Surveying Transient Host Galaxies with ASAS-SN

Total Page:16

File Type:pdf, Size:1020Kb

Surveying Transient Host Galaxies with ASAS-SN Surveying Transient Host Galaxies with ASAS-SN DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jonathan Scott Brown Jr. Graduate Program in Astronomy The Ohio State University 2018 Dissertation Committee: Professor Krzysztof Z. Stanek, Advisor Professor Christopher S. Kochanek Professor Paul Martini Copyright by Jonathan Scott Brown Jr. 2018 Abstract The technological advances of the recent years have allowed for the proliferation of relatively inexpensive charge-coupled devices (CCDs) and other imaging hardware that has revolutionized modern astronomy. The burgeoning field of transient astronomy is perhaps the largest benefactor of these advances, and as a result, high cadence, all-sky surveys are becoming a reality. New transient phenomena are discovered and studied in depth on a regular basis, and the datasets of “normal” transients are becoming richer by the day. However, transient phenomena are intimately connected to their environment, and understanding this connection can provide insight that the study of transient phenomenology alone cannot. In this dissertation, I leverage the statistical power of modern all-sky surveys to investigate the nature of transients, the properties of their host galaxies, as well as the techniques and tools we use to study both. ii Dedication To motorcycle maintenance. iii Acknowledgments I am indebted to the OSU Department of Astronomy for encouraging such a lively and collegial environment in which to learn and grow as a scientist, as well as the OSU Graduate School for providing support to conduct my research. I’d especially like to thank the members of my committee. I am immensely grateful for Professor Krzysztof Z. Stanek’s mentorship and his ability to identify what is important, and how to explain it in a way that people can connect to. I am also grateful for his witty title suggestions. I am thankful to Professor Christopher S. Kochanek for his truly rapid and informative feedback on any questions I’ve had. I must also thank him for the many trips to the LBT, and for being a counterweight to Professor Stanek’s wit. I am grateful to Professor Paul Martini for his role early on in my graduate student career, especially for his guidance on writing and editing. I thank Professor Richard W. Pogge and Kevin Croxall for introducing me to spectroscopy with MODS, which ultimately paved the way for the rest of my time here at OSU. I owe David Will many thanks for a near seamless computing experience for the 5 years I’ve spent here. I thank Office 4k members both past and present, including honorary member Greg Simmonian for his frequent banter and occasional admonishment. In particular, I’d like to thank Tom Holoien for being a iv great friend (but don’t think for a second I’ve forgotten about Sevastopol), colleague, and brewery enthusiast. Always remember, as far as the official fantasy football record is concerned, we are equals. Job Office, thank you all for making this past year much less stressful than it otherwise would have been. I am also immensely grateful to the members of the department that came before me, especially Ben Shappee and Brett Andrews, whose own efforts made much of my research possible. Finally, I owe many thanks to my friends from that school up north; you’ve each been an inspiration in one form or another, so thanks n’at. v Vita December 11, 1990 ............. Born – Burlington, VT, USA B.S., Astronomy & Astrophysics 2013 – 2015..................... University of Michigan Graduate Teaching Associate 2013 – 2016..................... The Ohio State University M.S., Astronomy 2016............................ The Ohio State University Graduate Research Associate 2016 – 2017..................... The Ohio State University Presidential Fellow 2017 – 2018..................... The Ohio State University Allan Markowitz Award in Observational Astronomy 2018............................ The Ohio State University Publications Research Publications 1. J. S. Brown, C. S. Kochanek, T. W.-S. Holoien, K. Z. Stanek, K. Auchettl, B. J. Shappee, J. L. Prieto, N. Morrell, E. Falco, J. Strader, L. Chomiuk, R. Post, S. Villanueva Jr., S. Mathur, S. Dong, P. Chen, and S. Bose, “The ultraviolet spectroscopic evolution of the low-luminosity tidal disruption event iPTF16fnl”, Monthly Notices of the Royal Astronomical Society, 473, 1130, (2018) vi 2. T. W.-S. Holoien, J. S. Brown, K. Z. Stanek, C. S. Kochanek, B. J. Shappee, J. L. Prieto, S. Dong, J. Brimacombe, D. W. Bishop, S. Bose, J. F. Beacom, D. Bersier, P. Chen, L. Chomiuk, E. Falco, D. Godoy-Rivera, N. Morrell, G. Pojmanski, J. V. Shields, J. Strader, M. D. Stritzinger, T. A. Thompson, P. R. Wo´zniak, G. Bock, P. Cacella, E. Conseil, I. Cruz, J. M. Fernandez, S. Kiyota, R. A. Koff, G. Krannich, P. Marples, G. Masi, L. A. G. Monard, B. Nicholls, J. Nicolas, R. S. Post, G. Stone, and W. S. Wiethoff, “The ASAS-SN bright supernova catalogue - III. 2016”, Monthly Notices of the Royal Astronomical Society, 471, 4966, (2017) 3. C. S. Kochanek, M. Fraser, S. M. Adams, T. Sukhbold, J. L. Prieto, T. M¨uller, G. Bock, J. S. Brown, S. Dong, T. W.-S. Holoien, R. Khan, B. J. Shappee, and K. Z. Stanek, “Supernova progenitors, their variability and the Type IIP Supernova ASASSN-16fq in M66”, Monthly Notices of the Royal Astronomical Society, 467, 3347, (2017) 4. T. W.-S. Holoien, J. S. Brown, K. Z. Stanek, C. S. Kochanek, B. J. Shappee, J. L. Prieto, S. Dong, J. Brimacombe, D. W. Bishop, U. Basu, J. F. Beacom, D. Bersier, P. Chen, A. B. Danilet, E. Falco, D. Godoy-Rivera, N. Goss, G. Pojmanski, G. V. Simonian, D. M. Skowron, T. A. Thompson, P. R. Wo´zniak, C. G. Avila,´ G. Bock, J.-L. G. Carballo, E. Conseil, C. Contreras, I. Cruz, J. M. F. And´ujar, Z. Guo, E. Y. Hsiao, S. Kiyota, R. A. Koff, G. Krannich, B. F. Madore, P. Marples, G. Masi, N. Morrell, L. A. G. Monard, J. C. Munoz-Mateos, B. Nicholls, J. Nicolas, R. M. Wagner, and W. S. Wiethoff, “The ASAS-SN bright supernova catalogue - II. 2015”, Monthly Notices of the Royal Astronomical Society, 467, 1098, (2017) 5. M. M. Fausnaugh, C. J. Grier, M. C. Bentz, K. D. Denney, G. De Rosa, B. M. Peterson, C. S. Kochanek, R. W. Pogge, S. M. Adams, A. J. Barth, T. G. Beatty, A. Bhattacharjee, G. A. Borman, T. A. Boroson, M. C. Bottorff, J. E. Brown, J. S. Brown, M. S. Brotherton, C. T. Coker, S. M. Crawford, K. V. Croxall, S. Eftekharzadeh, M. Eracleous, M. D. Joner, C. B. Henderson, T. W.-S. Holoien, K. Horne, T. Hutchison, S. Kaspi, S. Kim, A. L. King, M. Li, C. Lochhaas, Z. Ma, F. MacInnis, E. R. Manne-Nicholas, M. Mason, C. Montuori, A. Mosquera, D. Mudd, R. Musso, S. V. Nazarov, M. L. Nguyen, D. N. Okhmat, C. A. Onken, B. Ou-Yang, A. Pancoast, L. Pei, M. T. Penny, R. Poleski, S. Rafter, E. Romero-Colmenero, J. Runnoe, D. J. Sand, J. S. Schimoia, S. G. Sergeev, B. J. Shappee, G. V. Simonian, G. Somers, M. Spencer, D. A. Starkey, D. J. Stevens, J. Tayar, T. Treu, S. Valenti, J. Van Saders, S. Villanueva Jr., C. Villforth, Y. Weiss, H. Winkler, and W. Zhu, “Reverberation Mapping of Optical Emission Lines in Five Active Galaxies”, The Astrophysical Journal, 840, 97, (2017) 6. J. S. Brown, T. W.-S. Holoien, K. Auchettl, K. Z. Stanek, C. S. Kochanek, B. J. vii Shappee, J. L. Prieto, and D. Grupe, “The Long Term Evolution of ASASSN-14li”, Monthly Notices of the Royal Astronomical Society, 466, 4904, (2017) 7. L. Pei, M. M. Fausnaugh, A. J. Barth, B. M. Peterson, M. C. Bentz, G. De Rosa, K. D. Denney, M. R. Goad, C. S. Kochanek, K. T. Korista, G. A. Kriss, R. W. Pogge, V. N. Bennert, M. Brotherton, K. I. Clubb, E. Dalla Bont`a, A. V. Filippenko, J. E. Greene, C. J. Grier, M. Vestergaard, W. Zheng, S. M. Adams, T. G. Beatty, A. Bigley, J. E. Brown, J. S. Brown, G. Canalizo, J. M. Comerford, C. T. Coker, E. M. Corsini, S. Croft, K. V. Croxall, A. J. Deason, M. Eracleous, O. D. Fox, E. L. Gates, C. B. Henderson, E. Holmbeck, T. W.-S. Holoien, J. J. Jensen, C. A. Johnson, P. L. Kelly, S. Kim, A. King, M. W. Lau, M. Li, C. Lochhaas, Z. Ma, E. R. Manne-Nicholas, J. C. Mauerhan, M. A. Malkan, R. McGurk, L. Morelli, A. Mosquera, D. Mudd, F. Muller Sanchez, M. L. Nguyen, P. Ochner, B. Ou-Yang, A. Pancoast, M. T. Penny, A. Pizzella, R. Poleski, J. Runnoe, B. Scott, J. S. Schimoia, B. J. Shappee, I. Shivvers, G. V. Simonian, A. Siviero, G. Somers, D. J. Stevens, M. A. Strauss, J. Tayar, N. Tejos, T. Treu, J. Van Saders, L. Vican, S. Villanueva Jr., H. Yuk, N. L. Zakamska, W. Zhu, M. D. Anderson, P. Ar´evalo, C. Bazhaw, S. Bisogni, G. A. Borman, M. C. Bottorff, W. N. Brandt, A. A. Breeveld, E. M. Cackett, M. T. Carini, D. M. Crenshaw, A. De Lorenzo-C´aceres, M. Dietrich, R. Edelson, N. V. Efimova, J. Ely, P. A. Evans, G. J. Ferland, K. Flatland, N. Gehrels, S. Geier, J. M. Gelbord, D. Grupe, A. Gupta, P. B. Hall, S. Hicks, D. Horenstein, K. Horne, T. Hutchison, M. Im, M. D. Joner, J. Jones, J. Kaastra, S. Kaspi, B. C. Kelly, J. A. Kennea, M. Kim, S. C. Kim, S. A. Klimanov, J. C. Lee, D. C. Leonard, P. Lira, F. MacInnis, S. Mathur, I. M. McHardy, C. Montouri, R.
Recommended publications
  • Correction: Corrigendum: the Superluminous Transient ASASSN
    LETTERS PUBLISHED: 12 DECEMBER 2016 | VOLUME: 1 | ARTICLE NUMBER: 0002 The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole G. Leloudas1,​2*, M. Fraser3, N. C. Stone4, S. van Velzen5, P. G. Jonker6,​7, I. Arcavi8,​9, C. Fremling10, J. R. Maund11, S. J. Smartt12, T. Krühler13, J. C. A. Miller-Jones14, P. M. Vreeswijk1, A. Gal-Yam1, P. A. Mazzali15,​16, A. De Cia17, D. A. Howell8,​18, C. Inserra12, F. Patat17, A. de Ugarte Postigo2,​19, O. Yaron1, C. Ashall15, I. Bar1, H. Campbell3,​20, T.-W. Chen13, M. Childress21, N. Elias-Rosa22, J. Harmanen23, G. Hosseinzadeh8,​18, J. Johansson1, T. Kangas23, E. Kankare12, S. Kim24, H. Kuncarayakti25,​26, J. Lyman27, M. R. Magee12, K. Maguire12, D. Malesani2, S. Mattila3,​23,​28, C. V. McCully8,​18, M. Nicholl29, S. Prentice15, C. Romero-Cañizales24,​25, S. Schulze24,​25, K. W. Smith12, J. Sollerman10, M. Sullivan21, B. E. Tucker30,​31, S. Valenti32, J. C. Wheeler33 and D. R. Young12 8 12,13 When a star passes within the tidal radius of a supermassive has a mass >10 M⊙ , a star with the same mass as the Sun black hole, it will be torn apart1. For a star with the mass of the could be disrupted outside the event horizon if the black hole 8 14 Sun (M⊙) and a non-spinning black hole with a mass <10 M⊙, were spinning rapidly . The rapid spin and high black hole the tidal radius lies outside the black hole event horizon2 and mass can explain the high luminosity of this event.
    [Show full text]
  • Report from the Dark Energy Task Force (DETF)
    Fermi National Accelerator Laboratory Fermilab Particle Astrophysics Center P.O.Box 500 - MS209 Batavia, Il l i noi s • 60510 June 6, 2006 Dr. Garth Illingworth Chair, Astronomy and Astrophysics Advisory Committee Dr. Mel Shochet Chair, High Energy Physics Advisory Panel Dear Garth, Dear Mel, I am pleased to transmit to you the report of the Dark Energy Task Force. The report is a comprehensive study of the dark energy issue, perhaps the most compelling of all outstanding problems in physical science. In the Report, we outline the crucial need for a vigorous program to explore dark energy as fully as possible since it challenges our understanding of fundamental physical laws and the nature of the cosmos. We recommend that program elements include 1. Prompt critical evaluation of the benefits, costs, and risks of proposed long-term projects. 2. Commitment to a program combining observational techniques from one or more of these projects that will lead to a dramatic improvement in our understanding of dark energy. (A quantitative measure for that improvement is presented in the report.) 3. Immediately expanded support for long-term projects judged to be the most promising components of the long-term program. 4. Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors. 5. An immediate start for nearer term projects designed to advance our knowledge of dark energy and to develop the observational and analytical techniques that will be needed for the long-term program. Sincerely yours, on behalf of the Dark Energy Task Force, Edward Kolb Director, Particle Astrophysics Center Fermi National Accelerator Laboratory Professor of Astronomy and Astrophysics The University of Chicago REPORT OF THE DARK ENERGY TASK FORCE Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation for its existence or magnitude.
    [Show full text]
  • Perrett RTA.Pdf
    The Astronomical Journal, 140:518–532, 2010 August doi:10.1088/0004-6256/140/2/518 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. REAL-TIME ANALYSIS AND SELECTION BIASES IN THE SUPERNOVA LEGACY SURVEY∗ K. Perrett1,2, D. Balam3, M. Sullivan4, C. Pritchet5, A. Conley1,6, R. Carlberg1,P.Astier7, C. Balland7,S.Basa8, D. Fouchez9,J.Guy7, D. Hardin7,I.M.Hook3,10, D. A. Howell11,12,R.Pain7, and N. Regnault7 1 Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4, Canada; [email protected] 2 Network Information Operations, DRDC Ottawa, 3701 Carling Avenue, Ottawa, ON K1A 0Z4, Canada 3 Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada 4 Department of Physics (Astrophysics), University of Oxford, DWB, Keble Road, Oxford OX1 3RH, UK; [email protected] 5 Department of Physics & Astronomy, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC V8W 3P6, Canada 6 Center for Astrophysics and Space Astronomy, University of Colorado, 593 UCB, Boulder, CO 80309-0593, USA 7 LPNHE, CNRS-IN2P3 and University of Paris VI & VII, 75005 Paris, France 8 Laboratoire d’Astrophysique de Marseille, Poledel’ˆ Etoile´ Site de Chateau-Gombert,ˆ 38, rue Fred´ eric´ Joliot-Curie, 13388 Marseille cedex 13, France 9 CPPM, CNRS-IN2P3 and University Aix Marseille II, Case 907, 13288 Marseille cedex 9, France 10 INAF, Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monteporzio (RM), Italy 11 Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117, USA 12 Department of Physics, University of California, Santa Barbara, Broida Hall, Mail Code 9530, Santa Barbara, CA 93106-9530, USA Received 2010 February 17; accepted 2010 June 4; published 2010 July 1 ABSTRACT The Supernova Legacy Survey (SNLS) has produced a high-quality, homogeneous sample of Type Ia supernovae (SNe Ia) out to redshifts greater than z = 1.
    [Show full text]
  • Curriculum Vitae Avishay Gal-Yam
    January 27, 2017 Curriculum Vitae Avishay Gal-Yam Personal Name: Avishay Gal-Yam Current address: Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel. Telephones: home: 972-8-9464749, work: 972-8-9342063, Fax: 972-8-9344477 e-mail: [email protected] Born: March 15, 1970, Israel Family status: Married + 3 Citizenship: Israeli Education 1997-2003: Ph.D., School of Physics and Astronomy, Tel-Aviv University, Israel. Advisor: Prof. Dan Maoz 1994-1996: B.Sc., Magna Cum Laude, in Physics and Mathematics, Tel-Aviv University, Israel. (1989-1993: Military service.) Positions 2013- : Head, Physics Core Facilities Unit, Weizmann Institute of Science, Israel. 2012- : Associate Professor, Weizmann Institute of Science, Israel. 2008- : Head, Kraar Observatory Program, Weizmann Institute of Science, Israel. 2007- : Visiting Associate, California Institute of Technology. 2007-2012: Senior Scientist, Weizmann Institute of Science, Israel. 2006-2007: Postdoctoral Scholar, California Institute of Technology. 2003-2006: Hubble Postdoctoral Fellow, California Institute of Technology. 1996-2003: Physics and Mathematics Research and Teaching Assistant, Tel Aviv University. Honors and Awards 2012: Kimmel Award for Innovative Investigation. 2010: Krill Prize for Excellence in Scientific Research. 2010: Isreali Physical Society (IPS) Prize for a Young Physicist (shared with E. Nakar). 2010: German Federal Ministry of Education and Research (BMBF) ARCHES Prize. 2010: Levinson Physics Prize. 2008: The Peter and Patricia Gruber Award. 2007: European Union IRG Fellow. 2006: “Citt`adi Cefal`u"Prize. 2003: Hubble Fellow. 2002: Tel Aviv U. School of Physics and Astronomy award for outstanding achievements. 2000: Colton Fellow. 2000: Tel Aviv U. School of Physics and Astronomy research and teaching excellence award.
    [Show full text]
  • Publications RENOIR – 24 Sep 2021 Article
    Publications RENOIR { 24 Sep 2021 article 2021 1. The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: one thousand multi-tracer mock catalogues with redshift evolution and systematics for galaxies and quasars of the final data release, C. Zhao et al., Mon. Not. Roy. Astron. Soc 503 (2021) 1149-1173 2. Euclid preparation: XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography, O. Ilbert et al., Euclid Collaboration, Astron. Astrophys. 647 (2021) A117 2020 1. Improving baryon acoustic oscillation measurement with the combination of cosmic voids and galaxies, C. Zhao et al., SDSS Collaboration, Mon. Not. Roy. Astron. Soc 491 (2020) 4554-4572 2. Strong Dependence of Type Ia Supernova Standardization on the Local Specific Star Formation Rate, M. Rigault et al., Nearby Supernova Factory Collaboration, Astron. Astrophys. 644 (2020) A176 3. High-precision Monte-Carlo modelling of galaxy distribution, P. Baratta et al., Astron. Astrophys. 633 (2020) A26 4. Constraints on the growth of structure around cosmic voids in eBOSS DR14, A. J. Hawken et al., J. Cosmol. Astropart. P 2006 (2020) 012 5. SUGAR: An improved empirical model of Type Ia Supernovae based on spectral features, P.-F. L´eget et al., Nearby Supernova Factory Collaboration, Astron. Astrophys. 636 (2020) A46 6. Euclid: Reconstruction of Weak Lensing mass maps for non- Gaussianity studies, S. Pires et al., Euclid Collaboration, Astron. Astrophys. 638 (2020) A141 7. Euclid preparation: VII. Forecast validation for Euclid cosmological probes, A. Blanchard et al., Euclid Collaboration, Astron. Astrophys. 642 (2020) A191 8. Euclid preparation: VI. Verifying the Performance of Cosmic Shear Experiments, P.
    [Show full text]
  • Euclid: Superluminous Supernovae in the Deep Survey? C
    A&A 609, A83 (2018) Astronomy DOI: 10.1051/0004-6361/201731758 & c ESO 2018 Astrophysics Euclid: Superluminous supernovae in the Deep Survey? C. Inserra1; 2, R. C. Nichol3, D. Scovacricchi3, J. Amiaux4, M. Brescia5, C. Burigana6; 7; 8, E. Cappellaro9, C. S. Carvalho30, S. Cavuoti5; 11; 12, V. Conforti13, J.-C. Cuillandre4; 14; 15, A. da Silva10; 16, A. De Rosa13, M. Della Valle5; 17, J. Dinis10; 16, E. Franceschi13, I. Hook18, P. Hudelot19, K. Jahnke20, T. Kitching21, H. Kurki-Suonio22, I. Lloro23, G. Longo11; 12, E. Maiorano13, M. Maris24, J. D. Rhodes25, R. Scaramella26, S. J. Smartt2, M. Sullivan1, C. Tao27; 28, R. Toledo-Moreo29, I. Tereno16; 30, M. Trifoglio13, and L. Valenziano13 (Affiliations can be found after the references) Received 11 August 2017 / Accepted 3 October 2017 ABSTRACT Context. In the last decade, astronomers have found a new type of supernova called superluminous supernovae (SLSNe) due to their high peak luminosity and long light-curves. These hydrogen-free explosions (SLSNe-I) can be seen to z ∼ 4 and therefore, offer the possibility of probing the distant Universe. Aims. We aim to investigate the possibility of detecting SLSNe-I using ESA’s Euclid satellite, scheduled for launch in 2020. In particular, we study the Euclid Deep Survey (EDS) which will provide a unique combination of area, depth and cadence over the mission. Methods. We estimated the redshift distribution of Euclid SLSNe-I using the latest information on their rates and spectral energy distribution, as well as known Euclid instrument and survey parameters, including the cadence and depth of the EDS.
    [Show full text]
  • Deaths of Stars
    Deaths of stars • Evolution of high mass stars • Where were the elements in your body made? • Stellar remnants • Degenerate gases • White dwarfs • Neutron stars In high mass stars, nuclear burning continues past Helium 1. Hydrogen burning: 10 Myr 2. Helium burning: 1 Myr 3. Carbon burning: 1000 years 4. Neon burning: ~10 years 5. Oxygen burning: ~1 year 6. Silicon burning: ~1 day Finally builds up an inert Iron core Structure of an Old High-Mass Star Why does nuclear fusion stop at Iron? Fusion versus Fission Fusion in massive stars makes elements like Ne, Si, S, Ca, Fe Core collapse • Iron core is degenerate • Core grows until it is too heavy to support itself • Core collapses, density increases, normal iron nuclei are converted into neutrons with the emission of neutrinos • Core collapse stops, neutron star is formed • Rest of the star collapses in on the core, but bounces off the new neutron star If I drop a ball, will it bounce higher than it began? Supernova explosion Core-Collapse Supernova SN 2011fe in M101 (Pinwheel) In 1987 a nearby supernova gave us a close-up look at the death of a massive star An Unusual Supernova • SN 1987A appears to have a set of three glowing rings • Relics of a hydrogen-rich outer atmosphere, ejected by gentle stellar winds from the star when it was a red supergiant. • The gas expanded in a hourglass shape because it was blocked from expanding around the star’s equator either by a preexisting ring of gas or by the orbit of an as-yet- unseen companion star.
    [Show full text]
  • A SWIFT LOOK at SN 2011Fe: the EARLIEST ULTRAVIOLET OBSERVATIONS of a TYPE Ia SUPERNOVA
    The Astrophysical Journal, 753:22 (9pp), 2012 July 1 doi:10.1088/0004-637X/753/1/22 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A SWIFT LOOK AT SN 2011fe: THE EARLIEST ULTRAVIOLET OBSERVATIONS OF A TYPE Ia SUPERNOVA Peter J. Brown1,2, Kyle S. Dawson1, Massimiliano de Pasquale3, Caryl Gronwall4,5, Stephen Holland6, Stefan Immler7,8,9, Paul Kuin10, Paolo Mazzali11,12, Peter Milne13, Samantha Oates10, and Michael Siegel4 1 Department of Physics & Astronomy, University of Utah, 115 South 1400 East 201, Salt Lake City, UT 84112, USA; [email protected] 2 Department of Physics and Astronomy, George P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy, Texas A. & M. University, 4242 TAMU, College Station, TX 77843, USA 3 Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA 4 Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA 5 Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA 6 Space Telescope Science Center, 3700 San Martin Dr., Baltimore, MD 21218, USA 7 Astrophysics Science Division, Code 660.1, 8800 Greenbelt Road, Goddard Space Flight Centre, Greenbelt, MD 20771, USA 8 Department of Astronomy, University of Maryland, College Park, MD 20742, USA 9 Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, MD 20771,
    [Show full text]
  • Arxiv:0804.4142V1 [Astro-Ph]
    Draft version April 25, 2008 Preprint typeset using LATEX style emulateapj v. 10/09/06 IMPROVED COSMOLOGICAL CONSTRAINTS FROM NEW, OLD AND COMBINED SUPERNOVA DATASETS M. Kowalski1, D. Rubin2,3, G. Aldering2, R. J. Agostinho4, A. Amadon5, R. Amanullah6, C. Balland7, K. Barbary2,3, G. Blanc8, P. J. Challis9, A. Conley10, N. V. Connolly11, R. Covarrubias12, K. S. Dawson2, S. E. Deustua13, R. Ellis14, S. Fabbro15, V. Fadeyev16, X. Fan17, B. Farris18, G. Folatelli12, B. L. Frye19, G. Garavini20, E. L. Gates21, L. Germany22, G. Goldhaber2,3, B. Goldman23, A. Goobar20, D. E. Groom2, J. Haissinski24, D. Hardin7, I. Hook25, S. Kent26, A. G. Kim2, R. A. Knop27, C. Lidman28, E. V. Linder6, J. Mendez29,30, J. Meyers2,3, G. J. Miller31, M. Moniez24, A. M. Mourao˜ 15, H. Newberg32, S. Nobili20, P. E. Nugent2, R. Pain7, O. Perdereau24, S. Perlmutter2,3, M. M. Phillips33, V. Prasad2, R. Quimby14, N. Regnault7, J. Rich5, E. P. Rubenstein34, P. Ruiz-Lapuente30, F. D. Santos35, B. E. Schaefer36, R. A. Schommer37, R. C. Smith38, A. M. Soderberg14, A. L. Spadafora2, L.-G. Strolger39, M. Strovink2,3, N. B. Suntzeff40, N. Suzuki2, R. C. Thomas2, N. A. Walton41, L. Wang40, W. M. Wood-Vasey9, J. L. Yun4 (Supernova Cosmology Project) Draft version April 25, 2008 ABSTRACT We present a new compilation of Type Ia supernovae (SNe Ia), a new dataset of low-redshift nearby- Hubble-flow SNe and new analysis procedures to work with these heterogeneous compilations. This “Union” compilation of 414 SN Ia, which reduces to 307 SNe after selection cuts, includes the recent large samples of SNe Ia from the Supernova Legacy Survey and ESSENCE Survey, the older datasets, as well as the recently extended dataset of distant supernovae observed with HST.
    [Show full text]
  • Qt7gs801md.Pdf
    Lawrence Berkeley National Laboratory Recent Work Title Constraining the progenitor companion of the nearby Type Ia SN 2011fe with a nebular spectrum at +981 d Permalink https://escholarship.org/uc/item/7gs801md Journal Monthly Notices of the Royal Astronomical Society, 454(2) ISSN 0035-8711 Authors Graham, ML Nugent, PE Sullivan, M et al. Publication Date 2015-12-01 DOI 10.1093/mnras/stv1888 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Mon. Not. R. Astron. Soc. 000, 1{11 (2014) Printed 13 November 2015 (MN LATEX style file v2.2) Constraining the Progenitor Companion of the Nearby Type Ia SN 2011fe with a Nebular Spectrum at +981 Days M. L. Graham1?, P. E. Nugent1;2, M. Sullivan3, A. V. Filippenko1, S. B. Cenko4;5, J. M. Silverman6, K. I. Clubb1, W. Zheng1 1 Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA 2 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 90R4000, Berkeley, CA 94720, USA 3 Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom 4 Astrophysics Science Division, NASA Goddard Space Flight Center, MC 661, Greenbelt, MD 20771, USA 5 Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA 6 Department of Astronomy, University of Texas, Austin, TX 78712, USA 13 November 2015 ABSTRACT We present an optical nebular spectrum of the nearby Type Ia supernova 2011fe, obtained 981 days after explosion. SN 2011fe exhibits little evolution since the +593 day optical spectrum, but there are several curious aspects in this new extremely late-time regime.
    [Show full text]
  • SN 2011Fe: a Laboratory for Testing Models of Type Ia Supernovae
    SN 2011fe: A Laboratory for Testing Models of Type Ia Supernovae Laura ChomiukA;B;C A Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 B National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 C Email: [email protected] Abstract: SN 2011fe is the nearest supernova of Type Ia (SN Ia) discovered in the modern multi- wavelength telescope era, and it also represents the earliest discovery of a SN Ia to date. As a normal SN Ia, SN 2011fe provides an excellent opportunity to decipher long-standing puzzles about the nature of SNe Ia. In this review, we summarize the extensive suite of panchromatic data on SN 2011fe, and gather interpretations of these data to answer four key questions: 1) What explodes in a SN Ia? 2) How does it explode? 3) What is the progenitor of SN 2011fe? and 4) How accurate are SNe Ia as standardizeable candles? Most aspects of SN 2011fe are consistent with the canonical picture of a massive CO white dwarf undergoing a deflagration-to-detonation transition. However, there is minimal evidence for a non-degenerate companion star, so SN 2011fe may have marked the merger of two white dwarfs. Keywords: supernovae: general | supernovae: individual (SN 2011fe) | white dwarfs | novae, cataclysmic variables 1 Introduction 2 SN 2011fe: A normal SN Ia The multi-band light curve of SN 2011fe, measured in Discovered on 2011 August 24 by the Palomar Tran- exquisite detail at UV through IR wavelengths, is typ- sient Factory, SN 2011fe1 was announced as a Type ical of SNe Ia (Figure 2; Vink´oet al.
    [Show full text]
  • Annual Report Astronomy Australia Limited
    2011 / 12 Annual Report Astronomy Australia Limited Vision Astronomers in Australia will have access to the best astronomical research infrastructure. Mission AAL will achieve its vision by: 1. Engaging with Australian astronomers to advance the national research infrastructure priorities of the Australian astronomy decadal plan. 2. Advising the Australian Government on future investments in national astronomical research infrastructure. 3. Managing investments in national astronomical research infrastructure as required. Principles 1. Access to major astronomical research infrastructure should be available to any Australian-based astronomer purely on scientific merit. 2. The concept of national astronomical research infrastructure includes Australian participation in international facilities. 3. The AAO and CSIRO are empowered by the Australian Government to provide a component of the national astronomical research infrastructure and there is no need for AAL to directly manage investments to upgrade or operate the AAT and ATNF. Front cover image Gemini Legacy image of the complex planetary nebula Sh2-71 as imaged by the Gemini Multi-Object Spectrograph on Gemini North on Mauna Kea in Hawai‘i. A research team, led by Australian astronomers David Frew and Quentin Parker (Macquarie University, Sydney) are studying the dimmer, bluer star to understand its nature. The long-assumed central star is the brightest star near the centre, but the much dimmer and bluer star (just to the right and down a little) might be the parent of this beautiful object. The image is composed of three narrow- band images, and each is assigned a colour as follows: H-alpha (orange), HeII (blue) and [OIII] (cyan). Image credit: Gemini Observatory/AURA Background image Dipoles on one “tile” of the Murchison Widefield Array; one of the first telescopes with no moving parts.
    [Show full text]