Farming of a Defensive Fungal Mutualist by an Attelabid Weevil

Total Page:16

File Type:pdf, Size:1020Kb

Farming of a Defensive Fungal Mutualist by an Attelabid Weevil The ISME Journal (2015) 9, 1793–1801 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Farming of a defensive fungal mutualist by an attelabid weevil Lin Wang1,5, Yu Feng2,5, Jianqing Tian1, Meichun Xiang1, Jingzu Sun1, Jianqing Ding3, Wen-Bing Yin1, Marc Stadler4, Yongsheng Che2 and Xingzhong Liu1 1State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; 2State Key Laboratory of Toxicology and Medical Counter Measures, Beijing Institute of Pharmacology and Toxicology, Beijing, China; 3Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China and 4Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany The mutualism between fungus-growing animals and fungi is a classic example of a complex interspecies association. A handful of insects, notably the well-recognized fungus-farming ants, termites and beetles, have developed advanced agriculture, which includes seeding new gardens with crop propagules, improving growth conditions and protecting and harvesting the fungal crop. More examples, which could be called ‘proto-fungiculture’, involve fewer adaptations, as exemplified by marine snails that farm intertidal fungi on marsh grass. Recent work has indicated that the solitary leaf-rolling weevil Euops chinensis (family Attelabidae) has a protofarming symbiosis with the mycangial fungus Penicillium herquei (family Trichocomaceae). In this study, we investigated how the weevils create cradles (leaf-rolls) for their offspring and protect the fungal garden. We describe new specialized structures and behaviors that E. chinensis females use for leaf-rolling and fungus inoculation. The fungus P. herquei produces the antibiotic ( þ )-scleroder- olide in laboratory culture and in leaf-rolls, which can serve to inhibit microbial ‘weeds’ and pests, thus protecting the fungal garden against potential infection. The fungiculture of E. chinensis differs from other advanced insect fungiculture systems because female weevils do not continuously tend the inoculated microbe and do not depend nutritionally on the fungus. The defensive role of the cultivated fungus makes the attelabid weevils exceptional in ‘proto-fungiculture’ animals. The ISME Journal (2015) 9, 1793–1801; doi:10.1038/ismej.2014.263; published online 6 February 2015 Introduction dependency (Mueller et al., 2005). Instances of advanced fungiculture have been extensively docu- Insects developed the capacity to cultivate fungi as a mented and studied, including fungus-farming ants, food source approximately 40–60 million years ago, termites and ambrosia beetles (Farrell et al., 2001; and agricultural life ultimately enabled all of these Aanen et al.,2002;Currieet al., 2003a). The farming insect farmers to rise to major ecological importance strategies of these insect farmers include evolved (Mueller and Gerardo, 2002; Mueller et al., 2005). mechanisms for substrate preparation, inoculation The capacity to grow fungus has not been restricted with crop propagules, optimization of fungal growth to insect lineages; also snails have been discovered through regular activities, protection of the crop to be nutritionally dependent on external fungal against parasites or diseases and harvest and con- symbionts (Silliman and Newell, 2003). sumption of fungi (Schultz et al.,2004;Muelleret al., Insect fungiculture shares some defining features 2005). The insect farmers have developed task- of agriculture, including habitual planting (‘inocula- partitioned societies cooperating in their fungiculture tion’), cultivation, harvesting and nutritional biology (Biedermann and Taborsky, 2011; Nobre et al., 2011). In ant and termite farmers, agriculture tasks are partitioned between different castes, each specialized Correspondence: Y Che, State Key Laboratory of Toxicology & on one main task (Hart et al., 2002; Nobre et al., 2011). Medical Countermeasures, Beijing Institute of Pharmacology & In ambrosia beetle (Xyleborinus saxesenii), division of Toxicology 27 Taiping Road, Beijing 100850, China. E-mail: [email protected] labor is shown between larval and adult colony or X Liu, State Key Laboratory of Mycology, Institute of members (Biedermann and Taborsky, 2011). Microbiology, Chinese Academy of Sciences, No 3, 1st Beichen Proto-fungiculture mutualism cases have been West Road, Chaoyang District, Beijing 100101, China. reported from non-social organisms, and the insects E-mail: [email protected] 5These authors contributed equally to the work. show no division of labor. Outside the class Insecta, Received 25 August 2014; revised 30 November 2014; accepted 10 marine snails farming intertidal fungi provide an December 2014; published online 6 February 2015 example in the marine environment. Littoria snails Attelabid weevil and mycangial fungus mutualism L Wang et al 1794 (Littoraria irrorata) ‘protofarm’ fungi by creating collected in four locations in Jiangxi and Hubei plant wounds that become infected with fungal provinces, China. The collected host plant leaves mycelia that are part of the snails’ diet, but the snails and weevils were placed in separate containers. The do not actively inoculate plant wounds or otherwise leaf-rolls were maintained individually on sterilized garden the fungi (Silliman and Newell, 2003). The moist soil to permit the weevils to undergo complete fungus-growing lizard beetle Doubledaya buccu- metamorphosis. lenta transmits symbiotic yeast into bamboo inter- node cavities and disperses the yeast in the cavities Scanning electron microscopy (SEM) to make gardens (Toki et al., 2013). These proto- Dissected mycangia and leaf-rolls were used for farming phenomena have also been reported in SEM screening. The mycangia of 20 adult female some species of gall midges and wood wasps weevils were dissected. After the eggs and larvae (Kukor and Martin, 1983; Heath and Stireman, were removed, 1.5 cm2 pieces were cut from 20 leaf- 2010; Pazoutova et al., 2010). rolls. These specimens (20 each of mycangia and A seldom-studied example of proto-fungiculture leaf-rolls without insects) were fixed in glutaralde- is exhibited by attelabid weevils. Among the sub- hyde and processed according to previously pub- family Attelabinae, species in the genus Euops have lished methods (Yuceer et al., 2011). The specimens a symbiotic association with fungi: the female were subsequently examined using a Quanta 200 weevils roll leaf pieces and inoculate them with a scanning electron microscope (FEI, Czech). fungal symbiont stored in their mycangium. They lay one or a few eggs in the leaf cradles (leaf-rolls), Isolation of microorganisms from mycangia and then the larvae develop by feeding on the inside A total of 89 E. chinensis females were collected layers of the leaf cradles (Sakurai, 1985; Wang et al., from the host shrub F. japonica in Jiangxi and Hubei 2010). Inoculation with the fungal symbiont provinces, China. Spores stored in the mycangia of decreases the cellulose content of the host plant’s these females were removed with a sterile needle leaves. Experimental removal of the cultivated and placed on 1/4-strength potato dextrose agar fungus results in increased larval mortality (Li (PDA) plates at room temperature. After the spores et al., 2012). The mycangial fungi have been germinated, the colonies were transferred to full- identified as species of the genus Penicillium strength PDA plates. Sporulating colonies were used (Kobayashi et al., 2008; Li et al., 2012). to identify the fungi. Nutrient agar (NA; per liter: 5 g Morphological and behavioral adaptations for a peptone, 3 g beef extract, and 15 g agar) and chitin ‘fungiculture lifestyle’ have been observed in attelabid medium (Hsu and Lockwood, 1975) were used to weevils. These adaptations include the female’s mycan- isolate bacteria (including Actinobacteria) from gium, the comb plates on her abdomen, and the female weevils’ mycangia. The plates were incu- characteristic posture she assumes when depositing bated in the dark at 25 1C for fungal isolation fungal spores (Sakurai, 1985). Recent studies suggested (including Actinobacteria) and at 30 1C for bacterial that the fungal cultivar tissues have only a minor isolation. nutritional value (Kobayashi et al., 2008; Li et al., 2012). Our study of the attelabid weevil, E. chinensis,and its symbiotic fungus Penicillium herquei have indi- Isolation of microorganisms from non-rolled host plant cated that important aspects of this symbiosis have leaves and leaf-rolls not been previously described. Based on both video The un-cut parts of the leaves left by weevils were recordings of living specimens in the field and used as the non-rolled leaf samples. Leaf-rolls detailed laboratory investigations, we describe new were unrolled, and the eggs or larvae inside were specialized structures and behaviors that E. chinensis removed. The non-rolled leaf parts and the leaf-rolls females use for leaf-rolling and fungus inoculation. were processed separately. The leaf tissues were We also report that P. herquei produces an antibiotic, washed twice with sterile 0.1% Tween 20. The ( þ )-scleroderolide, that protects the fungal garden samples were then homogenized in 10 ml of sterile from ‘weed microorganisms’. The characteristics of deionized water, and the homogenate was serially À 1 À 4 E. chinensis–P. herquei mutualism include the leaf- diluted from 10 to 10 . Each dilution was roll habitat, non-social nature and the highly evolved divided
Recommended publications
  • Insect Ecology-An Ecosystem Approach
    FM-P088772.qxd 1/24/06 11:11 AM Page xi PREFACE his second edition provides an updated and expanded synthesis of feedbacks and interactions between insects and their environment. A number of recent studies have T advanced understanding of feedbacks or provided useful examples of principles. Mo- lecular methods have provided new tools for addressing dispersal and interactions among organisms and have clarified mechanisms of feedback between insect effects on, and responses to, environmental changes. Recent studies of factors controlling energy and nutri- ent fluxes have advanced understanding and prediction of interactions among organisms and abiotic nutrient pools. The traditional focus of insect ecology has provided valuable examples of adaptation to environmental conditions and evolution of interactions with other organisms. By contrast, research at the ecosystem level in the last 3 decades has addressed the integral role of her- bivores and detritivores in shaping ecosystem conditions and contributing to energy and matter fluxes that influence global processes. This text is intended to provide a modern per- spective of insect ecology that integrates these two traditions to approach the study of insect adaptations from an ecosystem context. This integration substantially broadens the scope of insect ecology and contributes to prediction and resolution of the effects of current envi- ronmental changes as these affect and are affected by insects. This text demonstrates how evolutionary and ecosystem approaches complement each other, and is intended to stimulate further integration of these approaches in experiments that address insect roles in ecosystems. Both approaches are necessary to understand and predict the consequences of environmental changes, including anthropogenic changes, for insects and their contributions to ecosystem structure and processes (such as primary pro- ductivity, biogeochemical cycling, carbon flux, and community dynamics).
    [Show full text]
  • Fungi-Insect Symbiosis Laboulbeniomycetes
    Important Dates zDecember 6th – Last lecture. zDecember 12th – Study session at 2:30? Where? Fungi-Insect zDecember 13th – Final Exam: 12:00-2:00 Symbiosis Fungi-Insect Symbiosis Fungi-Insect Symbiosis zMany examples of fungi-insect zMany examples of fungi-insect symbiosis. symbiosis (continue). zCover the following examples zInsects that cultivate fungi: Laboulbeniomycetes – Class of Attine Ants Ascomycota. Mostly on insects. Septobasidium –Genus of Mound Building Termites Basidiomycota Ambrosia Beetles Laboulbeniomycetes Laboulbeniomycetes zAscocarps occur on very specific zVery poorly known example. localities in some species: zRelationship between fungi and insects unclear. One species parasitic? Species of this fungus probably occurs on all insects Fungus is a member of Ascomycota zRickia dendroiuli Only found on forelegs of millipedes 1 Rickia dendroiuli Rickia dendroiuli Mature ascocarp zLow magnification showing three ascocarps zHigh magnification showing two ascocarps, as seen through the microscope. left is mature Laboulbeniomycetes Laboulbeniomycetes zIn some species specific localities zVariations were based on mating habit misleading. For example: of insects involved. In some insects, “species A” may have ascocarps arising only on front, upper pair of legs of males However, “Species A” have ascocarps arising only on the back, lower pair of legs of females of same insect species. Peyritschiella protea Peyritschiella protea zAscocarps not zHigh magnification always in specific of ascocarps and localities. ascospores. ascocarps and ascospores 2 Stigmatomyces majewski Stigmatomyces majewskii zLow and high z Ascocarps occur magnification mostly on of ascocarps. segment. zNote one on wing. Laboulbenia cristata Laboulbenia cristata zAscocarps occur on zHigh magnification middle segment of ascocarp with legs. ascospores. SeptobasidiuSeptobasidiumm SeptobasidiuSeptobasidiumm zGenus of Basidiomycota that forms a zMore examples: symbiotic relationship with scale insects.
    [Show full text]
  • Fungus-Farming Insects: Multiple Origins and Diverse Evolutionary Histories
    Commentary Fungus-farming insects: Multiple origins and diverse evolutionary histories Ulrich G. Mueller* and Nicole Gerardo* Section of Integrative Biology, Patterson Laboratories, University of Texas, Austin, TX 78712 bout 40–60 million years before the subterranean combs that the termites con- An even richer picture emerges when com- Aadvent of human agriculture, three in- struct within the heart of nest mounds (11). paring termite fungiculture to two other sect lineages, termites, ants, and beetles, Combs are supplied with feces of myriads of known fungus-farming insects, attine ants independently evolved the ability to grow workers that forage on wood, grass, or and ambrosia beetles, which show remark- fungi for food. Like humans, the insect leaves (Fig. 1d). Spores of consumed fungus able evolutionary parallels with fungus- farmers became dependent on cultivated are mixed with the plant forage in the ter- growing termites (Fig. 1 a–c). crops for food and developed task-parti- mite gut and survive the intestinal passage tioned societies cooperating in gigantic ag- (11–14). The addition of a fecal pellet to the Ant and Beetle Fungiculture. In ants, the ricultural enterprises. Agricultural life ulti- comb therefore is functionally equivalent to ability to cultivate fungi for food has arisen mately enabled all of these insect farmers to the sowing of a new fungal crop. This unique only once, dating back Ϸ50–60 million years rise to major ecological importance. Indeed, fungicultural practice enabled Aanen et al. ago (15) and giving rise to roughly 200 the fungus-growing termites of the Old to obtain genetic material of the cultivated known species of fungus-growing (attine) World, the fungus-growing ants of the New fungi directly from termite guts, circumvent- ants (4).
    [Show full text]
  • Interactions Between Southern Pine Beetle, Mites, Microbes, and Trees Kier D
    From Attack to Emergence: Interactions between Southern Pine Beetle, Mites, Microbes, and Trees Kier D. Klepzig1 and Richard W. Hofstetter2 9 1 Assistant Director-Research, USDA Forest Service, Southern Research Station, Asheville, NC, 28804 2Assistant Professor, Northern Arizona University, Flagstaff, AZ 86011-5018 Abstract Bark beetles are among the most ecologically and economically influential organisms in forest ecosystems worldwide. These important organisms are consistently associated in complex symbioses with fungi. Despite this, little is known of the net impacts of the fungi on their vectors, and mites are often completely overlooked. In this chapter, we will describe interactions involving the southern pine beetle (SPB), among the most economically damaging of North American forest insects. We examine SPB interactions with mites, fungi, and other microbes, following the natural temporal progression from beetle attack to offspring emergence from trees. Associations with fungi are universal within bark beetles. Many beetle species possess specialized structures, termed mycangia, for the transport of fungi. The SPB consistently carries three main Keywords fungi and numerous mites into the trees it attacks. One fungus, Ophiostoma minus, is carried phoretically on the SPB exoskeleton and by phoretic mites. actinomycetes symbiosis The mycangium of each female SPB may contain a pure culture of either Dendroctonus frontalis Ceratocystiopsis ranaculosus or Entomocorticium sp. A. The mycangial fungi Ceratocystiopsis are, by definition, transferred in a specific fashion. The SPB possesses two types Entomocorticiun of gland cells associated with the mycangium. The role of these cells and their mycangium products remains unknown. Preliminary studies have observed yeast-like fungal Ophiostoma minus, spores in the mycangium and several surrounding tubes that presumably carry secreted chemicals from gland cells (or bacteria) to the mycangium.
    [Show full text]
  • Co-Adaptations Between Ceratocystidaceae Ambrosia Fungi and the Mycangia of Their Associated Ambrosia Beetles
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles Chase Gabriel Mayers Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biodiversity Commons, Biology Commons, Developmental Biology Commons, and the Evolution Commons Recommended Citation Mayers, Chase Gabriel, "Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles" (2018). Graduate Theses and Dissertations. 16731. https://lib.dr.iastate.edu/etd/16731 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles by Chase Gabriel Mayers A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Microbiology Program of Study Committee: Thomas C. Harrington, Major Professor Mark L. Gleason Larry J. Halverson Dennis V. Lavrov John D. Nason The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2018 Copyright © Chase Gabriel Mayers, 2018.
    [Show full text]
  • Xylosandrus Compactus (Coleoptera: Scolytidae - Black Twig Borer) Is a Highly Polyphagous Pest of Woody Plants Which Has Recently Been Reported from Italy and France
    EPPO, 2020 Mini data sheet on Xylosandrus compactus Added to the EPPO Alert List in 2017 – Deleted in 2020 Reasons for deletion: Xylosandrus compactus and its associated fungi have been included in EPPO Alert List for more than 3 years and during this period no particular international action was requested by the EPPO member countries. In 2020, the Working Party on Phytosanitary Regulations agreed that it could be deleted, considering that sufficient alert has been given. Why: Xylosandrus compactus (Coleoptera: Scolytidae - black twig borer) is a highly polyphagous pest of woody plants which has recently been reported from Italy and France. It probably originates from Asia and has been introduced to other parts of the world, most probably with trade of plants and wood. In parts of Italy (Lazio), serious damage has recently been observed on Mediterranean maquis plants in a natural environment. As this pest might also present a risk to many woody plants in nurseries, plantations, orchards, parks and gardens, scientists who had observed this outbreak in Lazio recommended that X. compactus should be added to the EPPO Alert List. Where: X. compactus is widely distributed in Africa, Asia and South America. It has been introduced in the Pacific Islands, New Zealand, Southeastern USA, and more recently in Europe in Italy and Southern France. X. compactus is thought to originate from East Asia. EPPO region: Italy (first found in 2011 - Campania, Lazio, Liguria, Sicilia and Toscana), France (first found in 2016 - Provence-Alpes-Côte-d’Azur region), Greece (first found in 2019), Spain (Baleares only). Africa: Benin, Cameroon, Central African Republic, Comoros, Congo, Congo (Democratic Republic of), Cote d'Ivoire, Equatorial Guinea, Gabon, Ghana, Guinea, Guinea-Bissau, Kenya, Liberia, Madagascar, Mauritania, Mauritius, Nigeria, Reunion, Senegal, Seychelles, Sierra Leone, South Africa, Tanzania, Togo, Uganda, Zimbabwe.
    [Show full text]
  • The Mystery of the Lesser Stag Beetle Dorcus Parallelipipedus (L.) (Coleoptera: Lucanidae) Mycangium Yeasts by Masahiko Tanahashi 1 and Maria Fremlin *2
    146 Bulletin of the Amateur Entomologists' Society The mystery of the lesser stag beetle Dorcus parallelipipedus (L.) (Coleoptera: Lucanidae) mycangium yeasts by Masahiko Tanahashi 1 and Maria Fremlin *2 1 National Institute of Advanced Industrial Science and Technology (AIST) Central 6, Tsukuba, Ibaraki 305-8566, J apan 2 25 Ireton Rd, Colch ester, Essex, CO3 3AT, UK - E-mail: [email protected] (Correspondence) Introduction The mycangium is a microbe-storage organ present in several wood-feeding invertebrates; for example, it has been known for some time that bark and ambrosia beetles, and even leaf-roller weevils carry symbiotic fungi in special structures on their bodies (Beaver, 1989; Kobayashi et al , 2008). However, this organ has only been discovered recently in stag beetles (Tanahashi et al. , 2010) and in a certain lizard beetle ( Toki et al ., 2012 ), probably because it is not an external structure. In their case, the mycangium is an ovipositor- associated organ, that is, an exoskeletal organ normally folded and hidden under the last tergal plate of the female’s abdomen. Remarkably, this organ is clearly represented, albeit without a description, in Franciscolo’s drawings of the dorsal view of the female reproductive system for a couple of Lucanidae species: Lucanus cervus and L. tetraodon (1997). However, he opted for ventral views of all the other species, including Dorcus parallelipipedus , in which case the mycangium is obscured by the reproductive organs. Since the author is no longer alive and the book is currently out of print, we reproduce below one of his diagrams with the mycangium marked by us (Figure 1).
    [Show full text]
  • 1985: Insects and Diseases of Southern Forests Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons Forestry Symposia School of Renewable Natural Resources 1985 1985: Insects and Diseases of Southern Forests Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: http://digitalcommons.lsu.edu/agrnr_symposia Part of the Forest Sciences Commons Recommended Citation Louisiana State University and Agricultural & Mechanical College, "1985: Insects and Diseases of Southern Forests" (1985). Forestry Symposia. 33. http://digitalcommons.lsu.edu/agrnr_symposia/33 This Article is brought to you for free and open access by the School of Renewable Natural Resources at LSU Digital Commons. It has been accepted for inclusion in Forestry Symposia by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. 34th Annual Forestry Sym posium 1 9 8 5 INSECTS AND DISEASES OF FORESTSS O U T H E R N SCHOOL OF FORESTRY WILDLIFE, AND FISHE R IE S lOUISIANA EXPERIMENTAGRICULTURAL STATION LOUISIANA STATE UNIVERSITY AGRICULTURAL CENTER 34th Annual Forestry Symposium 1985 INSECTS AND DISEASES OF SOUTHERN FORESTS EDITED BY RICHARD A. GOYER Professor of Entomology and JOHN P. JONES Associate Professor of Plant Pathology and Crop Physiology Published through the academic direction of SCHOOL OF FORESTRY, WILDLIFE, AND FISHERIES LOUISIANA STATE UNIVERSITY AGRICULTURAL CENTER In cooperation with LOUISIANA STATE UNIVERSITY AGRICULTURAL CENTER TABLE OF CONTENTS Page iii John P. Jones Acknowledgments................ iv SESSION I How Insect and Disease Problems Manifest Themselves in the Landscape and Urban Forestry Industry............... 2 Managing Forest Insect and Disease Losses............... 5 Impact of Insects and Diseases on Large Industrial 8 and Stephen W. Coleman Recent Advances in Insect Control 16 Nursing Diseases - Outplanting Survival as Affected by 24 SESSION II A Decision Support System for 35 Michael C.
    [Show full text]
  • Relations Between Wood-Inhabiting Insects and Fungi
    RELATIONS BETWEEN WOOD-INHABITING INSECTS AND FUNGI NINA P. KRIVOSHEINA AN. Severtzov Institute of Evolutionary Animal Morphology and Ecology U.S.S.R. Academy of Sciences Moscow 117071 U.S.S.R. INTRODUCTION It is widely known that xylophagous insects do not usually attack healthy, resistant trees. In order to overcome these defenses, inner-bark feeding insects have developed symbiotic interrelationships with various organisms, fungi in particular. In this paper, using our own data together with that available in the literature, we analyze the forms of relationships between insects and fungi and the role of these interactions at various stages of wood decomposition. In doing so, we distinguish between the following fungal-insect relationships: 1) ambrosia mycetophagous insects, symbiotically associated with primary ambrosia fungi 2) ambrosia xylomycetophagous (phloeomycetophagous) insects, symbiotically associated with wood-coloring fungi (auxiliary ambrosia fungi according to Batra 1985) 3) xylophagous insects, symbiotically associated with fungi causing vascular mycoses 4) destructive xylo-, mycetophagous insects, associated with wooddestroying fungi. The representatives of the first three groups develop in living wood or fresh timber. Representatives of the last group develop in dead wood, though in the earliest stages they can colonize living, but irreversibly weakened wood. REVIEW Ambrosia Mycetophagous Insects This group includes insects which have necessary ectosymbiotic connections with a specific group of fungi imperfecti, the ambrosia fungi, and several characteristic features. The ambrosia fungi are highly sensitive to drought and develop only in moist wood. They are host specific, associated with certain species of insects, and are located only in colonized galleries or on the body of xylobionts.
    [Show full text]
  • Transmission of Fungal Partners to Incipient Cecropia-Tree Ant Colonies
    RESEARCH ARTICLE Transmission of fungal partners to incipient Cecropia-tree ant colonies Veronika E. Mayer1*, Maximilian Nepel1,2, Rumsais Blatrix3, Felix B. Oberhauser4, Konrad Fiedler1, JuÈ rg SchoÈnenberger1, Hermann Voglmayr1 1 Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, Austria, 2 Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraûe 14, Vienna, Austria, 3 Centre d'Ecologie Fonctionnelle et Evolutive, CNRS UMR 5175, France, 4 Department of Zoology, University of Regensburg, UniversitaÈtsstraûe 31, Regensburg, Germany a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Ascomycete fungi in the nests of ants inhabiting plants (= myrmecophytes) are very often cultivated by the ants in small patches and used as food source. Where these fungi come from is not known yet. Two scenarios of fungus recruitment are possible: (1) random infec- OPEN ACCESS tion through spores or hyphal fragments from the environment, or (2) transmission from Citation: Mayer VE, Nepel M, Blatrix R, Oberhauser mother to daughter colonies by the foundress queen. It is also not known at which stage of FB, Fiedler K, SchoÈnenberger J, et al. (2018) Transmission of fungal partners to incipient the colony life cycle fungiculture is initiated, and whether the- symbiont fungi serve as food Cecropia-tree ant colonies. PLoS ONE 13(2): for the ant queen. To clarify these questions, we investigated four Azteca ant species inhab- e0192207. https://doi.org/10.1371/journal. iting three different Cecropia species (C. insignis, C. obtusifolia, and C. peltata). We ana- pone.0192207 lysed an rRNA gene fragment from 52 fungal patches produced by founding queens and Editor: Renee M.
    [Show full text]
  • Introduction
    INTRODUCTION Mushrooms and Humans: Past, Present, and Future Mushrooms as we know them today evolved at least 120 million Gathering mushrooms is an age-old years ago—well before the time of the dinosaurs—and they have practice. Ja Schindler been part of our lives for as long as humans have existed. One of our closest living relatives, the mountain gorilla, is a passionate mush- room eater. The earliest record of humans eating mushrooms comes from a burial site in Europe from about 18,700 years ago, and the oldest record of mushroom cultivation by humans dates from about 600 CE in China. In Europe, button mushrooms (Agaricus bispo- rus) were first propagated in quarries and caves in France around 1650, on composted horse manure. The practice of fungiculture has developed rapidly since pure culture laboratory techniques were developed around the turn of the 20th century; these lab techniques require a high level of sanitary measures that are not easily achieved at home on a low budget. But things have changed, and it is now easier than ever to grow your own mushrooms. The proliferation of information-sharing via online forums has decomposed many of the barriers to DIY mushroom cultivation. Widely dispersed communi- ties of home-scale cultivators have developed simple technologies (aka teks) to facilitate growing mushrooms at home. • 1 This extract provided by New Society Publishers. All rights reserved. Uma Echo Kirouac Arevalo enjoys Certainly, people grow mushrooms for many different reasons. the aroma of her harvest of pink They are well loved as food, and most cultivated mushrooms are oysters.
    [Show full text]
  • Materials Required for Infrastructure of Mushroom Cultivation
    Materials Required For Infrastructure Of Mushroom Cultivation Enunciative Clem sometimes refrigerating any bullheads overstudies clamantly. Daemonic Piotr conferring unashamedly, he verbified his clouding very embarrassingly. Serge never decoy any eschewals nitrogenize steadily, is Oral degraded and oneirocritical enough? Assessment of markets because spores started as stuffing for cultivation materials for of infrastructure and processed mushroom From the substrate is the amount of production rooms for materials required infrastructure of mushroom cultivation houses as food. This phase ii, bacteria and of materials infrastructure mushroom for cultivation on wetting the production yields were almost universally accepted by! Sweet spices grown. This document is best viewed in temporary single page format. Organic nitrogenous material may be unsatisfactory sometimes enlarge to the presence of toxic substances. Final compost should be used to buy back with mushroom cultivation are going through filter. Associations should erect a mass media marketing campaign to increase popularity of mushroom war the country. Infrastructure Mushroom Machines Mushroom Machinery. Workshop Mycelium Cultivation Texas Architecture UTSOA. Bhk duplex in the external funding of a fourth layer of intracellular protein in organic crops a required for materials mushroom cultivation of infrastructure, because mushrooms in size of! There is no outlook of consuming fresh mushrooms, as happens in other countries. Introduction to find that differs from hefei sada medical
    [Show full text]