1 Regeneration from injury and resource allocation in sponges and corals * † Lea-Anne Henry, Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada, B3H 4J1. +1-902-494-3570.
[email protected] and ‡ Michael Hart, Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada, B3H 4J1. +1-902-494-6665. * corresponding author † present address: Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll, United Kingdom, PA37 1QA. +44 (0)1631 559 000.
[email protected] ‡ present address: Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6. +1-604-291-4475.
[email protected] 2 Regeneration from injury and resource allocation in sponges and corals 1. Introduction Sessile bottom-dwelling animals (the “epifauna”) provide important biogenic habitat for other trophic levels including fish and invertebrates, and contribute much of the biomass, biodiversity and physical frameworks in marine ecosystems exposed to natural and man-made disturbances (BRADSTOCK AND GORDON, 1983; SAINSBURY, 1987; HUTCHINGS, 1990; JONES, 1992; SAINSBURY et al. 1993; AUSTER et al., 1996; KOSLOW et al., 2001). The ability of epifauna to survive and recover from disturbances is thus vital to the long-term persistence of other resident organisms, as well as the total biodiversity in these ecosystems. The regeneration of injured or lost body parts is integral to epifauna survival, and is essential for community recovery from disturbances that injure these animals e.g., predation, storms, bottom-fishing (FISHELSON, 1973; LOYA, 1976a; PEARSON, 1981; TILMANT, 1982; BYTHELL et al., 1993; CONNELL et al., 1997; LASKER and COFFROTH, 1999).