  • Back Matter (PDF)
    Index Note: bold page numbers indicate tables; italic page numbers indicate figures; 'g' after a page number indicates a Glossary entry (e.g. 123g). A-line, 92, 229, 485g aquifer, 486g ablation till, 485g aquitard, 486g ACEC Classification, 296 aragonite, 23 acidity, 22, 22, 23 archaeological sites, mineral workings, 289 dispersive soils, 114 argillite, 60, 81 in hydothermal alteration, 56-7, 56 ash, volcanic, 46, 48, 62-3, 64 tests, 235, 236 ash waste, recycling, 441-2 acidolysis, 34, 485g ASTM standards activity charts, 94, 123, 485g concrete, 432 activity (soil), 92, 94, 94, 94, 230, 230, 485g mudrock description, 84 adobe, 390, 390, 391, 394-5,485g test procedures, 481-4 advection, 95, 364, 485g Atherfield Clay Formation, 166, 466 aeolian clays, 485g atomic emission analysis, 215 aeolian transport, 44-5, 47 atomic number, 486g aerial photography, 181-2, 181-2 attapulgite see palygorskite aggradation, 37, 485g Atterberg limits, 89, 92, 486g (see also liquid limit; plastic limit; aggregates, 485g shrinkage limit) lightweight, 439 attrition mill, 486g aggregation, 41, 81, 116 (see also flocculation) auger, 486g Aggressive Chemical Environment for Concrete (ACEC) autographic unconfined compression test, 259, 259 Classification, 296 available lime, 487g air entry point, 91-2, 91, 485g Aylesbeare Mudstone, 470 air void content, 100, 238, 293-4, 295, 337, 338, 485g (see also compaction; voids ratio) B-bar test, 271,272, 273 allophane, 4, 24, 74, 94, 118, 485g backscatter electrons, 487g alluvial clays, 39, 120, 141,464, 485g (see also sedimentary
    [Show full text]
  • The Mapping of Landscapes, Geology and Soils of Bedfordshire
    We use the words landscape and landform to refer to natural (not man-made) features visible on the surface of the Earth. The word landscape is used for larger areas of varied topography, whereas the The Mapping of Landscapes, Geology and word landform is used for smaller features that occur within landscapes, and can often be readily seen to have resulted from the local action of particular surface processes (for example, slope failure or Soils of Bedfordshire & Cambridgeshire river erosion). In this study we present a group of regional landscape maps (Maps 1-4), and a group of more local maps (Maps 5-8) on a larger scale, where landforms are more easily distinguished. Our work has been part-funded by Natural England and facilitated by Geo-East, the East of England Geodiversity Partnership. Landscapes and their component landforms have formed during the long-term geological history of an area, and may have been influenced by many factors. These include, a) the materials present just below the Earth’s surface, b) movements of the Earth’s land or sea surface, and c) the action of ice, rain, wind and living organisms. This study has been concerned particularly with ways of analysing and presenting topographical information, so that members of the general public can gain new insights into the stories that have resulted in their landscapes and landforms. Maps are routinely used to represent landscapes and landforms, and we have wanted to experiment with the ways that computer-based Geographical Information System (GIS) software, using the digital regional datasets now available, has transformed our ability to provide vivid representations of our surroundings.
    [Show full text]