Bioactive Secondary Metabolites from the Marine Sponge Genus Agelas

Total Page:16

File Type:pdf, Size:1020Kb

Bioactive Secondary Metabolites from the Marine Sponge Genus Agelas marine drugs Review Bioactive Secondary Metabolites from the Marine Sponge Genus Agelas Huawei Zhang 1,* ID , Menglian Dong 1, Jianwei Chen 1, Hong Wang 1, Karen Tenney 2 and Phillip Crews 2 ID 1 Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; [email protected] (M.D.); [email protected] (J.C.); [email protected] (H.W.) 2 Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA; [email protected] (K.T.); [email protected] (P.C.) * Correspondence: [email protected]; Tel.: +86-571-8832-0613 Received: 19 September 2017; Accepted: 3 November 2017; Published: 8 November 2017 Abstract: The marine sponge genus Agelas comprises a rich reservoir of species and natural products with diverse chemical structures and biological properties with potential application in new drug development. This review for the first time summarized secondary metabolites from Agelas sponges discovered in the past 47 years together with their bioactive effects. Keywords: marine sponge; Agelas; secondary metabolite; natural product; bioactivity 1. Introduction The search for natural drug candidates from marine organisms is the eternal impetus to pharmaceutical scientists. For the past six decades, marine sponges have been a prolific and chemically diverse source of natural compounds with potential therapeutic application [1,2]. The marine sponge Agelas (Porifera, Demospongiae, Agelasida, Agelasidae) is widely distributed in the marine eco-system and includes at least 19 species (Figure1): A. axifera, A. cerebrum, A. ceylonica, A. citrina, A. clathrodes, A. conifera, A. dendromorpha, A. dispar, A. gracilis, A. linnaei, A. longissima, A. mauritiana, A. nakamurai, A. nemoechinata, A. oroides, A. sceptrum, A. schmidtii, A. sventres, and A. wiedenmayeri. Since the beginning of the 1970s, many research groups around the world have carried out chemical investigation on Agelas spp., resulting in fruitful achievements. Their studies revealed that Agelas sponges harbor many bioactive secondary metabolites, including alkaloids (especially bromopyrrole derivatives), terpenoids, glycosphingolipids, carotenoids, fatty acids and meroterpenoids [3]. These natural products are an attractive resource for drug candidates due to their rich chemodiversity and interesting biological activities. Mar. Drugs 2017, 15, 351; doi:10.3390/md15110351 www.mdpi.com/journal/marinedrugs Mar. Drugs 2017, 15, 351 2 of 29 Mar. Drugs 2017, 15, 351 2 of 29 Agelas clathrodes Agelas conifera Agelas dispar Agelas inequalis Agelas mauritiana Agelas sceptrum Agelas wiendermayeri Agelas sp. Figure 1. Photos of Agelas sponges provided by professor Crews. Figure 1. Photos of Agelas sponges provided by professor Crews. 2. Natural Products from Agelas Genus 2. Natural Products from Agelas Genus The chemical diversity of natural products is determined by the biological diversity of organisms. ToThe date, chemical 291 secondary diversity metabolites of natural ( products1–291) have isdetermined been isolated by and the biologicalcharacterized diversity from the of organisms.marine Tosponge date, 291 Agelas secondary spp. (Table metabolites 1). These chemicals (1–291) have were been introduced isolated and and assorted characterized as follows from according the marine to spongetheir biologicalAgelas spp. sources. (Table 1). These chemicals were introduced and assorted as follows according to their biological sources. Mar. Drugs 2017, 15, 351 3 of 29 Mar. Drugs 2017, 15, 351 3 of 29 Mar. Drugs 2017, 15, 351 3 of 29 Mar. Drugs 2017, 15, 351 3 of 29 2.1.2.1. Agelas Agelas axifera axifera 2.1. Agelas axifera 2.1. Agelas axifera ThreeThree newnew alkaloids,alkaloids, namednamed axistatinsaxistatins 11 (1(1),), 22 (2(2),), andand 33 (3(3)) (Figure(Figure2 ),2), were were isolated isolated and and Three new alkaloids, named axistatins 1 (1), 2 (2), and 3 (3) (Figure 2), were isolated and characterizedcharacterizedThree new fromfrom alkaloids,Agelas Agelas axiferanamedaxiferacollected collectedaxistatinsin in the1 the (1 Republic ),Republic 2 (2), andof of Palau Palau3 (3) and and(Figure found found 2), to towere exhibit exhibit isolated inhibitory inhibitory and characterized from Agelas axifera collected in the Republic of Palau and found to exhibit inhibitory characterizedeffectseffects on on cancer cancer from cell cell Agelas lines, lines, axifera including including collected P388, P388, BXPC-3, inBXPC-3, the Republic MCF-7,MCF-7, of SF-268,SF-268, Palau NCI-H460, NCI-H460,and foundKM20L2 KM20L2to exhibit andand inhibitory DU-145.DU-145. effects on cancer cell lines, including P388, BXPC-3, MCF-7, SF-268, NCI-H460, KM20L2 and DU-145. effectsTheThe exquisitely exquisitely on cancer sensitive cellsensitive lines, Gram-negative Gram-negativeincluding P388, pathogen pathogen BXPC-3, NeisseriaMCF-7, Neisseria SF-268, gonorrheae gonorrheae NCI-H460,and and the the KM20L2 opportunistic opportunistic and DU-145. fungus fungus The exquisitely sensitive Gram-negative pathogen Neisseria gonorrheae and the opportunistic fungus TheCryptococcusCryptococcus exquisitely neoformansneoformans sensitive wereGram-negative inhibited inhibited by pathogen by 1–13– 3withwith Neisseria MIC MIC values valuesgonorrheae of 1–8, of 1–8,and 2–4, the 2–4, and opportunistic and8 μg/mL, 8 µg/mL, and fungus 1–4, and 2, Cryptococcus neoformans were inhibited by 1–3 with MIC values of 1–8, 2–4, and 8 μg/mL, and 1–4, 2, 1–4,Cryptococcusand 2,8–16 and μ 8–16 g/mL,neoformansµg/mL, respectively. were respectively. inhibited Furthermore, by Furthermore, 1–3 withthese MIC compounds these values compounds of had1–8, antimicrobial2–4, had and antimicrobial 8 μg/mL, effect and on effect 1–4,Gram- on 2, and 8–16 μg/mL, respectively. Furthermore, these compounds had antimicrobial effect on Gram- andGram-positivepositive 8–16 bacteria,μg/mL, bacteria, respectively.including including Staphylococcus Furthermore,Staphylococcus aureus these aureus, Streptococcuscompounds, Streptococcus hadpneumoniae pneumoniaeantimicrobial, Enterococcus, Enterococcus effect onfaecalis Gram- faecalis and positive bacteria, including Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis and positiveandMicrococcusMicrococcus bacteria, luteus luteus including [4]. [4]. Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis and Micrococcus luteus [4]. Micrococcus luteus [4]. 1 2 3 1 2 3 1 2 3 Figure 2. Chemical structures of compounds 1–3. Figure 2. Chemical structures of compounds 1–3. Figure 2. Chemical structures of compounds 1–3. 2.2. Agelas cerebrum 2.2. Agelas cerebrum 2.2. Agelas cerebrum Marine sponge Agelas cerebrum was classified as a new species in 2001 [5]. Chemical investigation Marine spongespongeAgelas Agelas cerebrumcerebrumwas was classified classified as as a a new new species species in in 2001 2001 [5 [5].]. Chemical Chemical investigation investigation of of CaribbeanMarine sponge specimen Agelas A. cerebrumcerebrum led was to classified the isolation as a of new three species brom ininated 2001 compounds, [5]. Chemical 5-bromopyrrole- investigation Caribbeanof Caribbean specimen specimenA. A. cerebrum cerebrumled led to to the the isolation isolation of of three three brominated brominated compounds, compounds, 5-bromopyrrole-2- 5-bromopyrrole- of2-carboxylic Caribbean specimenacid (4), 4-bromopyrrole-2-carboxylicA. cerebrum led to the isolation acid of three (5) and brom 3,4-bromopyrroleinated compounds,-2-carboxylic 5-bromopyrrole- acid (6) carboxylic2-carboxylic acid acid ( 4(),4), 4-bromopyrrole-2-carboxylic 4-bromopyrrole-2-carboxylic acidacid ((55)) andand 3,4-bromopyrrole-2-carboxylic3,4-bromopyrrole-2-carboxylic acid ( 6)) 2-carboxylic(Figure 3) [6]. acid Biological (4), 4-bromopyrrole-2-carboxylic tests indicated that these isolatesacid (5 )had and strong 3,4-bromopyrrole cytotoxic activities-2-carboxylic in vitro acid against (6) (Figure3 3)) [[6].6]. Biological tests indicated that these isolates had had strong strong cytotoxic cytotoxic activities activities inin vitro vitro against (Figurehuman 3) tumor [6]. Biological cell lines tests at ≥ 1indicated mg/mL, thatincluding these isolates A549, HT29 had strong and MDA-MB-231. cytotoxic activities in vitro against human tumor cellcell lineslines atat≥ ≥1 mg/mL, including including A549, A549, HT29 and MDA-MB-231. human tumor cell lines at ≥1 mg/mL, including A549, HT29 and MDA-MB-231. 4: R1 = H, R2 =H, R3 = Br 4: R1 = H, R2 =H, R3 = Br 4:5: R R11= = H, H, R R22=H, = Br, R 3R=3 Br= H 5: R1 = H, R2 = Br, R3 = H 5:6: R R11 = = H, Br, R R2 2= = Br, Br, R R3 3= = H H. 6: R1 = Br, R2 = Br, R3 = H. 6: R1 = Br, R2 = Br, R3 = H. Figure 3. Chemical structures of compounds 4–6. Figure 3. Chemical structures of compounds 4–6. Figure 3. Chemical structures of compounds 4–6. 2.3. Agelas ceylonica 2.3. Agelas ceylonica 2.3. Agelas ceylonica Only one case of chemical study on Agelas ceylonica has been reported [7]. The specimen of A. Only one case of chemical study on Agelas ceylonica has been reported [7]. The specimen of A. ceylonicaOnly collectedone one case case fromof of chemical chemical India Mandapam study study on on Agelas Agelascoast ceylonicawas ceylonica found hashas to been produce been reported reported one methyl[7]. [7 ].The Theester specimen specimen hanishin of A. of(7 ) ceylonica collected from India Mandapam coast was found to produce one methyl ester hanishin (7) ceylonicaA.(Figure ceylonica 4),collected collectedwhich fromhas from been India India previously
Recommended publications
  • Reef Sponges of the Genus Agelas (Porifera: Demospongiae) from the Greater Caribbean
    Zootaxa 3794 (3): 301–343 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3794.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:51852298-F299-4392-9C89-A6FD14D3E1D0 Reef sponges of the genus Agelas (Porifera: Demospongiae) from the Greater Caribbean FERNANDO J. PARRA-VELANDIA1,2, SVEN ZEA2,4 & ROB W. M. VAN SOEST3 1St John's Island Marine Laboratory, Tropical Marine Science Institute (TMSI), National University of Singapore, 18 Kent Ridge Road, Singapore 119227. E-mail: [email protected] 2Universidad Nacional de Colombia, Sede Caribe, Centro de Estudios en Ciencias del Mar—CECIMAR; c/o INVEMAR, Calle 25 2- 55, Rodadero Sur, Playa Salguero, Santa Marta, Colombia. E-mail: [email protected] 3Netherlands Centre for Biodiversity Naturalis, P.O.Box 9517 2300 RA Leiden, The Netherlands. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 301 Introduction . 302 The genus Agelas in the Greater Caribbean . 302 Material and methods . 303 Classification . 304 Phylum Porifera Grant, 1835 . 304 Class Demospongiae Sollas, 1875 . 304 Order Agelasida Hartman, 1980 . 304 Family Agelasidae Verrill, 1907 . 304 Genus Agelas Duchassaing & Michelotti, 1864 . 304 Agelas dispar Duchassaing & Michelotti, 1864 . 306 Agelas cervicornis (Schmidt, 1870) . 311 Agelas wiedenmayeri Alcolado, 1984. 313 Agelas sceptrum (Lamarck, 1815) . 315 Agelas dilatata Duchassaing & Michelotti, 1864 . 316 Agelas conifera (Schmidt, 1870). 318 Agelas tubulata Lehnert & van Soest, 1996 . 321 Agelas repens Lehnert & van Soest, 1998. 324 Agelas cerebrum Assmann, van Soest & Köck, 2001. 325 Agelas schmidti Wilson, 1902 .
    [Show full text]
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
    marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds.
    [Show full text]
  • Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
    Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida).
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Defensive Synergy: the Antipredatory Role of Glass Spicules in Caribbean Demosponges
    DEFENSIVE SYNERGY: THE ANTIPREDATORY ROLE OF GLASS SPICULES IN CARIBBEAN DEMOSPONGES Adam C. Jones A Thesis Submitted to the University of North Carolina at Wilmington in Partial Fulfillment Of the Requirements for the Degree of Master of Science Department of Biological Sciences University of North Carolina at Wilmington 2004 Approved by Advisory Committee ___________________ ___________________ ___________________ Chair Accepted by __________________ Dean, Graduate School This thesis has been prepared in the style and format consistent with the journal Oecologia ii TABLE OF CONTENTS Page ABSTRACT …………………………………………………………………………. iv ACKNOWLEDGEMENTS . ………………………………………………………… v LIST OF TABLES ..…………………………………………………………………. vi LIST OF FIGURES ..………………………………………………………………... vii INTRODUCTION …………………………………………………………………… 1 MATERIALS AND METHODS …………………………………………………… 9 Sponge collection and identification………………….……………………… 9 Crude extract isolation……………………………………………………….. 9 Spicule isolation……………………………………………………………... 10 Feeding assays………...……………………………………………………... 11 Statistical procedures…………………………………………………………. 13 RESULTS ……………………………………………………………………….…… 16 DISCUSSION …………………………………………………………….………… 29 Benefits of statistical procedures ……………………………………………. 35 LITERATURE CITED ……………………………………………………………... 36 iii ABSTRACT Many sponge species produce secondary metabolites that deter predation. Sponges also contain siliceous spicules, but previous studies have provided little evidence that spicules offer any defense against generalist fish predators. However, feeding
    [Show full text]
  • Cnidarian Phylogenetic Relationships As Revealed by Mitogenomics Ehsan Kayal1,2*, Béatrice Roure3, Hervé Philippe3, Allen G Collins4 and Dennis V Lavrov1
    Kayal et al. BMC Evolutionary Biology 2013, 13:5 http://www.biomedcentral.com/1471-2148/13/5 RESEARCH ARTICLE Open Access Cnidarian phylogenetic relationships as revealed by mitogenomics Ehsan Kayal1,2*, Béatrice Roure3, Hervé Philippe3, Allen G Collins4 and Dennis V Lavrov1 Abstract Background: Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) – cnidarians with a reproductive polyp and the absence of a medusa stage – and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) – cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. Results: We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. Conclusions: Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum.
    [Show full text]
  • Chemical Defenses of the Caribbean Sponges Agelas Wiedenmayeri and Agelas Conifera
    MARINE ECOLOGY PROGRESS SERIES Vol. 207: 255–262, 2000 Published November 22 Mar Ecol Prog Ser Chemical defenses of the Caribbean sponges Agelas wiedenmayeri and Agelas conifera Michael Assmann1, Ellen Lichte1, Joseph R. Pawlik2, Matthias Köck1,* 1Institut für Organische Chemie, Johann Wolfgang Goethe-Universität, Marie-Curie-Straße 11, 60439 Frankfurt am Main, Germany 2Biological Sciences and Center for Marine Science, University of North Carolina at Wilmington, Wilmington, North Carolina 28403-3297, USA ABSTRACT: Previous studies have determined that Caribbean reef sponges of the genus Agelas are chemically defended from fish predation by brominated pyrrole alkaloids, and that the compounds responsible for this defense have been elucidated for 1 species, A. clathrodes. In this study, we ex- pand our understanding of chemical defense in this common sponge genus to include the character- ization of defensive metabolites in the tissues of A. wiedenmayeri and A. conifera. Bioassay-directed isolation of defensive metabolites was undertaken using fish feeding assays carried out in laboratory aquaria and in the field. A. wiedenmayeri contained the same 2 major metabolites as A. clathrodes, 4,5-dibromopyrrole-2-carboxylic acid (1), and oroidin (2), in addition to a small amount of bromoage- liferin (7). The 2 major metabolites were present at higher concentrations in samples of A. wieden- mayeri than in A. clathrodes, and their relative concentrations were reversed, with A. wiedenmayeri on average containing more 4,5-dibromopyrrole-2-carboxylic acid (1) (2.0 mg ml–1) than oroidin (2) (0.8 mg ml–1). A. conifera contained a mixture of dimeric bromopyrrole alkaloids dominated by scep- trin (3), with <10% each of dibromosceptrin (5), bromoageliferin (7), dibromoageliferin (8), ageliferin (6), and bromosceptrin (4).
    [Show full text]
  • Florida Keys Species List
    FKNMS Species List A B C D E F G H I J K L M N O P Q R S T 1 Marine and Terrestrial Species of the Florida Keys 2 Phylum Subphylum Class Subclass Order Suborder Infraorder Superfamily Family Scientific Name Common Name Notes 3 1 Porifera (Sponges) Demospongia Dictyoceratida Spongiidae Euryspongia rosea species from G.P. Schmahl, BNP survey 4 2 Fasciospongia cerebriformis species from G.P. Schmahl, BNP survey 5 3 Hippospongia gossypina Velvet sponge 6 4 Hippospongia lachne Sheepswool sponge 7 5 Oligoceras violacea Tortugas survey, Wheaton list 8 6 Spongia barbara Yellow sponge 9 7 Spongia graminea Glove sponge 10 8 Spongia obscura Grass sponge 11 9 Spongia sterea Wire sponge 12 10 Irciniidae Ircinia campana Vase sponge 13 11 Ircinia felix Stinker sponge 14 12 Ircinia cf. Ramosa species from G.P. Schmahl, BNP survey 15 13 Ircinia strobilina Black-ball sponge 16 14 Smenospongia aurea species from G.P. Schmahl, BNP survey, Tortugas survey, Wheaton list 17 15 Thorecta horridus recorded from Keys by Wiedenmayer 18 16 Dendroceratida Dysideidae Dysidea etheria species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 19 17 Dysidea fragilis species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 20 18 Dysidea janiae species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 21 19 Dysidea variabilis species from G.P. Schmahl, BNP survey 22 20 Verongida Druinellidae Pseudoceratina crassa Branching tube sponge 23 21 Aplysinidae Aplysina archeri species from G.P. Schmahl, BNP survey 24 22 Aplysina cauliformis Row pore rope sponge 25 23 Aplysina fistularis Yellow tube sponge 26 24 Aplysina lacunosa 27 25 Verongula rigida Pitted sponge 28 26 Darwinellidae Aplysilla sulfurea species from G.P.
    [Show full text]
  • Photographic Identification Guide to Some Common Marine Invertebrates of Bocas Del Toro, Panama
    Caribbean Journal of Science, Vol. 41, No. 3, 638-707, 2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Photographic Identification Guide to Some Common Marine Invertebrates of Bocas Del Toro, Panama R. COLLIN1,M.C.DÍAZ2,3,J.NORENBURG3,R.M.ROCHA4,J.A.SÁNCHEZ5,A.SCHULZE6, M. SCHWARTZ3, AND A. VALDÉS7 1Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama. 2Museo Marino de Margarita, Boulevard El Paseo, Boca del Rio, Peninsula de Macanao, Nueva Esparta, Venezuela. 3Smithsonian Institution, National Museum of Natural History, Invertebrate Zoology, Washington, DC 20560-0163, USA. 4Universidade Federal do Paraná, Departamento de Zoologia, CP 19020, 81.531-980, Curitiba, Paraná, Brazil. 5Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1E No 18A – 10, Bogotá, Colombia. 6Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA. 7Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. This identification guide is the result of intensive sampling of shallow-water habitats in Bocas del Toro during 2003 and 2004. The guide is designed to aid in identification of a selection of common macroscopic marine invertebrates in the field and includes 95 species of sponges, 43 corals, 35 gorgonians, 16 nem- erteans, 12 sipunculeans, 19 opisthobranchs, 23 echinoderms, and 32 tunicates. Species are included here on the basis on local abundance and the availability of adequate photographs. Taxonomic coverage of some groups such as tunicates and sponges is greater than 70% of species reported from the area, while coverage for some other groups is significantly less and many microscopic phyla are not included.
    [Show full text]
  • Zootaxa 20 Years: Phylum Porifera
    Zootaxa 4979 (1): 038–056 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Review ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4979.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:3409F59A-0552-44A8-89F0-4F0230CB27E7 Zootaxa 20 years: Phylum Porifera JOHN N.A. HOOPER1,2*, GERT WÖRHEIDE3,4,5, EDUARDO HAJDU6, DIRK ERPENBECK3,5, NICOLE J. DE VOOGD7,8 & MICHELLE KLAUTAU9 1Queensland Museum, PO Box 3300, South Brisbane 4101, Brisbane, Queensland, Australia [email protected], https://orcid.org/0000-0003-1722-5954 2Griffith Institute for Drug Discovery, Griffith University, Brisbane 4111, Queensland, Australia 3Department of Earth- and Environmental Sciences, Ludwig-Maximilians-Universität, Richard-Wagner Straße 10, 80333 Munich, Germany 4SNSB-Bavarian State Collection of Palaeontology and Geology, Richard-Wagner Straße 10, 80333 Munich, Germany 5GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany [email protected], https://orcid.org/0000-0002-6380-7421 [email protected], https://orcid.org/0000-0003-2716-1085 6Museu Nacional/UFRJ, TAXPO - Depto. Invertebrados, Quinta da Boa Vista, s/n 20940-040, Rio de Janeiro, RJ, BRASIL [email protected], https://orcid.org/0000-0002-8760-9403 7Naturalis Biodiversity Center, Dept. Marine Biodiversity, P.O. Box 9617, 2300 RA Leiden, The Netherlands [email protected], https://orcid.org/0000-0002-7985-5604 8Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands 9Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Av. Carlos Chagas Filho, 373, CEP 21941- 902, Rio de Janeiro, RJ, Brasil.
    [Show full text]
  • Storage Cells and Spermatic Cysts in the Caribbean Coralline Sponge Goreauiella Auriculata (Astroscleridae, Agelasida, Demospongiae): a Relationship ?
    Boll. Mus. Ist. Biol. Univ. Genova, 68: 673-681, 2003 (2004) 673 STORAGE CELLS AND SPERMATIC CYSTS IN THE CARIBBEAN CORALLINE SPONGE GOREAUIELLA AURICULATA (ASTROSCLERIDAE, AGELASIDA, DEMOSPONGIAE): A RELATIONSHIP ? PHILIPPE WILLENZ* & WILLARD D. HARTMAN** *Royal Belgian Institute of Natural Sciences, 29 Rue Vautier, B 1000 Brussels, Belgium **Yale University, Peabody Museum of Natural History, 170 Whitney Avenue, PO Box 208118, New Haven CT 06520-8118, USA E-mail: [email protected] Ultrastructural observations of the living tissue of the coralline sponge Goreauiella auriculata collected near Discovery Bay, Jamaica and in the Bahamas between 1984 and 2002 were conducted with transmission electron microscopy to pinpoint sexual reproductive stages. Two different structures situated at the base of the living tissue, between processes of the aragonitic skeleton were revealed. Firstly, masses of storage cells packed with various inclusions and resembling gemmular thesocytes were found in all specimens collected in Jamaica; they were scarce and small when male gametes were produced, but none were found in specimens from the Bahamas. Secondly, spermatic cysts containing primary spermatocytes occurred in the same region of the mesohyl on only one occasion. Although in many demosponges male gametes develop directly from choanocytes, we revive the view that the origin of these cells is different in different species. We suggest that storage cells can produce spermatic cysts in G. auriculata. KEY WORDS Coralline sponges, storage cells, spermatic cysts, reproduction, ultrastructure. INTRODUCTION Reproduction in coralline sponges has rarely been observed. Only Astrosclera willeyana and Vaceletia crypta are known to incubate parenchymella embryos (LISTER 1900; VACELET 1979; WÖRHEIDE, 1998). Among about 14 species of calcified demosponges described so far, 2 species concentrate masses of cells in basal cavities of their calcareous skeleton.
    [Show full text]